Learning Agents: Introduction

Liliana Mamani Sanchez
lmamanis@tcd.ie

November 2, 2015
Learning in agent architectures

Agent
Learning in agent architectures

Agent

Perception

Action

Actuators

Perception

Learner

Changes

Performance standard

Critic

Representation

Rewards/Instruction

Goals

Interaction planner

Action policy
Learning in agent architectures
Learning in agent architectures

Agent

perception

action

representation

rewards/instruction

Goals

Interaction planner

Critic

Learner

Changes

Performance standard
Learning in agent architectures

Agent

Perception

Actuators

perception

action

Learner

Changes

Performance standard

Critic

representation

Rewards/instruction

Goals

Interaction planner
Learning in agent architectures

Agent

- Perception
- Actuators

perception

action

Perception

Actuators

representation

rewards/instruction

Goals

Interaction planner

Critic

Performance standard

Learner

changes
Learning in agent architectures

Agent

Learner

Perception

Actuators

perception

action

Performance standard

Critic

representation

rewards/instruction

Goals

Interaction planner
Learning in agent architectures

Agent

Learner

Perception

Actuators

Changes

perception

action

Performance standard

Critic

representation

rewards/instruction

Goals

Interaction planner
Learning in agent architectures

Performance standard

Agent

Learner

Perception

Actuators

Changes

Perception

Action

Goals

Interaction planner

Critic

Representation

Rewards/instruction

Performance standard
Learning in agent architectures

- Critic
- Perception
- Learner
- Actuators

Performance standard

Agent

actions

perception
Learning in agent architectures

Agent

Critic

Perception

Learner

Actuators

Performance standard

representation

rewards/instruction

changes

perception

action

Goals

Interaction planner

2
Learning in agent architectures

Agent

Performance standard

Critic

Perception

Learner

Actuators

goals

representation

rewards/instruction

changes

interaction planner

action

perception
Learning in agent architectures

Performance standard

Critic

representation

Perception

rewards/instruction

Learner

changes

Actuators

Goals

Interaction planner

Agent

perception

action

Goals

Interaction planner

Actuators

Perception

rewards/instruction

Learner

changes

Actuators

Performance standard
Learning in agent architectures

Agent

- Critic
 - Learner
 - Goals
 - Interaction planner
 - Action
 - Action policy
 - Perception
 - Representation
 - Rewards/instruction
 - Changes
 - Action
 - Perception

Performance standard

Goals

Interaction planner

Actuators

Learner

Perception

Critic

Rewards/instruction

Changes

Performance standard
Machine Learning for Games

▶ Reasons to use Machine Learning for Games:
 ▶ Play against, and beat human players (as in board games, DeepBlue etc)
Reasons to use Machine Learning for Games:

- Play against, and beat human players (as in board games, DeepBlue etc)
- Minimise development effort (when developing AI components); avoid the knowledge engineering bottleneck
Machine Learning for Games

- Reasons to use Machine Learning for Games:
 - Play against, and beat human players (as in board games, DeepBlue etc)
 - Minimise development effort (when developing AI components); avoid the knowledge engineering bottleneck
 - Improve the user experience by adding variability, realism, a sense that artificial characters evolve, etc.
Some questions

- What is (Machine) Learning?
Some questions

- What is (Machine) Learning?
- What can Machine Learning really do for us?
Some questions

- What is (Machine) Learning?
- What can Machine Learning really do for us?
- What kinds of techniques are there?
Some questions

- What is (Machine) Learning?
- What *can* Machine Learning really *do* for us?
- What *kinds of techniques* are there?
- How do we *design* machine learning systems?
Some questions

- What is (Machine) Learning?
- What can Machine Learning really do for us?
- What kinds of techniques are there?
- How do we design machine learning systems?
- What’s different about reinforcement learning?
Some questions

- What is (Machine) Learning?
- What can Machine Learning really do for us?
- What kinds of techniques are there?
- How do we design machine learning systems?
- What’s different about reinforcement learning?
- Could you give us some examples?
Some questions

