Building Network Management Systems
Your Course

- Unit 1 - Principles to Network Management
- Unit 2 - Internet Network Management (SNMP)
- Unit 3 - Telecommunication Management (OSI/TMN)
- Unit 4 - Web Based Enterprise Management (DMTF)
- Unit 5 - Knowledge driven Management technology
Definitions

“Network management refers to the activities, methods, procedures, and tools that pertain to the operation, administration, maintenance, and provisioning of networked systems” Clemm

A Network Management system is a software system that implements and supports Network Management

› Craft Terminals
› Element Managers
› Network Management Systems
Management of the “Networked System” or the “Communication Network”

Management of the Communication Network

Management of the Networked System
CHALLENGES
Challenge: Heterogeneity

› Network Types
 › GSM
 › UMTS
 › LTE
 › 5G

› Network Element Types
 › Macro, Micro, Pico, Femto
 › Cell Overlays

› Devices

› Services
Challenge: Scale

- Increases in the number of network elements
 - In mobile networks, capacity per cell is limited
 - Increasing capacity means increasing the number of cells
 - Hundreds of thousands

- Increases in the numbers complexity of terminals
 - Tens of millions

- Increase in Data Traffic
 - Tens of millions of sessions active
 - Approach 1TB/s data volumes

Building Network Management Systems
Challenge: Virtualization

- Networks
 - SDN
- Nodes
 - NFV
Challenge: Service Management

User → Network Operator → Service Provider → Equipment Vendor

- User
- Network Operator
- Service Provider
- Equipment Vendor

KPI → KQI → Events → Aggregated Events → Aggregated Traffic Flow Data → Traffic Session Data → UE Customer Experience Monitoring → User Complaints → CDRs

- Service Aspects
- Service Aspects
- Service Aspects

Service Knowledge

Building Network Management Systems

Liam Fallon 10/03/2016 (10/41)
Other Challenges

› Customer Management
 – Interfaces to CRM and Billing systems
 – Churn identification
 – Identification of valuable customers
 – Grouping and categorization of customers and services

› “Traditional” FCAPS
 – All must work with Heterogeneity, at Scale, Virtually, and with Services and Customers
APPROACHES
Distributed Management Platform

- Management platforms provide general purpose management functionality
- They provide common functionality for managing any network such as Fault Management and Performance Management
- They are highly adaptable and can be customised to manage any network
- They are multi-technology and multi-vendor systems
Distributed management Platform
System Support and Common Components

› System support in management platforms delivers quality attributes to the platform that are transparent to the applications
 – The ability to run component instances on any available machine
 – Distributed persistence, distributed transaction support, addressing transparency

› Common components are components that many applications may wish to use
 – Model and Meta modelling handling and support
 – Event processing or data mining support
 – Common topology handling
 – Support for intra and inter application communication such as message passing systems and application servers
 – Support for scheduling jobs and batch processing
Distributed Management Platform
Common and Custom Applications

› Common applications are provided that cover management functionality that is required for all networks
 – Applications Fault management, Performance management, Inventory Management and software management
 – Common applications can usually be extended and adapted to handle specific requirements of service providers

› Custom Applications may be developed on management platforms
 – A development environment or development kit is provided
 – Custom applications use the same APIs as common applications
 – A service provider may require a custom application for a feature that is used over networks provided by different vendors
 – The management platform vendor may provide custom applications as a service
Distributed Management Platform
User Interface and UI Abstraction

› Many types of user interface may be supported such as web clients for status updates or thick Java clients for planning tools

› The User Interface layer
 – Renders the view of the user interface
 – Allows the user to change screens using docking, to change themes and skins

› The User Interface Abstraction Layer
 – Holds the model and controls the views of active clients
 – Maps the network models in common applications and common components into UI models
 – Handles mapping and location
 – Is customisable for different client types and customers
Distributing Management

- Management systems always work towards network elements that are distributed.

