Combining Dynamic programming and approximation architectures

AI & Agents for IET
Lecturer: Liliana Mamani Sanchez

http://www.scss.tcd.ie/~mamanisl/teaching/cs7032/

December 14, 2015

Combining TD and function approximation

• Basic idea: use supervised learning to provide an approximation of the value function for TD learning

• The approximation architecture is should generalise over (possibly unseen) states

![Diagram](attachment:image.jpg)

• In a sense, it groups states into equivalence classes (wrt value)

Why use approximation architectures

• To cope with the curse of dimensionality

• by generalising over states
 - Note that the algorithms we have seen so far (DP, TD, Sarsa, Q-learning) all use tables to store states (or state-action tuples)
 - This works well if the number of states is relatively small
 - But it doesn’t scale up very well

• (We have already seen examples of approximation architectures: the draughts player, the examples in the neural nets lecture.)
Gradient descent methods

- The LMS algorithm use for draughts illustrates a gradient descent method (to approximate a linear function)
- Goal: to learn the parameter vector
 \[\vec{\theta}_t = (\theta_t(1), \theta_t(2), \theta_t(3), \ldots, \theta_t(m)) \] (1)
 by adjusting them at each iteration towards reducing the error:
 \[\vec{\theta}_{t+1} = \vec{\theta}_t - \frac{1}{2} \alpha \nabla \vec{\theta}_t (V_\pi(s_t) - V_t(s_t))^2 \] (2)
 \[\vec{\theta}_{t+1} = \vec{\theta}_t + (V_\pi(s_t) - V_t(s_t)) \alpha \nabla \vec{\theta}_t V_t(s_t) \] (3)

where \(V_t \) is a smooth, differentiable function of \(\vec{\theta}_t \).

Backward view and update rule

- The problem with (2) is that the target value \(V_\pi \) is typically not available.
- Different methods replace their estimates for this value function:
 - So Monte Carlo, for instance, would use the return \(R_t \)
 - And the TD(\(\lambda \)) method uses \(R^\lambda \):
 \[\vec{\theta}_{t+1} = \vec{\theta}_t + \alpha (R^\lambda - V_t(s_t)) \nabla \vec{\theta}_t V_t(s_t) \] (4)
 - The backward view is given by:
 \[\vec{\theta}_{t+1} = \vec{\theta}_t + \alpha \delta \vec{e}_t \] (5)
 where \(\vec{e}_t \) is a vector of eligibility traces (one for each component of \(\vec{\theta}_t \), updated by
 \[\vec{e}_t = \gamma \lambda \vec{e}_{t-1} + \nabla \vec{\theta}_t V_t(s_t) \] (6)

Value estimation with approximation

Algorithm 1: On-line gradient descent TD(\(\lambda \))

1	Initialise \(\theta \) arbitrarily
2	\(\vec{e} \leftarrow 0 \)
3	\(s \leftarrow \text{initial state of episode} \)
4	repeat (for each step of episode)
5	choose \(a \) according to \(\pi \)
6	perform \(a \), observe \(r, s' \)
7	\(\delta \leftarrow r + \gamma V(s') - V(s) \)
8	\(\vec{e} \leftarrow \gamma \lambda \vec{e} + \nabla \theta V(s) \)
9	\(\vec{\theta} \leftarrow \vec{\theta} + \alpha \delta \vec{e} \)
10	\(s \leftarrow s' \)
11	until \(s \) is terminal state

- Methods commonly used to compute the gradients \(\nabla \theta V(s) \):
 - error back-propagation (multilayer NNs), or by
 - linear approximators (for value functions of the form \(V_t(s) = (\vec{\theta}_t)^T \bar{f} = \sum_{i=1}^n \theta_t(i) f(i) \). (where \((\vec{\theta}_t)^T \) denotes the transpose of \(\vec{\theta}_t \))
Control with approximation

- The general (forward view) update rule for action-value prediction (by gradient descent) can be written:

\[\tilde{\theta}_{t+1} = \tilde{\theta}_t + \alpha (R_t^\lambda - Q_t(s_t, a_t)) \nabla_{\tilde{\theta}} Q_t(s_t, a_t) \]

(7)

(recall that \(V_t \) is determined by \(\tilde{\theta}_t \))

- So the backward view can be expressed as before:

\[\tilde{\theta}_{t+1} = \tilde{\theta}_t + \alpha \delta \tilde{e}_t \]

(8)

where

\[\tilde{e}_t = \gamma \lambda \tilde{e}_{t-1} + \nabla_{\tilde{\theta}} Q_t(s_t, a_t) \]

(9)