- What is (Machine) Learning?
- What can Machine Learning really do for us?
- What kinds of techniques are there?
- How do we design machine learning systems?
- What’s different about reinforcement learning?
- Could you give us some examples?
 - YES:
 - Draughts (checkers)
 - Noughts & crosses (tic-tac-toe)
Some questions

- What is (Machine) Learning?
- What can Machine Learning really do for us?
- What kinds of techniques are there?
- How do we design machine learning systems?
- What’s different about reinforcement learning?
- Could you give us some examples?
 - YES:
 - Draughts (checkers)
Some questions

- What is (Machine) Learning?
- What can Machine Learning really do for us?
- What kinds of techniques are there?
- How do we design machine learning systems?
- What’s different about reinforcement learning?
- Could you give us some examples?
 - YES:
 - Draughts (checkers)
 - Noughts & crosses (tic-tac-toe)
Defining “learning”

- ML has been studied from various perspectives (AI, control theory, statistics, information theory, ...)
- From an AI perspective, the general definition is formulated in terms of agents and tasks. E.g.:

 [An agent] is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with E.

 [Mitchell, 1997, p. 2]
- Statistics, model-fitting, ...
Some examples

- Problems too **difficult to program** by hand

(ALVINN [Pomerleau, 1994])
if Name = Corners & Energy < 25
then
 turn(91 - (Bearing - const))
 fire(3)
User interface agents

- Recommendation services,
- Bayes spam filtering
- JIT information retrieval
Designing a machine learning system

Main design decisions:
- **Training experience:** How will the system access and use data?
- **Target function:** What exactly should be learned?
- **Hypothesis representation:** How will we represent the concepts to be learnt?
- **Inductive inference:** What specific algorithm should be used to learn the target concepts?
Types of machine learning

- How will the system be exposed to its training experience?
 - **Direct** or indirect access:
 - indirect access: record of past experiences, databases, corpora
 - direct access: situated agents \(\rightarrow\) reinforcement learning
 - Source of feedback ("teacher"):
 - supervised learning
 - unsupervised learning
 - mixed: semi-supervised ("transductive"), active learning,
The hypothesis space

- The data used in the induction process need to be represented uniformly. E.g.:
 - representation of the opponent’s behaviour as feature vectors
- The choice of representation constrains the space of available hypotheses (inductive bias).
- Examples of inductive bias:
 - assume that positive and negative instances can be separated by a (hyper) plane
 - assume that feature co-occurrence does not matter (conditional independence assumption by Naïve Bayes classifiers)
 - assume that the current state of the environment summarises environment history (Markov property)
Determining the target function

- The goal of the learning algorithm is to induce an approximation \hat{f} of a target function f
- In supervised learning, the target function is assumed to be specified through annotation of training data or some form of feedback.
- Examples:
 - a collection of texts categorised by subject $f : D \times S \rightarrow \{0, 1\}$
 - a database of past games
 - user or expert feedback
- In reinforcement learning the agent will learn an action selection policy (as in $action : S \rightarrow A$)
Deduction and Induction

- Deduction: from general premises to a conclusion. E.g.:
 - \(\{A \rightarrow B, A\} \vdash B \)
- Induction: from instances to generalisations
- Machine learning algorithms produce models that generalise from instances presented to the algorithm
- But all (useful) learners have some form of inductive bias:
 - In terms of representation, as mentioned above,
 - But also in terms of their preferences in generalisation procedures. E.g:
 - prefer simpler hypotheses, or
 - prefer shorter hypotheses, or
 - incorporate domain (expert) knowledge, etc etc
Choosing an algorithm

- Induction task as search for a hypothesis (or model) that fits the data and sample of the target function available to the learner, in a large space of hypotheses
- The choice of learning algorithm is conditioned to the choice of representation
- Since the target function is not completely accessible to the learner, the algorithm needs to operate under the inductive learning assumption that:

 an approximation that performs well over a sufficiently large set of instances will perform well on unseen data

- Computational Learning Theory addresses this question.
Two Games: examples of learning

► Reinforcement learning: noughts and crosses [Sutton and Barto, 1998]

► Task? (target function, data representation) Training experience? Performance measure?
A target for a draughts learner

