
EUROGRAPHICS 2020 / U. Assarsson and D. Panozzo
(Guest Editors)

Volume 39 (2020), Number 2

Expression Packing: As-Few-As-Possible Training Expressions for
Blendshape Transfer

E. Carrigan1, E. Zell1, C. Guiard2 and R. McDonnell1

1Trinity College Dublin 2EISKO

Abstract

To simplify and accelerate the creation of blendshape rigs, using a template rig is a common procedure, especially during the
creation of digital doubles. Blendshape transfer methods facilitate copy and paste functionality of the blendshapes from the
template model to the digital double. However, for adequate personalization, such methods require a set of scanned training
expressions of the original actor. So far, the semantics of the facial expressions to scan have been defined manually. In contrast,
we formulate the semantics of the facial expressions as an integer optimization of the blendshape weights. By combining different
blendshapes of the template model, our method creates facial expressions that serve as semantic references during scanning.
Our method guarantees to compute as-few-as-possible training expressions with minimal overlap of activated blendshapes.
If the number of training expressions is limited, blendshapes are selected based on their power to personalize the resulting
blendshapes compared to generic blendshape transfer methods.

CCS Concepts
• Theory of computation → Packing and covering problems; • Computing methodologies → Animation;

1. Introduction

Creating high-quality, production-ready animation rigs for individ-
ual characters is a time-consuming task which is a major bottleneck
in current facial animation pipelines, where blendshape interpola-
tion is still the method of choice for real-time [Sey16] and offline
animation [Sey19]. Aiming for high quality, it became common to
acquire 3d scans for digital doubles, while high-resolution models
of fictional characters are sculpted in 3d. The resulting 3d models
and expressions define the shape down to the pore level, but vary
with regard to the vertex count and are therefore lacking the re-
quired one-to-one vertex correspondence between blendshapes. In
order to ensure equal numbers of vertices and consistent connectiv-
ity across expressions, the 3d meshes are retopologized, in general
at lower resolution. Academic work largely automated this process
by registering a template blendshape model non-rigidly towards
the 3d scan or sculpted model (e.g., [IBP15, FNH∗17, LBB∗17]).
Within these frameworks, the template model is consistently de-
formed until it accurately approximates the shape of the 3d scan
or sculpted model. To simplify the creation of blendshapes further,
several algorithms have been proposed that transfer existing generic
blendshapes from a template model to new characters [SP04] or
personalize the generic blendshapes based on training expressions
[LWP10, SML16]. So far, the semantics of these training expres-
sions, whether it should be a smile, frown or any other expression,
have been defined manually.

In general, blendshape transfer methods offer a trade-off be-
tween fast generation of plausible (but not necessarily artefact-free)
blendshapes and creation of accurately-personalized blendshapes,
at the cost of requiring many training expressions. While the two
extremes are well defined (either no training expressions or one
training expression for each blendshape) no obvious solution exists
for an optimal set of training expressions. By optimal, we mean that
we aim to satisfy the following four goals:

1. The number of training expressions should be as-few-as-possible
to reduce the number of expressions to scan or sculpt.

2. To ensure accurate extraction of personalized blendshapes, no
overlap of blendshapes should exist in training expressions. (e.g.,
instead of combining two mouth blendshapes, a combination of
an eye and a mouth blendshape should be preferred).

3. If the number of training expressions is limited, blendshapes that
would be problematic to transfer without examples, should be
prioritized.

4. Training expressions should be poseable, meaning that a human
face should be able to reproduce them.

After reviewing recent blendshape creation pipelines [FNH∗17],
we observe that the template blendshape model used in blendshape
transfer methods is actually available before individual expressions
are scanned or sculpted. Because the blendshapes of the template
and the final, personalized rig will be similar, we can combine

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.13925

https://diglib.eg.orghttps://www.eg.org

Carrigan et al. / Expression Packing

Te
m

p
la

te
 R

ig
 A

E
xp

re
ss

io
n

 P
a

ck
in

g

Blendshape Transfer

Neutral Blendshapes Reference Expressions

Training Expressions

P
e

rs
o

n
a

li
ze

d
 R

ig
 B Neutral Blendshapes

+

3D Scanning / Sculpting

Non-rigid Registration

+

…

…

…

…

��
� ��

� ��
� ��

� ��
�

��
� ��

� ��
� ��

� ��
�

	�
� 	�

� 	

�

	�
� 	�

� 	

�

Figure 1: Illustration of our expression packing algorithm as part of the digital double pipeline. We run our expression packing algorithm
to create as-few-as-possible reference expressions, which help to guide an actor during a scanning session. Using non-rigid registration,
e.g. [IBP15, FNH∗17, LBB∗17], the mesh topology of the template rig is transferred to the 3d scans. The resulting training expressions are
optimal for the blendshape transfer algorithm, since they lead to best results with as-few-as-possible expressions. Finally, the blendshapes
are computed for the personalized rig.

several non-interfering blendshapes to create complex expressions
and use them during scanning as semantic references for the actual
training expressions (Figure 1). To our knowledge, we present the
first numerical optimization method that automatically combines
blendshapes to form optimal expressions. In addition, results of
our optimization largely satisfy the above mentioned criteria. We
pre-compute a minimal set of reference expressions, ordered by
their power to improve the overall results of the blendshape transfer
operation. Considering only the first reference expressions of our
minimal set will improve blendshape transfer methods as-much-
as-possible for an incomplete set of training expressions. This is
an often encountered practical case, for example if capturing-time
is short due to the availability of celebrities, or the budget limits
the number of training expressions that can be post-processed. An
entire run of our optimization returns the smallest set of reference
expressions for each blendshape and this set is significantly smaller
than the number of blendshapes of the template rig. Finally, our
method is generic as it is suitable for any blendshape basis. A ref-
erence implementation is published on GitHub to facilitate replica-
tion and comparison†.

2. Related Work

Facial animation based on linear interpolation of blendshapes
[LAR∗14] remains highly popular due to the numerical simplic-
ity and intuition both in practical applications as well as in re-

† https://github.com/Fiquem/Expression-Packing

search [PHL∗06, Osi07, DN08, OBP∗12]. In addition, personal-
ized 3d blendshape models form the basis for various marker-
less facial capturing methods [WBLP11,BWP13,LYYB13,CHZ14,
TZN∗15], where the objective is to fit a linear face model to an
image [BV∗99]. The main advantage of blendshapes over prin-
cipal component analysis (PCA), independent component analy-
sis and linear discriminant analysis etc. is the semantic encoding
of expressions. Despite many advantageous mathematical proper-
ties, PCA eigenvectors do not guarantee semantically meaningful
expressions, especially for eigenvectors associated with the later
eigenvalues (10th and later) [LAR∗14].

Because the manual creation of a blendshape model is a time-
consuming task [Osi07], several methods have been developed
to facilitate the transfer of blendshapes to new characters. In ex-
pression cloning [NN01], the direction and magnitude of vertex-
displacements is adjusted separately. Other authors proposed ra-
dial basis functions (RBF) [Pan03, FSF07, OZS08] or deep learn-
ing [GYQ∗18] to relax or completely remove the need for dense
correspondences between meshes. Sumner et al. [SP04] couple lo-
cal rotation and scaling of triangles by transferring deformation
gradients. The method was later improved by adding semantic
constraints [Sai13] or physical constraints like collision detection
[IKNDP16]. Deformation transfer [SP04] is also closely related to
various non-linear shape-interpolation methods, e.g. [BVGP09].

Li et al. [LWP10] proposed to personalize the generic blend-
shape transfer method by providing a small set of training ex-
pressions in combination with approximated blendshape weights.
Recently, an extended method has been applied in VFX produc-

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

220

https://github.com/Fiquem/Expression-Packing

Carrigan et al. / Expression Packing

tions, where all blendshapes are covered by training expressions
[SML16]. After combining several blendshapes in one expression,
the number of training expressions is significantly lower com-
pared to the number of blendshapes. In general, combining non-
overlapping blendshapes in training expressions is preferred for
easier separation [CFA∗16]. Methods for creating high-quality dig-
ital doubles either from photographs [PHL∗06, HSW∗17] or 3D
scans [ZSCS08, GZC∗16, FNH∗17] is a recurrent topic in com-
puter graphics. Personalized blendshapes can also be estimated us-
ing multi-linear interpolations based on a big database of differ-
ent people with ideally, but not necessarily, semantically equiva-
lent expressions. Suitable databases are Facewarehouse [CWZ∗14],
FLAME [LBB∗17] or internal datasets [SL14,HSW∗17]. Unfortu-
nately, the level of detail of public datasets is dramatically lower
compared to high-resolution rigs using photogrammetry [FNH∗17]
– a few thousand vertices vs. pore-deep reconstruction level.

