Exploration-Exploitation tradeoffs and multi-armed bandit problems

CS7032: AI & Agents for IET

November 24, 2015
Consider the **ACO algorithm**: how does the system **learn**?

Contrast that form of “learning” with, say, our system that learns to play **draughts**, or to a system that learns to filter out **spam mail**.
Learning and Feedback

- Consider the **ACO algorithm**: how does the system **learn**?
- **Contrast** that form of “learning” with, say, our system that learns to play **draughts**, or to a system that learns to filter out spam mail.
- The RL literature often contrasts **instruction** and **evaluation**.
- **Evaluation** is a key component of Reinforcement learning systems:
 - Evaluative feedback is **local** (it indicates how good an action is) but not whether it is the best action possible
 - This creates a need for **exploration**
Associative vs. non-associative settings

- In general, learning is both
 - selectional: i.e. actions are selected by trying different alternatives and comparing their effects,
Associative vs. non-associative settings

- In general, learning is both
 - selectional: i.e. actions are selected by trying different alternatives and comparing their effects,
 - associative: i.e. the actions selected are associated to particular situations.
Associative vs. non-associative settings

- In general, learning is both
 - selectional: i.e. actions are selected by trying different alternatives and comparing their effects,
 - associative: i.e. the actions selected are associated to particular situations.

- However, in order to study evaluative feedback in detail it is convenient to simplify things and consider the problem from a non-associative perspective.
Learning from fruit machines

- The n-armed bandit setting:

- Choice of n actions (which yield numerical rewards drawn from a stationary probability distribution)
 - each action selection called a play
- Goal: maximise expected (long term) total reward or return.
 - Strategy: concentrate plays on the best levers.
Learning from fruit machines

- The n-armed bandit setting:

- Choice of n actions (which yield numerical rewards drawn from a stationary probability distribution)
 - each action selection called a play
- Goal: maximise expected (long term) total reward or return.
 - Strategy: concentrate plays on the best levers.
Learning from fruit machines

- The *n*-armed bandit setting:

- Choice of *n* actions (which yield numerical rewards drawn from a stationary probability distribution)
 - each action selection called a *play*
- Goal: *maximise* expected (long term) *total reward* or *return*.
 - Strategy: concentrate *plays* on the *best levers*.
The n-armed bandit setting:

- Choice of n actions (which yield numerical rewards drawn from a stationary probability distribution)
 - each action selection called a play
- Goal: maximise expected (long term) total reward or return.
 - Strategy: concentrate plays on the best levers.
Learning from fruit machines

- The **n-armed bandit** setting:

 ![Fruit Machines]

- Choice of n actions (which yield numerical rewards drawn from a stationary probability distribution)
 - each action selection called a **play**

- Goal: **maximise** expected (long term) **total reward** or **return**.
 - Strategy: concentrate **plays** on the **best levers**.
Learning from fruit machines

- The n-armed bandit setting:

- Choice of n actions (which yield numerical rewards drawn from a stationary probability distribution)
 - each action selection called a play
- Goal: maximise expected (long term) total reward or return.
 - Strategy: concentrate plays on the best levers.
How to find the best plays

- Let’s distinguish between:
 - reward, the immediate outcome of a play, and
 - value, the expected (mean) reward of a play

- But how do we estimate values?

- We could keep a record of rewards $r_1^a, \ldots, r_{k_a}^a$ for each chosen action a and estimate the value of choosing a at time t as

$$Q_t(a) = \frac{r_1^a + r_2^a + \cdots + r_{k_a}^a}{k_a}$$ (1)
But how do we choose an action?

- We could be greedy and exploit our knowledge of $Q_t(a)$ to choose at any time t the play with the highest estimated value.
- But this strategy will tend to neglect the estimates of non-greedy actions (which might have produced greater total reward in the long run).
- One could, alternatively, explore the space of actions by choosing, from time to time, a non-greedy action
The goal is to approximate the true value, $Q(a)$ for each action.

$Q_t(a)$, given by equation (1) will converge to $Q(a)$ as $k_a \to \infty$ (Law of Large Numbers).

So balancing exploration and exploitation is necessary...

but finding the right balance can be tricky; many approaches rely on strong assumptions about the underlying distributions.