- Learn.... $f : Board \rightarrow Action$ or $f : Board \rightarrow \mathbb{R}$
A target for a draughts learner

- Learn.... \(f : \text{Board} \rightarrow \text{Action} \) or \(f : \text{Board} \rightarrow \mathbb{R} \)
A target for a draughts learner

- Learn.... \(f : \text{Board} \rightarrow \text{Action} \) or \(f : \text{Board} \rightarrow \mathbb{R} \)

- But how do we label (evaluate) the training experience?
- Ask an expert?
- Derive values from a rational strategy:
 - if \(b \) is a final board state that is won, then \(f(b) = 100 \)
 - if \(b \) is a final board state that is lost, then \(f(b) = -100 \)
 - if \(b \) is a final board state that is drawn, then \(f(b) = 0 \)
 - if \(b \) is a not a final state in the game, then \(f(b) = f(b') \), where \(b' \) is the best final board state that can be achieved starting from \(b \) and playing optimally until the end of the game.

- How feasible would it be to implement these strategies?
- Hmmmm... Not feasible...
A target for a draughts learner

- Learn.... $f : \text{Board} \to \text{Action}$ or $f : \text{Board} \to \mathbb{R}$
- But how do we label (evaluate) the training experience?
A target for a draughts learner

- Learn.... \(f : \text{Board} \rightarrow \text{Action} \) or \(f : \text{Board} \rightarrow \mathbb{R} \)
- But how do we label (evaluate) the training experience?
- Ask an expert?
A target for a draughts learner

- Learn.... $f : Board \rightarrow Action$ or $f : Board \rightarrow \mathbb{R}$
- But how do we label (evaluate) the training experience?
- Ask an expert?
- Derive values from a rational strategy:

 - if b is a final board state that is won, then $f(b) = 100$
 - if b is a final board state that is lost, then $f(b) = -100$
 - if b is a final board state that is drawn, then $f(b) = 0$
 - if b is a not a final state in the game, then $f(b) = f(b')$, where b' is the best final board state that can be achieved starting from b and playing optimally until the end of the game.
A target for a draughts learner

- Learn…. \(f : Board \rightarrow Action \) or \(f : Board \rightarrow \mathbb{R} \)
- But how do we label (evaluate) the training experience?
- Ask an expert?
- Derive values from a rational strategy:
 - if \(b \) is a final board state that is won, then \(f(b) = 100 \)
 - if \(b \) is a final board state that is lost, then \(f(b) = -100 \)
 - if \(b \) is a final board state that is drawn, then \(f(b) = 0 \)
 - if \(b \) is a not a final state in the game, then \(f(b) = f(b') \), where \(b' \) is the best final board state that can be achieved starting from \(b \) and playing optimally until the end of the game.
A target for a draughts learner

- Learn.... \(f : \text{Board} \rightarrow \text{Action} \) or \(f : \text{Board} \rightarrow \mathbb{R} \)
- But how do we label (evaluate) the training experience?
- Ask an expert?
- Derive values from a rational strategy:
 - if \(b \) is a final board state that is won, then \(f(b) = 100 \)
 - if \(b \) is a final board state that is lost, then \(f(b) = -100 \)
A target for a draughts learner

- Learn.... $f : \text{Board} \to \text{Action}$ or $f : \text{Board} \to \mathbb{R}$
- But how do we label (evaluate) the training experience?
- Ask an expert?
- Derive values from a rational strategy:
 - if b is a final board state that is won, then $f(b) = 100$
 - if b is a final board state that is lost, then $f(b) = -100$
 - if b is a final board state that is drawn, then $f(b) = 0$
 - if b is a not a final state in the game, then $f(b) = f(b')$, where b' is the best final board state that can be achieved starting from b and playing optimally until the end of the game.
A target for a draughts learner