An algorithm: gradient descent Q-learning

```
Algorithm 2: Linear Gradient Descent Q(\lambda)

1. Initialise \( \theta \) arbitrarily
2. for each episode
3. \( \tilde{e} \leftarrow 0 \); initialise \( s, a \)
4. \( \mathcal{F}_n \leftarrow \text{set of features in } s, a \)
5. repeat (for each step of episode)
6. for all \( i \in \mathcal{F}_n \): \( e(i) \leftarrow e(i) + 1 \)
7. perform \( a \); observe \( r, s \)
8. \( \delta \leftarrow r - \sum_{i \in \mathcal{F}_a} \theta(i) \)
9. for all \( a \in A \)
10. \( \mathcal{F}_a \leftarrow \text{set of features in } s, a \)
11. \( Q_a \leftarrow \sum_{i \in \mathcal{F}_a} \theta(i) \)
12. \( \delta \leftarrow \delta + \gamma \max_a Q_a \)
13. \( \tilde{\theta} \leftarrow \tilde{\theta} + \alpha \delta \tilde{e} \)
14. with probability \( 1 - \epsilon \)
15. for all \( a \in A \)
16. \( Q_a \leftarrow \sum_{i \in \mathcal{F}_a} \theta(i) \)
17. \( a \leftarrow \text{arg max}_a Q_a \)
18. \( \tilde{e} \leftarrow \gamma \lambda \tilde{e} \)
19. else
20. \( a \leftarrow \text{a random action} \)
21. \( \tilde{e} \leftarrow 0 \)
22. until \( s \) is terminal state
```

A Case Study: TD-Gammon

- 15 white and 15 black pieces on a board of 24 locations, called points.

- Player rolls 2 dice and can move 2 pieces (or same piece twice)
• Goal is to move pieces to last quadrant (for white that’s 19-24) and then off the board

• A player can “hit” any opposing single piece placed on a point, causing that piece to be moved to the “bar”

• Two pieces on a point block that point for the opponent

• + a number of other complications

Game complexity

• 30 pieces, 26 locations

• Large number of actions possible from a given state (up to 20)

• Very large number of possible states \(10^{20}\)

• Branching factor of about 400 (so difficult to apply heuristics)

• Stochastic environment (next state depends on the opponent’s move) but fully observable

TD-Gammon’s solution

• \(V_t(s)\) meant to estimate the probability of winning from any state \(s\)

• Rewards: 0 for all stages, except those on which the game is won

• Learning: non-linear form of TD(\(\lambda\))

 – like the Algorithm presented above, using a multilayer neural network to compute the gradients
State representation in TD-Gammon

- Representation involved little domain knowledge
- 198 input features:
 - For each point on the backgammon board, four units indicated the number of white pieces on the point (see Tesauro, 1994 for a detailed description of the encoding used)
 - \((4 \text{ (white)} + 4 \text{ (black)}) \times 24 \text{ points} = 192 \text{ units}\)
 - 2 units encoded the number of white and black pieces on the bar
 - 2 units encoded the number of black and white pieces already successfully removed from the board
 - 2 units indicated in a binary fashion whether it was white’s or black’s turn to move.

TD-Gammon learning

- Given state (position) representation, the network computed its estimate in the way described in lecture 10.
Output of hidden unit j given by a sigmoid function of the weighted sum of inputs i

$$h(j) = \sigma\left(\sum_i w_{ij} f(i)\right)$$ (10)

Computation from hidden to output units is analogous to this

- TD-Gammon employed TD(λ) where the eligibility trace updates (equation 9),

$$\vec{e}_t = \gamma \lambda \vec{e}_{t-1} + \nabla_{\vec{\theta}_t} V_t(s_t)$$

were computed by the back-propagation procedure

- TD-Gammon set $\gamma = 1$ and rewards to zero, except on winning, so TD error is usually $V_t(s_{t+1}) - V_t(s_t)$

TD-Gammon training

- Training data obtained by playing against itself
- Each game was treated as an episode
- Non-linear TD applied incrementally (i.e. after each move)
- Some results (according to [Sutton and Barto, 1998](#))

<table>
<thead>
<tr>
<th>Program</th>
<th>Hidden Units</th>
<th>Training Games</th>
<th>Opponents</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD-Gam 0.0</td>
<td>40</td>
<td>300,000</td>
<td>other programs</td>
<td>tied for best</td>
</tr>
<tr>
<td>TD-Gam 1.0</td>
<td>80</td>
<td>300,000</td>
<td>Robertie, Magriel, ...</td>
<td>-13 pts / 51 games</td>
</tr>
<tr>
<td>TD-Gam 2.0</td>
<td>40</td>
<td>800,000</td>
<td>various Grandmasters</td>
<td>-7 pts / 38 games</td>
</tr>
<tr>
<td>TD-Gam 2.1</td>
<td>80</td>
<td>1,500,000</td>
<td>Robertie</td>
<td>-1 pt / 40 games</td>
</tr>
<tr>
<td>TD-Gam 3.0</td>
<td>80</td>
<td>1,500,000</td>
<td>Kazaros</td>
<td>+6 pts / 20 games</td>
</tr>
</tbody>
</table>

Notes based on [Sutton and Barto, 1998](#) ch 8, 9). Further details on TD-Gammon can be found in Tesauro’s papers [Tesauro, 1994](#). Other interesting case studies can be found in [Sutton and Barto, 1998](#) ch 10 and [Bertsekas and Tsitsiklis, 1996](#).

References