Automatic transfer of blendshapes, either using radial basis func-
tions or deformation transfer is also relevant within the context
of facial animation retargeting [Pan03, FSF07, OZS08, SILN11,
SLS∗12]. Within this domain, creating two semantically equivalent
blendshape models allows simple copying of blendshape weights
for animation. Improving accuracy of the sparse blendshapes rigs
for retargeting with examples [LMX∗08], or based on automati-
cally detected fuzzy correspondences [RZL∗17] significantly im-
proved animation retargeting. It should be noted that some earlier
work on facial animation retargeting was named as example-based
facial animation [PKC∗03,PCNS05,SCSN11,BP14]. However, in-
stead of computing blendshapes, the aim of this work is to trans-
fer the actual animation, once the blendshapes are known. Starting
from semantically equivalent expression pairs of two characters, a
direct mapping is learned between the parameter spaces of the rigs.

While many methods rely on training expressions to improve the
accuracy of blendshape transfer methods, the question of which
blendshapes should be corrected by a training expression has
barely been addressed. So far, training expressions are defined
manually and refined over time using a trial and error process.
One notable exception is the perceptual evaluation by Carrigan et
al. [CHMA18], however their analysis is limited to action units as
defined by FACS. In practice, the number of blendshapes vary be-
tween 30 and over 200, and while most are inspired by the FACS
system [EF78], it is less common to encounter exact reproduction
of all action units. In contrast, we present a method that automati-
cally identifies blendshapes that are difficult to transfer, is suitable
for any blendshape basis, and by design preserves all benefits of
example based methods [LWP10, SML16].

We formulate our optimization problem for computing the se-
mantics of the training expressions as a linear integer programming
problem. Within the computer graphics field, mixed integer pro-
gramming was previously applied to shape segmentation [HKG11],
correspondence search between unregistered shapes [VLR∗17] and
to optimize layouts [FDH∗15, WFLW18]. More details on the ap-
plication of mixed integer programming in computer graphics can
be found in a recent course [Won18].

3. Blendshape Transfer

An example-based blendshape transfer method requires a template
blendshape rig A, consisting of triangle meshes posing a neutral
expression and K blendshapes. All meshes are of identical connec-
tivity and N vertices (after non-rigid mesh registration [FNH∗17]).
We denote the neutral expression and all blendshapes as the set
A = {vA

0 ,v
A
1 , . . . ,v

A
K}, where the vertex positions vn

k are stacked in
a single vector vk = (vn

k , . . . ,v
N
k)

T of size 3N due to the coupling of
xyz-coordinates. Delta-blendshapes are defined as: δvk = vk− v0.
In addition to the template blendshape model, a target model exists
of different identity vB

0 . For the target model B, J training expres-
sions xB

j are provided (B = {xB
1 , . . . ,x

B
J }) with the same number of

vertices and connectivity as A. For each training expression, the
(approximate) blendshape weights w j

k are known and the goal of
the blendshape transfer function is to compute the missing person-
alized blendshapes {vB

1 , . . . ,v
B
K} of B, satisfying the equation

xB
j (v

B
1 , . . . ,v

B
K) = vB

0 +
K

∑
k=1

w j
k

(
vB

k −vB
0

)
(1)

We assume that the two blendshapes vA
k and vB

k are semantically
equivalent expressions of A and B and of identical connectivity.
In our work, we focus on finding the semantically equivalent ex-
pressions xA

j that serve as a reference for creating the training ex-
pressions xB

j , either by modelling the expressions manually or by
posing the expression for a 3d-scan. Our main intention is to obtain
the semantics for as-few-as-possible training expressions J, and ob-
tain the most accurate unknown blendshapes {vB

1 , . . . ,v
B
K} as a re-

sult of the example-based blendshape transfer method. A high-level
overview of this method can be seen in Figure 1. For greater clarity
and convenience we summarize our notation in Table 1.

4. Optimal Reference Expressions

In the following, we will derive step-by-step our optimization
method for pre-computing the reference expressions xA

j for any
blendshape basis. To simplify notation, we largely omit the indices
A and B within this section. Variables without an index refer to
the blendshape model A, e.g. vk ≡ vA

k . We first introduce the con-
cept of binary blendshapes (Section 4.1), which is a fundamental
conceptual basis for our optimization framework (Section 4.2). Af-
terwards, we discuss important modifications to obtain numerically
optimal as well as plausible expressions (Sections 4.3, 4.4). We
close this section with a discussion on how to solve the optimiza-
tion function and the benefits of different solutions (Section 4.5).

4.1. Binary Blendshapes

Example-based methods estimate personalized individual blend-
shapes from a training expression. This problem is ill-posed when
an expression consists of overlapping blendshapes (e.g., if an ex-
pression is composed of a smile and a mouth-open blendshape). In
contrast, computing individual blendshapes is easy from a training
expression consisting of, for example, an eye-closing and a mouth
opening blendshape as there is no overlap. To reduce ambiguity
within training expressions, we search for a metric that allows a
balance between combining as many blendshapes as possible in one

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

221

Carrigan et al. / Expression Packing

Variable Description

j, J index / absolute number of examples

n, N index / absolute number of vertices

t, T index / absolute number of triangles

k, K / m, M index / absolute number of blendshapes

A, B blendshape rigs

vn
k position of vertex n of blendshape k

v0, vk neutral expressions and blendshape k

δvk delta-blendshape k, with: δvk = vk-v0

δvn
k displacement of vertex n and blendshape k

wn weight of blendshape n

x j example expression

bk binary blendshape n

bn
k value for vertex n in bk, bn

k ∈ {0,1}
λ blendshape importance weight

s distortion metric between two triangles

d euclidean distance between two vertices

u, v, w vertex positions of a triangle uvw
(wx,wp) blendshape weights of a symmetric pair

Table 1: Notation overview of the most relevant variables.

sta�c

smoothing

ac�ve

Figure 2: Illustration of the different types of vertices for one
blendshape: static (blue), smoothing (green) and active (red). The
blendshape on the left is self-symmetric, the two blendshapes on
the right are symmetric, but have overlapping active vertices.

training expression and preventing too strong an overlap between
blendshapes within the training expressions (Goal 2, Section 1).

For this purpose, we introduce a new concept of binary blend-
shapes (eq. 2). Delta-blendshapes δvk define vertex displacement
with respect to the neutral expression v0, and binary blendshapes
bk will contain the information of the location of relevant deforma-
tion within the blendshape. In the following, vertices of blendshape
k with zero displacement (δvn

k = 0) will be called static. In addition,
vertices with a displacement bigger than zero will be divided into
two stages: active and smoothing vertices, depending whether their
displacement is strong and important for recognizing the semantic
meaning or whether the deformation mainly exists to maintain a
smooth deformation. See Figure 2 for an illustration. It is worth
mentioning that the differentiation between static and non-static
vertices is a common part of example-based blendshape transfer

methods, either in the form of soft constraints [LWP10] - remain
similar to the original blendshape, or hard constraints [SML16] -
static vertices remain static.

bn
k =

0 if ‖δvn
k‖< µ max

n∈N
‖δvn

k‖ , 0.25≤ µ≤ 0.4

1 otherwise
(2)

The information of whether a vertex is active or non-active (static
or smoothing) is saved as a binary value bn

k ∈ {0,1} within a vector
that we define as the binary blendshape bk = {b1

k , . . . ,b
N
k }. Based

on our experiments in Section 5.2, we recommend a relative thresh-
old of 25− 40% of the maximum displacement within the blend-
shape to decide if a vertex is active or non-active. We preferred
a relative metric over an absolute one, as this scales better across
subtle and strong expressions.