- Learn…. $f: \text{Board} \rightarrow \text{Action}$ or $f: \text{Board} \rightarrow \mathbb{R}$
- But how do we label (evaluate) the training experience?
- Ask an expert?
- Derive values from a rational strategy:
 - if b is a final board state that is won, then $f(b) = 100$
 - if b is a final board state that is lost, then $f(b) = -100$
 - if b is a final board state that is drawn, then $f(b) = 0$
 - if b is a not a final state in the game, then $f(b) = f(b')$, where b' is the best final board state that can be achieved starting from b and playing optimally until the end of the game.
A target for a draughts learner

- Learn.... \(f : \text{Board} \rightarrow \text{Action} \) or \(f : \text{Board} \rightarrow \mathbb{R} \)
- But how do we label (evaluate) the training experience?
- Ask an expert?
- Derive values from a rational strategy:
 - if \(b \) is a final board state that is won, then \(f(b) = 100 \)
 - if \(b \) is a final board state that is lost, then \(f(b) = -100 \)
 - if \(b \) is a final board state that is drawn, then \(f(b) = 0 \)
 - if \(b \) is a not a final state in the game, then \(f(b) = f(b') \), where \(b' \) is the best final board state that can be achieved starting from \(b \) and playing optimally until the end of the game.
- How feasible would it be to implement these strategies?
A target for a draughts learner

- Learn.... $f : \text{Board} \rightarrow \text{Action}$ or $f : \text{Board} \rightarrow \mathbb{R}$
- But how do we label (evaluate) the training experience?
- Ask an expert?
- Derive values from a rational strategy:
 - if b is a final board state that is won, then $f(b) = 100$
 - if b is a final board state that is lost, then $f(b) = -100$
 - if b is a final board state that is drawn, then $f(b) = 0$
 - if b is a not a final state in the game, then $f(b) = f(b')$, where b' is the best final board state that can be achieved starting from b and playing optimally until the end of the game.
- How feasible would it be to implement these strategies?
 - Hmmm... Not feasible...
Hypotheses and Representation

- The choice of representation (e.g. logical formulae, decision tree, neural net architecture) constrains the hypothesis search space.
Hypotheses and Representation

- The choice of representation (e.g. logical formulae, decision tree, neural net architecture) constrains the hypothesis search space.
- A representation scheme: linear combination of board features:

\[
\hat{f}(b) = w_0 + w_1 \cdot bp(b) + w_2 \cdot rp(b) + w_3 \cdot bk(b) + w_4 \cdot rk(b) + w_5 \cdot bt(b) + w_6 \cdot rt(b)
\]
Hypotheses and Representation

- The choice of representation (e.g. logical formulae, decision tree, neural net architecture) constrains the hypothesis search space.

- A representation scheme: linear combination of board features:

\[
\hat{f}(b) = w_0 + w_1 \cdot bp(b) + w_2 \cdot rp(b) + w_3 \cdot bk(b) \\
+ w_4 \cdot rk(b) + w_5 \cdot bt(b) + w_6 \cdot rt(b)
\]

- where:
 - \(bp(b)\): number of black pieces on board \(b\)
 - \(rp(b)\): number of red pieces on \(b\)
 - \(bk(b)\): number of black kings on \(b\)
 - \(rk(b)\): number of red kings on \(b\)
 - \(bt(b)\): number of red pieces threatened by black
 - \(rt(b)\): number of black pieces threatened by red
Hypotheses and Representation

▶ The choice of representation (e.g. logical formulae, decision tree, neural net architecture) constrains the hypothesis search space.

▶ A representation scheme: linear combination of board features:

\[
\hat{f}(b) = w_0 + w_1 \cdot bp(b) + w_2 \cdot rp(b) + w_3 \cdot bk(b) + w_4 \cdot rk(b) + w_5 \cdot bt(b) + w_6 \cdot rt(b)
\]

▶ where:

▶ \(bp(b)\): number of black pieces on board \(b\)
▶ \(rp(b)\): number of red pieces on \(b\)
▶ \(bk(b)\): number of black kings on \(b\)
▶ \(rk(b)\): number of red kings on \(b\)
▶ \(rk(b)\): number of red pieces threatened by black
▶ \(rt(b)\): number of black pieces threatened by red
Some notation and distinctions to keep in mind:

- $f(b)$: the true target function
- $\hat{f}(b)$: the learnt function
- $f_{\text{train}}(b)$: the training value (obtained, for instance, from a training set containing instances and its corresponding training values)

Problem: How do we obtain training values?
Training Experience

- Some notation and distinctions to keep in mind:
 - $f(b)$: the true target function
 - $\hat{f}(b)$: the learnt function
 - $f_{\text{train}}(b)$: the training value (obtained, for instance, from a training set containing instances and its corresponding training values)

- Problem: How do we obtain training values?
- A simple rule for obtaining (estimating) training values:
 - $f_{\text{train}}(b) \leftarrow \hat{f}(\text{Successor}(b))$
How do we learn the weights?

