Short introduction to hardware/software resources (inc. TCHPC)

Erwan Moreau

moreaue@cs.tcd.ie

CLG meeting, August 2011 (updated November 2013)
General information

Useful tools

Local information

Network
Various services

TCHPC

Introduction
Administrative preliminaries
Using the cluster
References
Tools (1) ssh

ssh login@remotehost

Passwordless connection

1. Create the public/private key pair (only once for the machine)

 ssh-keygen -t rsa
 ssh-add

2. For every remote host needed:

 ssh-copy-id -i ~/.ssh/id_rsa.pub login@remotehost

Mount an ssh filesystem

sshfs login@host:remote-path local-path # to mount
fusermount -u local-path # to unmount
Tools (2) screen, rsync

- **screen**: persistent (text mode) window manager
 - connect once and have multiple windows
 - disconnect and reconnect to your session from any computer
 - don’t lose your session if the connection fails
- **rsync**
 - synchronize data/directories while minimizing data transfer
 - `-a` shortcut for `-rlptgoD`: recursive, preserve permissions, etc.
 - through ssh:

    ```
    rsync -e ssh login@hostname:path dir
    or
    rsync -e ssh dir login@hostname:path
    ```
- Version control: **git**, **hg** (Mercurial), etc.
General information
Useful tools

Local information
Network
Various services

TCHPC
Introduction
Administrative preliminaries
Using the cluster
References
turing.cs.tcd.ie is the School central server. You must have been provided with an account (your school login/password).

- turing can be accessed from outside:
 ssh login@turing.cs.tcd.ie.
- Entry point to any other machine.
- Automatic backups are done very often on turing:
 - this is a very safe place to keep your important files
 - limited size: don’t store very large files, don’t run experiments (especially if they need a lot of memory or i/o).
dilly

dilly.cs.tcd.ie is a recent server (started in 2012).

▶ Suitable for big experiments (24 cores, 64GB memory).
▶ Belongs to the group → few users.
▶ your home directory is mounted from turing
 ▶ avoid experiments which require frequent access to turing
▶ /experimental: a 10TB partition where large files can be stored
 ▶ No backup!
▶ /persist: for the data shared in the group
 ▶ only 200G (avoid large files), but backed up as often as turing.
 ▶ contains the CLG directory (also mounted on turing as /CLG)
▶ You can create your own directories on /experimental, /persist
Misc

- **mulligan and blazes**: two older machines for experiments
 - 8 cores, 8GB each
- School Dropbox-like service: https://owncloud.scss.tcd.ie
- School git repository: http://gitlab.scss.tcd.ie
- School old support page: https://support.scss.tcd.ie/Main_Page
- School new support page: https://support.scss.tcd.ie/New_Support_Page_UNDER_CONSTRUCTION
- Help desk: help@scss.tcd.ie
General information
Useful tools

Local information
Network
Various services

TCHPC
Introduction
Administrative preliminaries
Using the cluster
References
Why using TCHPC resources?

- computer intensive tasks
- more computing power available
 - lonsdale: Opteron 2.3GHz 64bits, 154 nodes, each node has 16G RAM and 8 cores (1232 cores total)
- spare your local machine resources; no need to wait for other jobs to end on CLG machines

- Constraints:
 - some “administrative” preliminaries
 - a bit more complicated (depending on what you want to do)
 - preferably for parallel jobs (TCHPC recommendation)
First step: create your account

1. Read TCHPC policy/rules:
 http://www.tchpc.tcd.ie/resources/policies
2. Submit application for an account:
 https://www.tchpc.tcd.ie/support/apply
3. A copy of your ID card is required → go to TCHPC (2nd floor in the Lloyd Institute)
Apply for a project

- The “organizing unit” on the cluster is the “project”:
 - you are given access to some amount of space and computing time according to your project specification
 - Example: the smallest possible project in the form is 100,000 CPU hours/year

- Apply on
 https://www.tchpc.tcd.ie/resource_application/

- Once your project is accepted, you are given a “project code” that you must provide each time you submit a job

- Remark: in the application form you must confirm that:
 - *This research does not require ethics approval or has received ethics approval*
 - *There are no Data Protection or other legal issues related to the provision of this service*
Preparation: copy your code and data