4.2. Optimization Problem

Creating a minimal set of reference expressions x j for a blendshape
transfer method can be defined as variation of a weighted set pack-
ing algorithm [Kar72]. Given a finite set that defines all unique el-
ements (dictionary) together with a collection of subsets, each con-
sisting only of a fraction of the unique elements, the set packing
algorithm identifies a group of subsets that are pairwise disjoint (no
unique element appears twice) and that have the maximum number
of unique elements.

Applied to our problem, the list of vertex indices {1, . . . ,N} is
the finite set (dictionary), with every vertex index n defined as a
unique element. Each binary blendshape bk defines a subset of ac-
tive vertices (vertices with strong displacements). The optimization
problem (eq. 3) is to pack as many blendshapes as possible in one
expression (Goal 1, Section 1), which is equivalent to maximizing
the number of blendshapes with wk = 1 (eq. 3a). At the same time,
combinations of blendshapes should be prevented if their individual
active vertices overlap (Goal 2). This can be expressed as a linear
constraint (eq. 3b) for every vertex n. In the end only two states are
relevant for a blendshape, either it is part of the expression or not.
We observe in practice that it is easier to model and pose extreme
expressions, rather than accurately extrapolating from in-betweens.
While a closed-eye expression is well defined, small inaccuracies
in a half-closed eye might negatively affect the closed-eye expres-
sion. For this reason wk is always 0 or 1 (eq. 3c), making the prob-
lem an integer optimization problem. If only a limited set of exam-
ple expressions can be provided, we would like to control which
blendshapes should be chosen first (Goal 3). For this reason, we in-
troduce the importance weight λk in eq. 3a. Details on computing
λk are described in Section 4.3 and evaluated in Section 5.

max
wk

K

∑
k=1

λkwk, (3a)

s.t.
K

∑
k=1

bn
kwk ≤ 1 , for all n ∈ N (3b)

wk ∈ {0,1} , for all k ∈ K (3c)

wx−wp = 0 , for all symmetry pairs (wx,wp) (3d)

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

222

Carrigan et al. / Expression Packing

Algorithm 1 Expression Packing
In: Jmax . max number of reference expressions
K = {1, . . . ,K} . set of available blendshapes
R= {} . blendshapes in reference expressions
b = get_binary_blendshapes(µ) . Section 4.1
λDis = get_disp_strength() . Section 4.3.1
λT D = get_tri_distortion() . Section 4.3.2
find_symmetry_pairs() . Section 4.4
while K 6= ∅ or J < Jmax do

λU = get_uniqueness() . Section 4.3.3 (optional)
λk = λDisk +λT Dk +λUk

R=R∪ get_optimal_expression() . Section 4.2
K =K∩R

To increase the plausibility of the automatically computed ref-
erence expressions (Goal 4), we include symmetry constraints
(eq. 3d). We observe from facial performance acting that it is easier
to pose symmetric facial expressions (e.g., both eyes closed, both
eyebrows frowning) than asymmetric facial expressions (e.g., left
mouth smiling, right mouth sad). We enforce simultaneous activa-
tion of symmetric blendshapes, where (wx,wp) are the blendshape
weights of two symmetric blendshapes (vx,vp). Section 4.4 pro-
vides more details on defining symmetric blendshape pairs.

Symmetry pairs and most importance weights are pre-computed
once at the beginning. In contrast, eq. 3 is solved for every sin-
gle reference expression (Algorithm 1) and returns the blendshape
weights w j

k for computing the reference expression x j. All blend-
shapes with wk = 1 are removed from the set of available blend-
shapes K and the total number of blendshapes K is updated. The
process is repeated until either a user-defined maximum number of
expressions is reached or no blendshapes remain. The order of the
computed reference expressions reflects their power to improve the
overall result (Goal 3).

4.3. Importance Weighting of Blendshapes

The binary blendshape provides information about the activated
vertices, but all blendshapes are considered as equally important
if λk = 1. However, personalizing certain blendshapes is more im-
portant than others, which we model by computing an importance
weight λk for every blendshape k in Equation 3. Let us analyze
the origin of errors using example-based blendshape transfer tech-
niques. First, semantically equivalent expressions can have individ-
ual variations, e.g., strong dynamic wrinkles in faces of old people
versus barely visible wrinkles in young faces. While it is difficult
to forecast exactly the individual differences of expressions, we can
assume that subtle expressions remain subtle and expressions with
strong movements have a higher chance to introduce noticeable in-
dividual differences due to strong deformations. We model this ob-
servation numerically by the displacement strength λDis.

Second, for blendshapes that are missing training examples,
deformation transfer [SP04] might introduce errors. Deformation
transfer is based on the assumption that the shape of the template
rig A is similar to the personalized rig B (vA

0 ≈ vB
0). As soon this

assumption is violated, artifacts start to appear. Closer examination

reveals that if triangles are non-uniformly scaled, results become
inaccurate. Unfortunately, deformation gradients are only scale in-
variant in the tangential plane of a triangle [KG08] but not in the
normal direction. Consequently, transferring the deformation be-
tween two shapes that are non-uniformly scaled, or where facial
parts differ in their size relative to the head (e.g., big eyes vs. small
eyes), will lead to visible artifacts as visualized in Figure 3. Notice
as well that the non-similarity of meshes from the algorithm’s per-
spective is different to the perceptual difference of characters. Sim-
ple non-uniform scaling creates highly distinctive characters for the
deformation transfer algorithm, but not for a human. At the same
time modifying the amount of fat in a human face leads to visually
distinct faces, but not numerically, because facial parts most af-
fected by blendshapes (e.g., eyes, mouth) remain the same. We aim
to prioritize blendshapes which would be problematic to transfer
by calculating the triangle distortion λT D between two characters.

Finally, we suggest an optional weighting term for blendshape
uniqueness to to enforce distinctiveness of consecutive reference
expressions. Although a large variation of expressions may appear
advantageous in the first place, we observe that example based
facial rigging [LWP10] tends to remove subtle blendshape differ-
ences, which we deemed important.

We observe that high-end character models with high numbers
of blendshapes intentionally have subtle differences in their ex-
pressions (e.g., several versions of smiles), which is important to
achieve high levels of realism. Blendshape transfer should main-
tain these subtle differences for high quality results. If, for ex-
ample, we had 2 similar blendshapes in the model (e.g., evil and
happy smile) with only one training example (e.g., happy smile)
we lose nuances between the two smiles after blendshape transfer
using the original alternating optimization (expression fitting and
weight estimation) [LWP10]. Due to regularization, the weight es-
timation changes correct blendshape weights 0.0,1.0 to an incorrect
e.g. 0.3,0.7. Enforcing correct blendshape weights 0.0,1.0 creates a
generic evil smile, but more importantly an accurate fit of the happy

Figure 3: Blendshape transfer using deformation transfer [SP04]
for two character pairs. Left: Despite strong visual differences, re-
sults are accurate because of the non-changing shape of the eyes.
Right: A simple non-uniform scale is a difficult case for expression
transfer creating inaccurate results.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

223

Carrigan et al. / Expression Packing
β
=

0.
5

β
=

0.
0

Figure 4: First five expressions computed with (β = 0.5) and with-
out (β = 0.0) the optional blendshape uniqueness metric.

smile. Since neither situation is sufficient for the transfer of a high-
end model, we consider the uniqueness term as optional (Figure 4).
Each of these factors will be normalized and combined into a single
factor, subject to user-defined variables (α,β). For our purposes we
define the weights as α = 0.5,β = 0.0 unless otherwise defined.