Algorithm 1: Least Means Square

LMS(c: learning rate)
for each training instance < b, f_{train}(b) >
 do
 compute error(b) for current approximation (i.e. using current weights):
 error(b) = f_{train}(b) − ̂f(b)
 for each board feature t_i ∈ {bp(b), rp(b), ...},
 do
 update weight w_i:
 w_i ← w_i + c × t_i × error(b)
 done
 done

How do we learn the weights?

Algorithm 1: Least Means Square

LMS (\(c: \text{learning rate}\))

for each training instance \(<b, f_{\text{train}}(b)\>

do

compute \text{error}(b) \text{ for current approximation (i.e. using current weights)}:

\[\text{error}(b) = f_{\text{train}}(b) - \hat{f}(b)\]

for each board feature \(t_i \in \{bp(b), rp(b), \ldots\}\),
do

update weight \(w_i:\)

\[w_i \leftarrow w_i + c \times t_i \times \text{error}(b)\]
done
done

LMS minimises the squared error between training data and current approx.:\[E \equiv \sum_{\langle b, f_{\text{train}}(b)\rangle \in D} (f_{\text{train}}(b) - \hat{f}(b))^2\]
Design choices: summary

(from [Mitchell, 1997])
These are some of the decisions involved in ML design. A number of other practical factors, such as evaluation, avoidance of “overfitting”, feature engineering, etc. See [Domingos, 2012] for a useful introduction, and some machine learning “folk wisdom”.

(from [Mitchell, 1997])
The Architecture instantiated

Performance standard

Critic

representation

rewards/instruction

Learner

Goals

Perception

changes

Actuators

Interaction planner

action policy

Agent

perception

action

f_{train}(b) := \hat{f}(\text{successor}(b, f_{train}(b), ...))

\pi^* = \arg \max_{\pi} \hat{f}(s), \forall s
The Architecture instantiated

\[
f_{\text{train}}(b) := \hat{f}(\text{successor}(b), f_{\text{train}}(b), ...)\]

\[
\pi^* = \arg \max_\pi \hat{f}(s), \forall s
\]
The Architecture instantiated

\[f_{\text{train}}(b) := \hat{f}(\text{successor}(b)) \]

Perception representation

Agent

Critic

Learner

Goals

Interaction planner

Actuators

Performance standard

\[\pi^* = \arg \max_{\pi} \hat{f}(s), \quad \forall s \]

\(f_{\text{train}}(b) \)

(rewards/instruction)

(changes)

(action policy)

(perception)

\((bp(b), rp(b), \ldots) \)
The Architecture instantiated

Performance standard

\[f_{\text{train}}(b) := \hat{f}(\text{successor}(b)) \]

Agent

Critic

Learner

Goals

Interaction planner

Actuators

Perception

changes

action policy

perception

\[(bp(b), rp(b), \ldots) \]

\[(b, f_{\text{train}}(b), \ldots) \]

\[\pi^* = \arg \max \pi \hat{f}(s), \forall s \]
The Architecture instantiated

\[f_{\text{train}}(b) := \hat{f}(\text{successor}(b)) \]

\[f(b) := \hat{f}(\text{successor}(b)) \]

\[\pi^* = \arg \max_{\pi} \hat{f}(s), \forall s \]
The Architecture instantiated

\[
f_{\text{train}}(b) := \hat{f}(\text{successor}(b))
\]

\[
f_{\text{train}}(b) := \hat{f}(\text{successor}(b))
\]