- connect: `ssh moreaue@lonsdale.tchpc.tcd.ie`
- copy your code/data (preferably via `rsync.tchpc.tcd.ie`)
 - remark: `cvs, svn, hg, git` available
- configure your workspace:
 - install any external libraries you need (in your home directory)
 - (ask me for details about installing Perl modules)
 - configure everything:
 - your code/libraries will run **from another machine**
 - for example, set environment variables like `$PATH, $PERL5LIB, $CLASSPATH` in your `~/.bashrc` or `~/.bash_profile` file.
- Huge data: use your project directory
 - e.g. in `/projects/pi-vogel/HPC_11_00205/`, see https://www.tchpc.tcd.ie/resources/datapolicy
Example 1: single process

Warning: TCHPC recommends not to run such single process jobs (it wastes 7 cores computing time)

```bash
#!/bin/bash
#SBATCH -n 1 # using 1 core
#SBATCH -t 00:30:00 # max time 30mn
#SBATCH -p debug # "debug" partition (test purpose, otherwise "compute")
#SBATCH -U HPC_11_00205 # project code
#SBATCH -J simple_test1 # a meaningful name (for yourself)

source $HOME/.bash_profile # contains "export PATH=...." etc.

name=test1
projectDir=/projects/pi-vogel/HPC_11_00205/
dataDir=$projectDir/clean-selection

similarity-ranker.pl [... ] > $projectDir/$name.out 2>$projectDir/$name.err
```
Example 2: multiple processes

main script:

```bash
#!/bin/bash
#SBATCH -n 8 # using 8 core
#SBATCH -t 00:30:00 # max time 30mn
#SBATCH -p debug # "debug" partition (test purpose, otherwise "compute")
#SBATCH -U HPC_11_00205 # project code
#SBATCH -J simple_test2 # a meaningful name (for yourself)
srun --multi-prog test2.conf
```

test2.conf srun config file:

```bash
# srun multiple program configuration file for test2
0 bash /projects/pi-vogel/HPC_11_00205//test2.0.sh
1 bash /projects/pi-vogel/HPC_11_00205//test2.1.sh
2 bash /projects/pi-vogel/HPC_11_00205//test2.2.sh
[.....
7 bash /projects/pi-vogel/HPC_11_00205//test2.7.sh
```

test2.?..sh individual process script:

```bash
source /home/users/moreaue/.bash_profile
similarity-ranker.pl -m 150-200 [....] >/projects/pi-vogel/HPC_11_00205//test2..
Example 3: multiple processes, automatic generation

[......]

nb=8
step=50
startPos=0
multiProgConfigFile="$projectDir/$name.conf"
jobScriptPrefix="$projectDir/$name"

echo "# srn multiple program configuration file for $name" > $multiProgConfigFile
echo >> $multiProgConfigFile
for i in $(seq 0 $(( $nb - 1))); do
    endPos=$(( $startPos + $step ))
    jobScript="$jobScriptPrefix.$i.sh"
    echo "# job script automatically generated by $scriptLocation on $theDate" > $jobScript
    echo "source $HOME/.bash_profile" >> $jobScript
    echo "similarity-ranker.pl -m $startPos-$endPos -s 1 -o $projectDir/$name.$i.ranking $refFile $probeFile $projectDir/$name.$i.scores >$projectDir/$name.$i.out.2 2>$projectDir/$name.$i.err.2" >> $jobScript
    echo "$i bash $jobScript" >> $multiProgConfigFile
    startPos=$endPos
done
srun --multi-prog $multiProgConfigFile

Shrft introduction to hardware/software resources (inc. TCHPC) (Erwan Moreau) 16/18
Useful commands

Slurm commands:

- submit a job: `sbatch test2.sh`
- Display queue/partition names, available nodes etc: `sinfo`
- Display info about a job: `scontrol show jobid 108`
- Display jobs in the queue: `squeue [-p <partition>] [-u <user>]`

Other commands:

- Display my disk usage: `myquota`
- Display my CPU hours: `sbank balance statement`

Further details: `http://www.tchpc.tcd.ie/node/129`
Useful links

https://www.tchpc.tcd.ie/node/78
https://www.tchpc.tcd.ie/support/resource_allocation
https://www.tchpc.tcd.ie/resources/datapolicy
https://www.tchpc.tcd.ie/resources/clusterschedulepolicy
https://www.tchpc.tcd.ie/node/531
http://www.tchpc.tcd.ie/node/129
http://www.tchpc.tcd.ie/resources/acknowledgementpolicy