λk(α,β) = αλDisk +(1−α)λT Dk +βλDistk (4)

4.3.1. Displacement Strength

We consider the displacement weight of each blendshape, defined
as the mean displacement of all vertices n between the blendshape
vk and the neutral expression v0. We consider only active vertices,
as defined for binary blendshape bk in Section 4.1. Notice that the
dot product of bk · bk returns the number of active vertices. All
mean displacements d̄k are normalized to guarantee that λDisk is
of range [0,1].

d̄k =
1

bk ·bk

N

∑
n=1

bn
k
∥∥vn

k −vn
0
∥∥

λDisk =
d̄k

max
{

d̄1, ..., d̄K
} (5)

4.3.2. Triangle Distortion

We consider the triangle distortion between the neutral expressions
of the template rig A and target character B, since the relation-
ship between the triangles of these two meshes is key for accuracy
of deformation transfer. Given the equal connectivity between two
blendshape models, we first compute the vectors vu and vw, for
each pair of triangles uvw of the meshes A and B. The final dis-
tortion metric s between triangles t of the meshes A and B is then:

st = max
{

vuA
vuB

,
vuB

vuA

}
+max

{
vwA
vwB

,
vwB

vwA

}
(6)

The variable s for triangles t is of range [1,∞] and is normalized
in eq. 7 to ensure that λT D and λDis are both of range [0,1]. Trian-
gle distortion is only relevant for triangles affected by deformation
within a blendshape. We multiply st , which is only based on the

two neutral shapes, with the blendshape dependent bt
k, which is 1 if

at least one vertex of the triangle t is active and 0 otherwise.

sk =
T

∑
t=1

bt
kst , bt

k = bu
k ∪bv

k ∪bw
k

λT Dk =
sk

max{s1, ...,sK}

(7)

4.3.3. Blendshape Uniqueness

The Pearson coefficient quantifies similarity between two blend-
shapes [LAR∗14, RZL∗17]. The codomain of the Pearson coeffi-
cient is in the range [−1,1], with 1 indicating two blendshapes are
the same, 0 indicating they are different, and−1 indicating they are
the same but in opposing directions (e.g. opening and closing of the
mouth). As we wish to consider opposite movements as different,
we change all negative coefficients to 0. The first reference expres-
sion is unique by definition such that λUk = 0. All blendshapes that
are part of a reference expression are saved in the setR, with r be-
ing the index number and R the total number of blendshapes in R.
All other blendshapes remain in the setK (see Algorithm 1), with K
being now the available blendshapes for packing and not the over-
all number of blendshapes anymore. To compute the uniqueness
weight, we first sum the Pearson coefficient between a blendshape
k and all blendshapes in R. The result is normalized and inverted.
The intuition behind this metric is, if no similar blendshape is part
of the set of reference expressions the uniqueness weight is high
and low otherwise.

Uk =
1
R

R

∑
r=1

max
{

δvk ·δvr
‖δvk‖‖δvr‖

,0
}
, if R > 0

λUk = 1− Uk
max{U1, ...,UK}

(8)

4.4. Symmetry Constraints

Our overall goal is to propose reference expressions that are mean-
ingful and have good numerical properties. To our knowledge, no
method exists that can determine whether an expression can be
posed by a human. Interestingly, even well trained actors can have
difficulty in posing all defined Action Units individually [CKH11].
We discarded the idea of learning plausible expressions from ani-
mation data, because this would require the creation of an expres-
sive animation sequence for every template rig, a time-consuming
and difficult task. Furthermore, plausible expressions that are not
part of the animation would be considered as infeasible, unnec-
essarily limiting the combination space of blendshapes. We pre-
ferred a data-free solution that largely ensures plausible expressions
in combination with an optional artist friendly refinement feature
(Section 4.5.3). This enables the user to more quickly accomplish
the task of creating poseable expressions. Even with manual refine-
ment, the workflow remains largely automated.

We observe that symmetric facial expressions are easier to per-
form and appear more frequently, e.g., closing eyes or lifting eye-
brows simultaneously, a smile on both sides. We want to prefer
such combinations because they strongly improve the likelihood to

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

224

Carrigan et al. / Expression Packing

Figure 5: Symmetric blendshape activation. Shape symmetry re-
mains while lifting both eyebrows (left) and motion symmetry is
created due to perpendicular movement of the lips (right).

create visually plausible expressions (Goal 4). We identify two dif-
ferent types of facial symmetry: shape symmetry and motion sym-
metry (Figure 5). Expressions like closing both eyes, a smile etc.,
create shapes that are symmetric between the left and right side of
the face. Apart from the left and right side, facial shapes are not
symmetric. Nevertheless, the upper and lower lip move in coordi-
nation and certain symmetry exists between the main motion direc-
tions. The same applies for the lower eyelid and the upper eyelid
together with the eyebrows. In the following, we aim to automati-
cally identify blendshape pairs that contain symmetric activation of
the face (e.g., a left eyebrow raise blendshape and a right eyebrow
raise blendshape).

4.4.1. Shape Symmetry

For shape symmetry, we require a one-to-one mapping between the
vertices on the left and right-hand side of the face. This mapping
can be computed automatically, either based on the mesh topology
[Aut16], where a user defines a single triangle edge as the symme-
try axis, or independent of the mesh topology [MGP07] by compar-
ing different samples of the mesh surface. For all our tested blend-
shape models, using symmetry detection based on topology was
sufficient. Once the symmetry mapping is computed on the neutral
mesh, our algorithm first automatically detects all self-symmetric
blendshapes, (e.g., a smile that affects both sides of the face) and
excludes them from the symmetry search. Intuitively, one might
also consider excluding all blendshapes that have active vertices
on both sides of the symmetry axis. However, this exclusion is too
broad. Many blendshapes for the mouth and eyebrows have active
vertices on both sides of the symmetry axis in combination with a
symmetric opponent (see Figure 2).

For the remaining non-self-symmetric blendshapes, we project
the displacements of blendshape m on the symmetry plane using
the projection function p(δvn

m) and compute the final difference
between the potentially symmetric blendshape k and and the pro-
jected blendshape p(m) using the following equation:

εkm =
1

∑
N
n=1
(
bn

k ∩ p(bn
m)
) N

∑
n=1

∥∥bn
kδvn

k −bn
m p
(
δvn

m
)∥∥ (9)

Notice that the intersection of bn
k and p(bn

m) is smaller than the
union. While normalizing by the union would compute the average

vertex displacement between bn
k and p(bn

m), normalizing by the in-
tersection amplifies εkm for non-symmetric blendshapes. If εkm is
below the following relative threshold, the blendshapes k and m are
considered as symmetric.

εkm < 0.4 min
n∈N

{
max

∥∥δvn
k
∥∥ ,max

∥∥δvn
m
∥∥} (10)

When multiple symmetric blendshapes are found, we take the
pair with the lowest error and check for possible overlapping of ac-
tive vertices. We allow small overlap between symmetric pairs, as
we have found that pairs of blendshapes that should be considered
symmetric often have an overlap at the axis of symmetry (e.g., Fig-
ure 2, left). Blendshapes that spread along both facial halves will
be not combined by the symmetry constraint. As our optimization
algorithm strictly prevents any overlap between blendshapes in an
expression, active vertices must be corrected for symmetric pairs
of blendshapes in advance. Symmetric blendshapes will be forced
to be included together, therefore the total active area remains the
same.

4.4.2. Motion Symmetry

Finding a reliable mapping between vertices of the upper
mouth/nose area and the lower mouth/chin area is difficult because
facial parts differ significantly in terms of shape for the neutral pose
and in terms of displacement for the blendshapes. However, defin-
ing a symmetry in these areas is important in order to prevent im-
possible combinations such as a kiss for the upper lips and a lip bite
for the lower lips.

Lacking a promising automatic method, we use a sketch-based
method, where the user selects the vertices of the two pairs of sym-
metric areas. The selection procedure is shown in the supplemental
movie. As an approximate selection is sufficient, we rely on Maya’s
built-in mesh painting interface in our implementation. This allows
the entire task to be accomplished within a minute. Blendshapes
that either have no selected vertices or selected vertices from more
than one sketch, are removed from the set of possible candidates
for motion symmetry. The remaining blendshapes have very local
deformations, a small number of active vertices and a dominant
displacement direction. Lacking a reliable one-to-one mapping ap-
proach between individual vertices, we cannot compare per-vertex
displacements as we did for shape symmetry. Instead, for every
blendshape we compute an average displacement direction δv̄k.