\[
\pi^* = \arg \max \pi \hat{f}(s), \forall s
\]
The Architecture instantiated

\[f_{\text{train}}(b) := \hat{f}(\text{successor}(b)) \]

\[\hat{f}(b, f_{\text{train}}(b), ...), ... \]

\[\pi^* = \arg \max_{\pi} \hat{f}(s), \forall s \]

\[\text{Performance standard} \]

\[\text{Agent} \]

\[\text{Critic} \]

\[\text{Learner} \]

\[\text{Goals} \]

\[\text{Interaction planner} \]

\[\text{Actuators} \]

\[\text{Perception} \]

\[\text{Initial board} \]
Reinforcement Learning

- What is different about reinforcement learning:
 - Training experience (data) obtained through direct interaction with the environment;
 - Influencing the environment;
 - Goal-driven learning;
 - Learning of an action policy (as a first-class concept);
 - Trial and error approach to search:
Reinforcement Learning

What is different about reinforcement learning:

- Training experience (data) obtained through direct interaction with the environment;
- Influencing the environment;
- Goal-driven learning;
- Learning of an action policy (as a first-class concept);
- Trial and error approach to search:
 - Exploration and Exploitation
Basic concepts of Reinforcement Learning

- The **policy**: defines the learning agent’s way of behaving at a given time:
 \[\pi : S \rightarrow A \]

- The **(immediate) reward function**: defines the goal in a reinforcement learning problem:
 \[r : S \rightarrow \mathbb{R} \]
 often identified with timesteps: \(r_0, \ldots, r_n \in \mathbb{R} \)

- The **(long term) value function**: the total amount of reward an agent can expect to accumulate over the future:
 \[V : S \rightarrow \mathbb{R} \]

- A **model** of the environment
Theoretical background

- **Engineering**: “optimal control” (dating back to the 50’s)
 - Markov Decision Processes (MDPs)
 - Dynamic programming

- **Psychology**: learning by trial and error, animal learning.
 - Law of effect:
 - learning is selectional (genetic methods, for instance, are selectional, but not associative)
 - associative (supervised learning is associative, but not selectional)

- **AI**: TD learning, Q-learning
Theoretical background

- **Engineering**: “optimal control” (dating back to the 50’s)
 - Markov Decision Processes (MDPs)
 - Dynamic programming
- **Psychology**: learning by trial and error, animal learning. Law of effect:
 - learning is **selectional** (genetic methods, for instance, are selectional, but not associative) and
 - **associative** (supervised learning is associative, but not selectional)
Theoretical background

- **Engineering**: “optimal control” (dating back to the 50’s)
 - Markov Decision Processes (MDPs)
 - Dynamic programming
- **Psychology**: learning by trial and error, animal learning. Law of effect:
 - learning is *selectional* (genetic methods, for instance, are selectional, but not associative) and
 - associative (supervised learning is associative, but not selectional)
- **AI**: TD learning, Q-learning
Example: Noughts and crosses

Possible solutions:
- Minimax (assume a perfect opponent),
- Supervised learning (directly search the space of policies, as in the previous example),
- Reinforcement learning (our next example).
Example: Noughts and crosses

Possible solutions:
Example: Noughts and crosses

Possible solutions: \textit{minimax} (assume a perfect opponent),
Example: Noughts and crosses

Possible solutions: minimax (assume a perfect opponent), supervised learning (directly search the space of policies, as in the previous example),
Example: Noughts and crosses

Possible solutions: \textit{minimax} (assume a perfect opponent), \textit{supervised learning} (directly search the space of policies, as in the previous example), \textit{reinforcement learning} (our next example).
A Reinforcement Learning strategy

- Assign **values to each possible game state** (e.g. the probability of winning from that state):