- A distributed architecture for a management system can:
 - Spread the management workload.
 - Reduce management traffic load by processing information locally.
 - Increase system reliability by removing single points of failure.
 - Improve the scalability of the management system.

- Distributed approaches:
 - Have higher costs because extra equipment deployed in networks.
 - Can make the management architecture more complex.
 - Can themselves be complex to manage, for example coordinated software upgrade is required.
Distributing Management: SON [3]

› Distributed SON (D-SON) (Favoured by Ericsson)
 – Functions distributed among the network elements at the edge of the network
 – Real Time
 – Normally supplied by network equipment vendor

› Centralized SON (C-SON)
 – Functions concentrated closer to higher-order network nodes or Management System
 – Allows a broader overview of more edge elements and coordination of e.g. load across a wide geographic area.
 – Often supplied by 3rd parties

› Hybrid SON
 – A mix of centralized and distributed SON, combining elements of each in a hybrid solution
 – Systems evolving towards hybrid SON now
Distributing Management: SON Use Cases [3]

- **Planning**
 - NodeB Location
 - NodeB HW Configuration
 - NodeB Radio Parameter
 - Network Integration
 - NodeB Transport Parameter
 - aGW / OMC Parameter

- **Deployment**
 - HW Installation
 - Network Authentication
 - Software Installation
 - Transport Parameter Setup
 - Radio Parameter Setup
 - Testing

- **Optimization**
 - Radio Parameter Optimisation
 - Transport Parameter Optimisation

- **Maintenance**
 - Hardware Extension /Replacement
 - Software Upgrade
 - Network Monitoring
 - Failure Recovery

Building Network Management Systems

Liam Fallon 10/03/2016 (19/41)
Distributing Management: ANR[4]

- Neighbour relation table (NRT) for each cell.
 - Cell 1 has a complete knowledge
 - Cell 2 knows Cell 1, not Cell 3
 - Cell 3 knows Cell 1, not Cell 2
 - Cell 4 is newly installed, has no knowledge

- ANR function allows base stations to find each other’s cells and build relations automatically
Virtualizing Mobile Networks: ETSI NFV [5]

- Replace bespoke dedicated proprietary nodes, with Virtual Network Functions (VNF)
- Network Function Virtualization for mobile telecommunications networks
 - eNBs: base stations
 - Core Nodes: MMEs, SGWs, PGWs, HSSs
- VNFs can be deployed, redeployed and undeployed much faster than physical nodes
- Nodes connected over standard connections
- Networks are heterogeneous
 - Radio Technologies: 2G, WCDMA, LTE, Wireless LAN
 - Macro, Micro, Pico, and Femto cells, Operation Support Systems
Virtualization of Mobile Networks: Factors

› Management Systems must continue network Operation and Management (OAM) tasks as before

› Manage Virtualization seamlessly
 – Manage the VNFs themselves
 – Manage the cloud infrastructure
 – Maintain network deployment consistency in virtual environments and between virtual and physical environments.

› Larger scale, Dynamic, and Agile Networks
 – Virtual nodes may have lower performance characteristics
 – Many small virtual nodes with single functions
 – Multi-function large nodes may disappear

› NFV will drive large-scale, dynamic and agile networks
The Challenge: Morph Mobile Networks to NFV

It works great on PowerPoint
And Manage Lots of Them!

Telecommunication Management

Unvirtualised Network

Unvirtualised Network

NFV Cluster

NFV Cluster

Control

Traffic

Building Network Management Systems

Liam Fallon 10/03/2016 (25/41)
Current Management Systems Assume

› Functions are on nodes physically connected into the network
› Nodes are discovered or they are informed of a node’s existence
› Configuration parameters are read, deduced, or fetched from a pre-planned configuration to bring its network functions into service
› The fundamental operation of the node and its connections will remain stable and change rarely.
› Management is over an NBI with adaptation to hide the idiosyncrasies of its syntax and semantics
But Now . . .