δv̄k =
1∥∥∑

N
n=1 bn

kδvn
k

∥∥ N

∑
n=1

bn
kδvn

k (11)

We then compare the average blendshape displacements between
the potential symmetry pair candidates k and m,

cos(φkm) = δv̄k ·δv̄m . (12)

We consider all blendshapes with cos(φkm) below a threshold of
−0.985 as symmetric. The minimal threshold is equivalent to 10◦

difference in the opposite direction (asymmetric activation) and
symmetry pairs are built based on the smallest angle. As previously,
active vertices are modified to prevent possible overlapping.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

225

Carrigan et al. / Expression Packing

Test-case N K Optimal Greedy

Male 7366 73 4.97s 0.29s

Toon 11680 65 7.14s 0.39s

Female 5034 265 13.14s 0.39s

DigiDouble 5131 161 13.14s 0.39s

Table 2: Timings for computing the first reference expression. Com-
putation time depends on the vertex number N and the number of
blendshapes K in the blendshape rig.

Test-case 5 ex. 10 ex. 20 ex.

Male 36/38 (31) 49/49 (42) 63/63 (56)

Toon 34/33 (22) 48/49 (43) 62/62 (61)

Female 58/54 (34) 89/85 (57) 124/116 (93)

DigiDouble 61/54 (39) 90/79 (55) 126/121 (104)

Table 3: Number of blendshapes selected by greedy and optimal
algorithms and their overlap in the first 5, 10 and 20 training ex-
pressions. Format: Greedy/Optimal (Overlap).

4.5. Solving the Optimization Problem

Solving a set packing problem (eq. 3) is np-hard. However, by for-
mulating the problem as an integer linear problem and using ex-
isting numerical libraries, the optimal solution can be computed
within a reasonable time (Table 2). Alternatively, greedy approx-
imation methods facilitate interactive framerates (< 1s) and suffi-
cient results. In the following, we discuss the details together with
the advantages and disadvantages.

4.5.1. Optimal Solution

Our optimization problem (eq. 3) is a derivation of the weighted
set packing problem, which is a classic example of an np-complete
problem [Kar72]. We formulate it as a boolean linear programming
problem, which is a special case of mixed integer linear program-
ming (MILP) due to the linear objective function together with lin-
ear (in-)equality constraints and wk ∈ {0,1}. We compute the opti-
mal solution in Python using the PuLP library in combination with
the numerical library CPLEX. The linear objective function con-
sists of K unknowns, one for each blendshape. The number of linear
constraints is N +P which is the number of vertices and symmetry
pairs (wx,wp). Various timings for solving the linear programming
problem are listed in Table 2.

The advantage of the optimal solution is that it computes the
global optimum, e.g. by using a branch and cut algorithm. Com-
putation time depends on the number of vertices, the number of
blendshapes and the distribution of activated vertices across dif-
ferent blendshapes. For example, if blendshapes either activate all
vertices in the upper or lower face halves, the number of combina-
tions to test is less, than if different blendshapes activate vertices
at different locations. This blendshape-specific component makes

it difficult to predict timings exactly for different blendshape rigs.
Overall, we notice that the optimal solution is slower compared to
the greedy solution.

4.5.2. Greedy Approximation

We implement Kordalewski’s greedy set packing algo-
rithm [Kor13] with some alterations to suit our method as
shown in Algorithm 2. First, we select blendshapes based on the
smallest weighted sum of active vertices, where the importance
weight λn is inverted. If the weight is constant across all blend-
shapes and vertices, this fits the largest number of blendshapes
into one expression. Second, we include an option to allow a small
percentage of overlap between blendshapes, which is not possible
in case of the optimal solution.

Algorithm 2 Greedy Set Packing
x j = v0 . example expression
K = {1, . . . ,K} . non-covered blendshape indices
λmax = 1 . maximum possible weight
for k in K do

nk = bk ·bk . sum active vertices
λknk = (λmax−λk)nk . precompute importance

while K 6= ∅ do . expression packing
δvx = smallest(λknk)
δvp = find_symmetric(δvx)
x j += δvx+δvp . add blendshapes
K =K\{kx,kp} . remove covered blendshapes
for m in K do . remove overlapping blendshapes

if overlap(x j, bm) then
K =K\{m}

return x j

4.5.3. Artist Friendly Refinement

After incorporating the symmetry constraint and fine-tuning the im-
portance weights, the suggested expressions by our algorithm are
plausible in about 85% of cases (see Section 5). To correct remain-
ing implausible expressions but still maintain the optimal selection
of blendshapes, we allow for artist intervention in our greedy al-
gorithm. As each blendshape is chosen, the user is presented with
the options to accept or reject it. If blendshapes are rejected, the
algorithm proposes alternative nearly optimal blendshapes and the
process is repeated. All rejected blendshapes are no longer con-
sidered for the current expression, but will be reconsidered when
computing the next expression.

5. Results and Evaluation

In this section, we evaluate the influence of different parameters
and solvers on the final output and the pose-ablity of the expres-
sions. For evaluation, we use a derivation of the original example-
based blendshape transfer method [LWP10]. The method required
a number of training expressions in combination with estimates of
the blendshape weights. By design, the blendshape weights are 0
or 1 and are known for our training expressions. We therefore re-
move the weight estimation step within the alternating optimization
(fitting towards examples vs. blendshape weight estimation).

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

226

Carrigan et al. / Expression Packing

Test case: Reference Expressions:

Template
Character A

Without Training
(Deformation

Transfer)

With 4 Training
Expressions

(Our Results)

Ground Truth
Character B

Figure 6: Comparison of individual blendshapes after applying
blendshape transfer without training expressions (Deformation
Transfer) and with only four training expressions based on our
reference expressions. Each row shows two blendshapes that have
been corrected by one training expression.

5.1. Dataset

One immanent challenge of evaluating example-based blendshape
transfer methods are suitable character assets. For ground truth
comparisons, two blendshape modelsA andB are required of equal
vertex connectivity and semantically equivalent blendshapes. In
practice, either the total number of blendshapes is small [CWZ∗14]
or a small number of blendshapes is identical between two charac-
ters, while other blendshapes can range from similar to completely
different. This is even the case in recent datasets, e.g., 3D FACS and
FLAME [CKH11,LBB∗17]. Furthermore, evaluation should cover
difficult cases, meaning that the two blendshape models should
have significantly different proportions in areas that are deformed
most by blendshapes (Section 3).

As a ground-truth test for the digital double use-case, we ac-
quired two high-end photogrammetry-scanned characters, created
by Eisko, a leading Digital Double company (Figure 6). We refer
to these characters as Female 1 and Female 2. Semantically equiv-
alent blendshapes between both models were selected manually.

Non-equivalent blendshapes were removed. This resulted in a to-
tal of 161 in-correspondence blendshapes between Female 1 and
Female 2. To establish equal connectivity between the two high-
quality facial rigs we followed the default procedure as described
previously (Figure 1). We refer to this test-case as DigiDouble. Be-
cause the two rigs are based on real people and 3d scans, this is the
closest possible approximation to a real use-case that offers ground
truth comparisons. In such a dataset, the blendshape weights of the
reference expressions can be copy-pasted to obtain training expres-
sions. After running the example-based blendshape transfer algo-
rithm with only four training expressions, we compare the indi-
vidual blendshapes for character B with the original (see Figure 6,
right columns). Despite a compact packing of over 30 blendshapes
in a few expressions visible artifacts that appeared when using de-
formation transfer only, are removed and only small numerical er-
rors appear where blendshapes overlapped. A larger set of results
can be found in the appendix in Figure 14.

To provide more test-cases, especially of very challenging sce-
narios, we first gathered 3 production-quality rigs: a Male, Female
(Female 1 from before), and a Toon (see Table 2 and Figure 11).
The characters ranged in vertex count (5034 to 11,680), number of
blendshapes (from 65 to 265), and whether they were sculpted by
hand (Toon and Male) or high-end photogrammetry-scanned (Fe-
male). Since it is difficult to obtain rigs with semantically identical
blendshapes, we generated altered versions of our rigs, by applying
a set of deformations to the entire blendshape model. This includes
non-uniform scaling as well as local enlarging and shrinking of fa-
cial parts like eyes and mouth using free-form deformation. These
alterations were specifically designed to generate proportionally
non-similar character pairs, which are difficult cases for deforma-
tion transfer (see Figure 3, right). To simplify naming, test-cases
using the original character and warped version are named as the
original character (Toon, Male, Female).