<table>
<thead>
<tr>
<th>state</th>
<th>$V(s)$</th>
<th>outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_0 = \begin{array}{c} x \ H \ 0 \end{array}$</td>
<td>0.5</td>
<td>??</td>
</tr>
<tr>
<td>$s_1 = \begin{array}{c} x \ 0 \end{array}$</td>
<td>0.5</td>
<td>??</td>
</tr>
<tr>
<td>\vdots</td>
<td>0</td>
<td>loss</td>
</tr>
<tr>
<td>$s_i = \begin{array}{c} x \ x \ 0 \end{array}$</td>
<td>0</td>
<td>loss</td>
</tr>
<tr>
<td>\vdots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$s_n = \begin{array}{c} x \ x \ x \ 0 \end{array}$</td>
<td>1</td>
<td>win</td>
</tr>
</tbody>
</table>

Algorithm 2: TD Learning

While learning

select move by

looking ahead 1 state

choose next state s

if \neq exploring

pick s at random

else

$s = \text{arg max}_s V(s)$

N.B.: **exploring** could mean, for instance, pick a random next state 10% of the time.
How to update state values

s_0
How to update state values

$V(s) \leftarrow V(s) + \alpha [V(s') - V(s)]$ (TD learning)

An update rule:

Step-size parameter (learning rate)
How to update state values

An update rule:

$$V(s) \leftarrow V(s) + \alpha [V(s') - V(s)]$$

(TD learning)

Step-size parameter (learning rate)
How to update state values

\[V(s) \leftarrow V(s) + \alpha \left[V(s') - V(s) \right] \]

(TD learning)
How to update state values

An update rule:

$$V(s) \leftarrow V(s) + \alpha [V(s') - V(s)]$$ \hspace{1cm} \text{(TD learning)}

Opponent's move: s_0

Our (greedy) move: s_1^*, s_i^*
How to update state values

- Opponent's move
- Our (greedy) move
- An exploratory move

Update rule:

$$V(s) \leftarrow V(s) + \alpha [V(s') - V(s)]$$

(TD learning)
How to update state values

An exploratory move

An update rule:
$V(s) \leftarrow V(s) + \alpha [V(s') - V(s)]$ (TD learning)
How to update state values

\[V(s) \leftarrow V(s) + \alpha [V(s') - V(s)] \]
(TD learning)
How to update state values

Our (greedy) move

An exploratory move

An update rule:

\[V(s) \leftarrow V(s) + \alpha [V(s') - V(s)] \]

TD learning
How to update state values

An update rule:
(TD learning)

\[V(s) \leftarrow V(s) + \alpha [V(s') - V(s)] \]

step-size parameter (learning rate)
Some nice properties of this RL algorithm

▶ For a fixed opponent, if the parameter that controls learning rate (α) is reduced properly over time, converges to the true probabilities of winning from each state (yielding an optimal policy)

▶ If α isn't allowed to reach zero, the system will play well against opponents that alter their game (slowly)

▶ Takes into account what happens during the game (unlike supervised approaches)
Some nice properties of this RL algorithm

- For a **fixed opponent**, if the parameter that controls learning rate (α) is reduced properly over time, converges to the true probabilities of winning from each state (yielding an optimal policy)
Some nice properties of this RL algorithm

- For a fixed opponent, if the parameter that controls learning rate (α) is reduced properly over time, converges to the true probabilities of winning from each state (yielding an optimal policy).
- If α isn’t allowed to reach zero, the system will play well against opponents that alter their game (slowly).
Some nice properties of this RL algorithm

- For a fixed opponent, if the parameter that controls learning rate (α) is reduced properly over time, converges to the true probabilities of winning from each state (yielding an optimal policy)
- If α isn’t allowed to reach zero, the system will play well against opponents that alter their game (slowly)
- Takes into account what happens during the game (unlike supervised approaches)
What was not illustrated

- **RL also applies to situations where there isn’t a clearly defined adversary** ("games against nature")
- **RL also applies to non-episodic problems** (i.e. rewards can be received at any time not only at the end of an episode such as a finished game)
- **RL scales up well** to games where the search space is (unlike our example) truly vast.
 - See [Tesauro, 1994], for instance.
- **Prior knowledge** can also be incorporated
- **Look-ahead** isn’t always required
References

A few useful things to know about machine learning.

Machine Learning.
McGraw-Hill.

Neural Network Perception for Mobile Robot Guidance.

Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA.

TD-gammon, a self-teaching backgammon program, achieves master-level play.