› Network functions can exist in and across virtualized and physical infrastructure
› Network functions can now appear, change characteristics, and disappear in an ad-hoc manner
› Internal connections and Interconnections between VNFs are over SDN can change at any time.
› NFV architecture provides Vi-Ma and Os-Ma interfaces for VNFs dynamicity
› The management interfaces to functions that are candidates to be NFVs are not “Virtualization Aware”
Trivial Example: Introduction of a VNF

1: Management system monitors Real and Virtual Network a..d using NBI, Vi-Ma and Os-Ma

2: Load increases: Management System spins up VNFe using Vi-Ma and Os-Ma

3: Management System uses NBI to redistribute load across VNFd and VNFe

4: Management System uses NBI to set up new connection between NFa and VNFe, possibly load balancing towards VNFd

5: Management System uses NBI to set up new connection between NFc and VNFe, possibly load balancing towards VNFd

6: Management System uses NBI to set up new connection between NFb and VNFe, possibly load balancing towards VNFd
Technologies in Product

- Linux (RHEL) on Real Blades or Virtual Machines
- OpenStack virtual deployment on clouds
- Most development in Java, some c++ for high performance applications
- JEE/JBoss used for application transparency
- Column store RDBMS systems used for persistence
- JMS used for messaging
- Apache Hadoop used for large scale storage
- “Big Data” analytics using Apache Storm and Map/Reduce techniques
Emerging Technologies: Stream Analytics

Event Loader α
- Event Parser (Type A Files)
- Event Parser (Stream B)
- Event Parser (File Type Y)
- Event Parser (Stream Z)

Event Loader β
- Event Parsers

Event Loader ω
- Event Parsers

Distributed Event Bus

Event Correlator a
- Subscriber
- Publisher
- Correlator

Event Correlator z
- Subscriber
- Publisher
- Correlator

Event Persister I
- Subscriber
- Database/File Mediator

Event Persister J
- Subscriber
- Database/File Mediator

External System R
- Forwarder
- Subscriber

External System S
- Forwarder
- Subscriber
Emerging Technologies: Adaptive Policy Based Management

- Adaptive Policies
 - Policies can be changed in real time
 - Policies can adapt to their environment

- Uses Ontologies for Context
 - Captures relationships in policy environment
 - Policy Conflict identification and mitigation
Other “Hot” Topics

› Autonomic Management
 – Closely related to SON
 – Closely related to Analytics and Policy Based management

› IoT Management
 – Highly distributed
 – Very high scale but low volumes

› C-RAN
 – Virtualization of the Radio Access Network
 – Only the Radio subsystem is “real”
SUMMARY
Summary

› A Management System is a software system for managing networks
› Major Challenges are Heterogeneity, Scale, Virtualization, and Service Management
› A Distributed Management Platform, Feature Distribution, and Virtualization can help meet those challenges
› Modern Management Systems use the most advanced software technology
References

We are Hiring!

jobs.ericsson.com
Ericsson NM Lab Job

Research Engineer/Applied Researcher- Analytics and Machine Learning
› Successful candidates will carry out cutting-edge research, design innovative solutions for network management problems by applying advanced analytics and machine learning techniques to develop proof-of-concepts.

Global Graduate Program - Software Developer
› Software development roles in requirement analysis, design, integration, verification, and configuration management.
This is ericsson athlone

<table>
<thead>
<tr>
<th>Age</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 30</td>
<td>27%</td>
</tr>
<tr>
<td><35</td>
<td>49%</td>
</tr>
<tr>
<td>Over 45</td>
<td>14%</td>
</tr>
</tbody>
</table>

Diversity
49 Nationalities

Felllities
€10M Renew
€5-8M Test Sites

Global R&D Responsibility

Local R&D Suppliers

R&D

Outsourced Operations
India

Innovation

C1150 People (from 850 in '13)
320 Hires since ‘13
~200 Grads

87 Patents Last 5 yrs

< 30
Age
%
Our customers