5.2. Generic Optimization Parameters

Our proposed optimization has a set of user-parameters to refine
the computation of reference expressions. To avoid unnecessary pa-
rameter tweaking, we investigate suitable default parameters that
create good results for all test cases. In general, we aimed in pre-
vious sections for relative metrics in order to be scale independent
and added normalization to be more stable across character rigs
with different numbers of vertices or blendshapes.

Binary Blendshapes Threshold A relative threshold (eq. 2)
turned out to be the best compromise for defining active vertices for
both subtle and expressive blendshapes. For evaluation, we tested
different values of µ on characters with few and many blendshapes.
During the evaluation we set λk = 1.0 in eq. 3.Increasing µ in-
creases the number of blendshapes within one reference expres-
sion and decreases the total number of expressions. At the same
time, a high value for µ > 0.4 created frequently unfeasible expres-
sions for blendshape models with K ≈ 50 and could drop to µ > 0.3
for blendshape models with K ≈ 265 (Figure 7). During parameter
testing of the maximum overlap between two blendshapes, we also
noticed that a higher overlap creates a bigger error during the re-
construction of individual blendshapes from training expressions.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

227

Carrigan et al. / Expression Packing

Test case:

µ
=

0.
2

µ
=

0.
3

µ
=

0.
4

Figure 7: Output from expression packing algorithm for our Fe-
male test-case: the first four computed reference expressions us-
ing different thresholds for the definition of binary blendshapes. A
threshold of up to µ = 0.3 creates plausible results in most cases
even for model with many blendshapes (K = 265).

We therefore recommend 0.25 ≤ µ ≤ 0.4 as a good trade-off be-
tween the smallest number of examples and plausible examples. In
the remaining evaluation, we use µ = 0.3. An example of a com-
bined expression with its constituent blendshapes can be found in
the Appendix in Figure 13.

Importance Weighting For evaluation of the importance weights,
we linearly interpolate between different importance weights: λ =
αλDis +(1.0−α)λT D. Symmetry constraints are removed during
numerical comparisons to avoid any bias. Remember that a small
nmber of vertices were allowed to overlap for symmetric blend-
shapes. As a measure of improvement, we compute the root mean
squared distance between the ground truth blendshapes of the tar-
get model and the output of an example-based blendshape transfer
algorithm (with training expressions as input). As intended, adding
importance weights decreases the error (Figure 9). Weighting both
importance values equally (α = 0.5) was found to be the best trade-
off across different characters and numbers of training expressions.
This confirms that both importance metrics are relevant.

Greedy vs Optimal Finally, we compare the reference expressions
computed by the optimal and the greedy solver (Section 4.5). Be-
tween 67% and 98% of blendshapes selected by the optimal method

columns
#δvk #δvk

12 7

8 7

6 7

6 3

2 6

Figure 8: Two volunteers demonstrating the pose-ability of the
DigiDouble expressions. The number of blendshapes in each ex-
pression is shown on the left and right columns.

have also been selected by the greedy solver (Table 3), meaning
that both solvers compute similar, but not identical results. The
greedy algorithm creates reference expressions with slightly more
blendshapes due to the permission of little overlap between active
vertices and is nearly 20 times faster (Table 2). In contrast, blend-
shape transfer in combination with training expressions of the op-
timal solver creates blendshapes that are closer to ground-truth in
terms of RMS-error (See Figure 10). With only 20 training expres-
sions, both methods covered approximately 67% blendshapes for
Female, 86% for Male and 95% for Toon, which is a remarkable
reduction of training expressions. Interestingly, adding the symme-
try constraint to the optimal solution had basically no influence on
the measured RMS-error, while the RMS-error increased for the
greedy algorithm with active symmetry constraints.

5.3. Expression Pose-ability

Good reference expressions should not only show good numerical
properties, but should be poseable by an actor, to facilitate scan-
ning. The general unweighted set packing algorithm creates ref-
erence expressions that might be difficult or even impossible to
pose (Figure 11, left). Our results showed that adding importance
weighting had a positive side-effect on expression plausibility (Fig-

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

228

Carrigan et al. / Expression Packing

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

2 4 7 10 15

Male

0,0015

0,002

0,0025

0,003

0,0035

0,004

0,0045

2 4 7 10 15

Toon

0,0275

0,0295

0,0315

0,0335

0,0355

0,0375

2 4 7 10 15

Female

no imp no sym

imp [0.0,1.0] no sym

imp [0.25,0.75] no sym

imp [0.5,0.5] no sym

imp [0.75,0.25] no sym

imp [1.0,0.0] no sym

no importance
λDT

0.25 λDis + 0.75 λDT

0.5 λDis + 0.5 λDT

0.75 λDis + 0.25 λDT

λDis

0,075

0,08

0,085

2 4 7 10 15 20 25

rm
s-

er
ro

r
p

e
r

ve
rt

ex

DigiDouble
Optimal

Greedy

Figure 9: Average RMS-error per vertex between ground truth and the output of example-based blendshape transfer for 3 different test-cases.
Number of training expressions ranges from 2 to 15, (shown on x-axis). Importance weighting that considers both, vertex displacement (λDis)
and triangle distortions (λT D), creates most accurate results across different characters and number of training expressions.

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

2 4 7 10 15

Male

0,0015

0,002

0,0025

0,003

0,0035

0,004

0,0045

2 4 7 10 15

Toon

0,0275

0,0295

0,0315

0,0335

0,0355

0,0375

2 4 7 10 15

Female

no imp no sym

imp [0.0,1.0] no sym

imp [0.25,0.75] no sym

imp [0.5,0.5] no sym

imp [0.75,0.25] no sym

imp [1.0,0.0] no sym

no importance
λDT

0.25 λDis + 0.75 λDT

0.5 λDis + 0.5 λDT

0.75 λDis + 0.25 λDT

λDis

0,075

0,08

0,085

2 4 7 10 15 20 25

rm
s-

er
ro

r
p

e
r

ve
rt

ex

DigiDouble
Optimal

Greedy

Figure 10: RMS-error for our DigiDouble test case (k = 161) with
different numbers of training expressions as input (ranging from 2
to 25, shown on x-axis). Training expressions were computed with
the optimal and greedy algorithms.

ure 11, middle). Blendshapes with strong displacements, which co-
incidentally tend to have more active vertices, started to be part of
the first reference expressions. Rather than packing several subtle
expression in the first reference expressions, subtle and expressive
blendshapes were distributed more evenly. Some reference expres-
sions even appeared symmetric, due to the fact that some template
rigs were perfectly symmetric, and therefore left and right blend-
shapes had equal importance factors. If these blendshapes do not
overlap, then they are included at the same time, thus creating al-
ready symmetric expressions.

To create more plausible expressions automatically, we intro-
duced the symmetry constraint (Figure 11, right). To evaluate the
final output of our Expression Packing algorithm, we recruited two
volunteers to demonstrate posing of the first ten reference expres-
sions of the DigiDouble case. The first expressions are the most
tightly packed and therefore the most difficult to pose. Some ex-
pressions were slightly modified because the symmetry constraint
at times forced the eyes to look in opposite directions. After edit-
ing, both eyes looked in the same direction and both volunteers
were able to pose all ten expressions within short capturing ses-
sions (Figure 8).

6. Discussion

The main novelty of our work is the formulation of the problem
of finding optimal reference expressions as a special case of inte-
ger linear programming. Our expression packing algorithm works
best with locally defined blendshapes. Blendshapes modelling en-

tire emotions (e.g., happy, angry, visemes, etc.) or large parts of
the face (e.g., entire eyes and eyebrows) are more difficult to com-
bine with other expressions. The automatically created reference
expressions are largely plausible even for challenging high-quality
rigs consisting of over 250 blendshapes. Furthermore, our artist-
friendly refinement method gives the user full control over the cre-
ated reference expressions, without the need to track minimal over-
lap of blendshapes or estimate the influence on the optimization
for a blendshape. It is also possible to further reduce the number
of expressions within a feedback loop by at the cost of increasing
the overlap between blendshapes. Overall, the reduction might be
small because our packing is already very compact (Table 3) and a
globally optimal solution is found.

Other practical and easy to integrate extensions of our method
could be: First, limit the maximum number of blendshapes within
a reference expression to achieve a more equal distribution of the
total number of blendshapes per reference expression. This can be
formulated as a linear constraint in eq. 3. Second, check in a second
step whether any blendshapes that are already part of a reference
expression could be added to the most recently computed refer-
ence expression. This would allow for adding additional examples
of blendshapes without increasing the overall number of reference
expressions.

In the future, we would like to apply our method to a number of
characters with equivalent FACS-based rigs in order to propose a
generalized expression set which would be applicable to all FACS-
based rigs. However, a general set of reference expressions comes
at the cost of not being optimal for each individual, because the
triangle distortion metric between neutral expressions must be ig-
nored. Also, combining perceptual and numerical metrics for im-
portance weights is an interesting direction for future work.

In our test-cases, building upon Maya’s shape symmetry func-
tionality was sufficient to obtain symmetric pairs of blendshapes,
even for non-symmetric character rigs that were built from scans.
However, for very asymmetric faces (see Figure 12), that are un-
common as template models, our symmetry detection would not
be accurate enough. It is possible that more advanced symmetry
detection tools (e.g., [MGP07]) would improve the accuracy. The
symmetry constraint greatly improved expression plausibility. Ad-
ditional metrics could potentially improve the plausibility even fur-
ther, such as physical constraints, prevention of self-intersection or
anatomical constraints (e.g., eye-gaze direction).

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

229

Carrigan et al. / Expression Packing

D
ig

iD
ou

bl
e

#δvk 12 8 8 12 7 7 12 7 8

Fe
m

al
e

#δvk 16 14 11 12 16 7 13 11 6

To
on

#δvk 8 8 7 8 8 7 8 8 8

M
al

e

#δvk 9 7 6 8 6 6 9 7 7
no constraints only importance weights importance weights with symmetry

Figure 11: Output from our expression packing algorithm showing the first 3 computed reference expressions. The number below each is the
number of blendshapes that have been packed into that reference expression. Expressions were computed (left) with no importance weighting
or symmetry constraints, (middle) with importance weights only, and (right) with importance– weights and symmetry constraints.

#δvk 8 7 6

Figure 12: Reference expressions computed for a highly asymmet-
ric character (an unusual template model).

7. Conclusion

In this paper, we proposed a solution for automatic reference
expression creation, facilitating optimal training expressions for
example-based blendshape transfer. This is achieved through con-
strained blendshape packing. Our key contributions include blend-
shape importance ordering specifically aiming to deal with the
weaknesses of the deformation transfer algorithm, and the use of
the weighted set packing algorithm for creation of information-

dense reference expressions. Combined, these produce as-few-as-
possible packed reference expressions, tailored to the characters
and blendshapes to which the blendshape transfer will be applied.
Using the recommended parameters, our algorithms achieves a re-
markable density of blendshape information. With 20 examples,
our results showed that almost the full set of blendshapes of our
test rigs were covered and 67% of the blendshapes of our highly-
expressive production rig.

Acknowledgements

This research was funded by Science Foundation Ireland under the
Game Face project (Grant 13/CDA/2135) and the ADAPT Centre
for Digital Content Technology (Grant 13/RC/2106).

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

230

Carrigan et al. / Expression Packing

References

[Aut16] AUTODESK: Maya, 2016. URL: www.autodesk.com/maya. 7

[BP14] BOUAZIZ S., PAULY M.: Semi-supervised facial animation re-
targeting, 2014. 3

[BV∗99] BLANZ V., VETTER T., ET AL.: A morphable model for the
synthesis of 3d faces. In Siggraph (1999), vol. 99, pp. 187–194. 2

[BVGP09] BARAN I., VLASIC D., GRINSPUN E., POPOVIĆ J.: Se-
mantic deformation transfer. In ACM Transactions on Graphics (TOG)
(2009), vol. 28, ACM, p. 36. 2

[BWP13] BOUAZIZ S., WANG Y., PAULY M.: Online modeling for re-
altime facial animation. ACM Transactions on Graphics (TOG) 32, 4
(2013), 40:1–40:10. 2

[CFA∗16] CASAS D., FENG A., ALEXANDER O., FYFFE G., DEBEVEC
P., ICHIKARI R., LI H., OLSZEWSKI K., SUMA E., SHAPIRO A.:
Rapid photorealistic blendshape modeling from rgb-d sensors. Computer
Animation and Virtual Worlds (2016). 3

[CHMA18] CARRIGAN E., HOYET L., MCDONNELL R., AVRIL Q.: A
preliminary investigation into the impact of training for example-based
facial blendshape creation. In Eurographics Short Papers (2018). 3

[CHZ14] CAO C., HOU Q., ZHOU K.: Displaced dynamic expression
regression for real-time facial tracking and animation. ACM Transactions
on Graphics (TOG) 33, 4 (2014), 43:1–43:10. 2

[CKH11] COSKER D., KRUMHUBER E., , HILTON A.: A facs valid 3d
dynamic action unit database with applications to 3d dynamic morphable
facial modeling. pp. 2296–2303. 6, 9

[CWZ∗14] CAO C., WENG Y., ZHOU S., TONG Y., ZHOU K.: Face-
warehouse: A 3d facial expression database for visual computing. IEEE
Transactions on Visualization and Computer Graphics 20, 3 (Mar. 2014),
413–425. 3, 9

[DN08] DENG Z., NOH J.: Computer facial animation: A survey. In
Data-driven 3D facial animation. Springer, 2008, pp. 1–28. 2

[EF78] EKMAN P., FRIESEN W. V.: Facial Action Coding System: A
Technique for the Measurement of Facial Movement. Consulting Psy-
chologists Press, 1978. 3

[FDH∗15] FRIED O., DIVERDI S., HALBER M., SIZIKOVA E.,
FINKELSTEIN A.: Isomatch: Creating informative grid layouts. Com-
puter Graphics Forum 34, 2 (2015), 155–166. 3

[FNH∗17] FYFFE G., NAGANO K., HUYNH L., SAITO S., BUSCH J.,
JONES A., LI H., DEBEVEC P.: Multi-view stereo on consistent face
topology. Comput. Graph. Forum 36, 2 (May 2017), 295–309. 1, 2, 3

[FSF07] FRATARCANGELI M., SCHAERF M., FORCHHEIMER R.: Fa-
cial motion cloning with radial basis functions in mpeg-4 fba. Graphical
Models 69, 2 (2007), 106–118. 2, 3

[GYQ∗18] GAO L., YANG J., QIAO Y.-L., LAI Y.-K., ROSIN P. L.,
XU W., XIA S.: Automatic unpaired shape deformation transfer. In
SIGGRAPH Asia 2018 Technical Papers (2018), ACM, p. 237. 2

[GZC∗16] GARRIDO P., ZOLLHÖFER M., CASAS D., VALGAERTS L.,
VARANASI K., PÉREZ P., THEOBALT C.: Reconstruction of personal-
ized 3d face rigs from monocular video. ACM Transactions on Graphics
(TOG) 35, 3 (May 2016), 28:1–28:15. 3

[HKG11] HUANG Q., KOLTUN V., GUIBAS L.: Joint shape segmenta-
tion with linear programming. ACM Trans. Graph. 30, 6 (Dec. 2011),
125:1–125:12. 3

[HSW∗17] HU L., SAITO S., WEI L., NAGANO K., SEO J., FURSUND
J., SADEGHI I., SUN C., CHEN Y.-C., LI H.: Avatar digitization from
a single image for real-time rendering. ACM Transactions on Graphics
(TOG) 36, 6 (Nov. 2017), 195:1–195:14. 3

[IBP15] ICHIM A. E., BOUAZIZ S., PAULY M.: Dynamic 3d avatar cre-
ation from hand-held video input. ACM Transactions on Graphics (TOG)
34, 4 (July 2015), 45:1–45:14. 1, 2

[IKNDP16] ICHIM A.-E., KAVAN L., NIMIER-DAVID M., PAULY M.:
Building and animating user-specific volumetric face rigs. In Proc. Symp.
on Computer Animation (2016), pp. 107–117. 2

[Kar72] KARP R. M.: Reducibility among combinatorial problems.
Complexity of Computer Computations (1972), 85–103. 4, 8

[KG08] KIRCHER S., GARLAND M.: Free-form motion processing.
ACM Transactions on Graphics (TOG) 27, 2 (May 2008), 12:1–12:13.
5

[Kor13] KORDALEWSKI D.: New greedy heuristics for set cover and set
packing. arXiv preprint arXiv:1305.3584 (2013). 8

[LAR∗14] LEWIS J. P., ANJYO K., RHEE T., ZHANG M., PIGHIN F. H.,
DENG Z.: Practice and theory of blendshape facial models. Eurograph-
ics (State of the Art Reports) 1, 8 (2014), 2. 2, 6

[LBB∗17] LI T., BOLKART T., BLACK M. J., LI H., ROMERO J.:
Learning a model of facial shape and expression from 4d scans. ACM
Transactions on Graphics (TOG) 36, 6 (Nov. 2017), 194:1–194:17. 1, 2,
3, 9

[LMX∗08] LIU X., MAO T., XIA S., YU Y., WANG Z.: Facial ani-
mation by optimized blendshapes from motion capture data. Computer
Animation and Virtual Worlds 19, 3-4 (2008), 235–245. 3

[LWP10] LI H., WEISE T., PAULY M.: Example-based facial rigging.
ACM Transactions on Graphics (TOG) 29, 4 (2010), 32. 1, 2, 3, 4, 5, 8

[LYYB13] LI H., YU J., YE Y., BREGLER C.: Realtime facial animation
with on-the-fly correctives. ACM Transactions on Graphics (TOG) 32, 4
(2013), 42:1–42:10. 2

[MGP07] MITRA N. J., GUIBAS L. J., PAULY M.: Symmetrization.
SIGGRAPH 2007 (2007). 7, 11

[NN01] NOH J., NEUMANN U.: Expression cloning. In Proc. of SIG-
GRAPH (2001), pp. 277–288. 2

[OBP∗12] ORVALHO V., BASTOS P., PARKE F., OLIVEIRA B., AL-
VAREZ X.: A facial rigging survey. In Eurographics State of the Art
Reports (2012). 2

[Osi07] OSIPA J.: Stop Staring: Facial Modeling and Animation Done
Right, second ed. Wiley Publishing, 2007. 2

[OZS08] ORVALHO V., ZACUR E., SUSIN A.: Transferring the rig and
animations from a character to different face models. Computer Graph-
ics Forum 27, 8 (2008), 1997–2012. 2, 3

[Pan03] PANDZIC I. S.: Facial motion cloning. Graphical Models 65, 6
(2003), 385–404. 2, 3

[PCNS05] PARK B., CHUNG H., NISHITA T., SHIN S. Y.: A feature-
based approach to facial expression cloning: Virtual humans and social
agents. Comput. Animat. Virtual Worlds 16, 3-4 (July 2005), 291–303. 3

[PHL∗06] PIGHIN F., HECKER J., LISCHINSKI D., SZELISKI R.,
SALESIN D. H.: Synthesizing realistic facial expressions from pho-
tographs. In ACM SIGGRAPH 2006 Courses (2006), ACM, p. 19. 2,
3

[PKC∗03] PYUN H., KIM Y., CHAE W., KANG H. W., SHIN S. Y.:
An example-based approach for facial expression cloning. In Proc. of
Symposium on Computer Animation (2003), SCA, pp. 167–176. 3

[RZL∗17] RIBERA R. B. I., ZELL E., LEWIS J. P., NOH J., BOTSCH
M.: Facial retargeting with automatic range of motion alignment. ACM
Transactions on Graphics (TOG) 36, 4 (July 2017), 154:1–154:12. 3, 6

[Sai13] SAITO J.: Smooth contact-aware facial blendshapes transfer. In
Proceedings of the Symposium on Digital Production (2013), DigiPro
’13, pp. 7–12. 2

[SCSN11] SONG J., CHOI B., SEOL Y., NOH J.: Characteristic facial
retargeting. Computer Animation and Virtual Worlds 22, 2-3 (2011),
187–194. 3

[Sey16] SEYMOUR M.: Put your (digital) game face on, 2016. URL:
https://www.fxguide.com/featured/put-your-digital-game-face-on/. 1

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

231

www.autodesk.com/maya
https://www.fxguide.com/featured/put-your-digital-game-face-on/

Carrigan et al. / Expression Packing

[Sey19] SEYMOUR M.: Weta digital’s remarkable face pipeline :
Alita battle angel, 2019. URL: https://www.fxguide.com/featured/
weta-digitals-remarkable-face-pipeline-alita-battle-angel/. 1

[SILN11] SEO J., IRVING G., LEWIS J. P., NOH J.: Compression and
direct manipulation of complex blendshape models. ACM Transactions
on Graphics (TOG) 30, 6 (2011), 164:1–164:10. 3

[SL14] SEO J., LEWIS J. P.: Developing interactive facial rigs in produc-
tion environment. In ACM SIGGRAPH 2014 Talks (2014), SIGGRAPH
’14, pp. 36:1–36:1. 3

[SLS∗12] SEOL Y., LEWIS J., SEO J., CHOI B., ANJYO K., NOH J.:
Spacetime expression cloning for blendshapes. ACM Transactions on
Graphics (TOG) 31, 2 (Apr. 2012), 14:1–14:12. 3

[SML16] SEOL Y., MA W.-C., LEWIS J. P.: Creating an actor-specific
facial rig from performance capture. In Proceedings of the 2016 Sympo-
sium on Digital Production (2016), DigiPro ’16, pp. 13–17. 1, 3, 4

[SP04] SUMNER R. W., POPOVIĆ J.: Deformation transfer for triangle
meshes. In ACM Transactions on Graphics (TOG) (2004), vol. 23, ACM,
pp. 399–405. 1, 2, 5

[TZN∗15] THIES J., ZOLLHÖFER M., NIESSNER M., VALGAERTS L.,
STAMMINGER M., THEOBALT C.: Real-time expression transfer for
facial reenactment. ACM Transactions on Graphics (TOG) 34, 6 (2015).
2

[VLR∗17] VESTNER M., LITMAN R., RODOLA E., BRONSTEIN A.,
CREMERS D.: Product manifold filter: Non-rigid shape correspondence
via kernel density estimation in the product space. In IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR) (2017). 3

[WBLP11] WEISE T., BOUAZIZ S., LI H., PAULY M.: Realtime
performance-based facial animation. ACM Transactions on Graphics
30, 4 (2011), 77:1–77:10. 2

[WFLW18] WU W., FAN L., LIU L., WONKA P.: Miqp-based layout
design for building interiors. Computer Graphics Forum 37, 2 (2018),
511–521. 3

[Won18] WONKA P.: Integer programming for layout problems. In SIG-
GRAPH Asia 2018 Courses (2018), SA ’18, pp. 10:1–10:38. 3

[ZSCS08] ZHANG L., SNAVELY N., CURLESS B., SEITZ S. M.: Space-
time faces: High-resolution capture for˜ modeling and animation. In
Data-Driven 3D Facial Animation. Springer, 2008, pp. 248–276. 3

Appendix

Figure 13: First packed reference expression (Figure 11) together
with the nine individual blendshapes.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

232

https://www.fxguide.com/featured/weta-digitals-remarkable-face-pipeline-alita-battle-angel/
https://www.fxguide.com/featured/weta-digitals-remarkable-face-pipeline-alita-battle-angel/

Carrigan et al. / Expression Packing

Figure 14: Selection of individual blendshapes after applying blendshape transfer in combination with a full set of training expressions,
where every blendshape is present in one of the training expressions.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

233