We will present a simpler alternative...
A simple strategy

- The simplest strategy: choose action a^* so that:

$$a^* = \arg \max_a Q_t(a) \quad \text{(greedy selection)} \quad (2)$$

- A better simple strategy: ϵ-greedy methods:
 - With probability $1 - \epsilon$, exploit; i.e. choose a^* according with (2)
 - The rest of the time (probability ϵ) choose an action at random, uniformly
 - A suitably small ϵ guarantees that all actions get explored sooner or later (and the probability of selecting the optimal action converges to greater than $1 - \epsilon$)
Exploring exploration at different rates

- The “10-armed testbed” [Sutton and Barto, 1998]:
 - 2000 randomly generated n-armed bandit tasks with $n = 10$.
 - For each action, a, expected rewards $Q(a)$ (the “true” expected values of choosing a) are selected from a normal (Gaussian) probability distribution $N(0, 1)$
 - Immediate rewards r_1^a, \ldots, r_k^a are similarly selected from $N(Q(a), 1)$
Exploring exploration at different rates

- The “10-armed testbed” [Sutton and Barto, 1998]:
 - 2000 randomly generated n-armed bandit tasks with $n = 10$.
 - For each action, a, expected rewards $Q(a)$ (the “true” expected values of choosing a) are selected from a normal (Gaussian) probability distribution $N(0, 1)$
 - Immediate rewards r_1^a, \ldots, r_k^a are similarly selected from $N(Q(a), 1)$

```
nArmedBanditTask <- function(n=10, s=2000)
{
  qtrue <- rnorm(n)
  r <- matrix(nrow=s,ncol=n)
  for (i in 1:n){
    r [, i] <- rnorm(s,mean=qtrue[i])
  }
  return(r)
}
```
Some empirical results

Averaged results of 2000 rounds of 1000 plays each:
Softmax methods

- **Softmax action selection** methods grade action probabilities by estimated values.
- Commonly use **Gibbs, or Boltzmann, distribution**. I.e. choose action a on the t-th play with probability

\[
\pi(a) = \frac{e^{Q_t(a)/\tau}}{\sum_{b \in A} e^{Q_t(b)/\tau}}
\]

(3)

- where τ is a positive parameter called the **temperature**, as in simulated annealing algorithms.
Keeping track of the means

Maintaining a record of means by recalculating them after each play can be a source of inefficiency in evaluating feedback. E.g.:

```r
## inefficient way of selecting actions
selectAction <- function(r, e=0) {
  n <- dim(r)[2]  # number of arms (cols in r)
  if (sample(c(T,F),1,prob=c(e,1-e))) {
    return(sample(1:n,1))  # explore if e > 0 and chance allows
  }  
  else {
    # all Q_t(a_i), i \in [1,n]
    Qt <- sapply(1:n, function(i)mean(r[,i], na.rm=TRUE))
    ties <- which(Qt == max(Qt))
    ## if there are ties in Q_t(a); choose one at random
    if (length(ties)>1)
      return(sample(ties, 1))
    else
      return(ties)
  }
}
```
Incremental update

- Do we really need to store all rewards?

\[Q_{k+1} = \frac{1}{k+1} \sum_{i=1}^{k} r_i \]

Equation (4) is part of a family of formulae in which the new estimate \(Q_{k+1} \) is the old estimate \(Q_k \) adjusted by the estimation error \(r_{k+1} - Q_k \) scaled by a step parameter \(\frac{1}{k+1} \), in this case.

(Recall the LMS weight update step described in the introduction to machine learning.)
Incremental update

- Do we really need to store all rewards? NO

\[
\begin{align*}
Q_{k+1} &= \frac{1}{k+1} \sum_{i=1}^{k} r_i + \frac{r_{k+1} - Q_k}{k+1} \\
\end{align*}
\]

Equation (4) is part of a family of formulae in which the new estimate \(Q_{k+1}\) is the old estimate \(Q_k\) adjusted by the estimation error \(r_{k+1} - Q_k\) scaled by a step parameter \(\frac{1}{k+1}\), in this case.

(Recall the LMS weight update step described in the introduction to machine learning.)
Incremental update

- Do we really need to store all rewards? NO
- Let Q_k be the mean of the first k rewards for an action,
- We can express the next mean value as

$$Q_{k+1} = \frac{1}{k+1} \sum_{i=1}^{k+1} r_i$$

$$= \ldots$$

$$= Q_k + \frac{1}{k+1} [r_{k+1} - Q_k] \quad (4)$$
Incremental update

- Do we really need to store all rewards? NO
- Let Q_k be the mean of the first k rewards for an action,
- We can express the next mean value as

$$Q_{k+1} = \frac{1}{k+1} \sum_{i=1}^{k+1} r_i$$

$$= \ldots$$

$$= Q_k + \frac{1}{k+1} [r_{k+1} - Q_k]$$ \hspace{1cm} (4)

- Equation (4) is part of family of formulae in which the new estimate (Q_{k+1}) is the old estimate (Q_k) adjusted by the estimation error ($r_{k+1} - Q_k$) scaled by a step parameter ($\frac{1}{k+1}$, in this case)
- (Recall the LMS weight update step described in the introduction to machine learning).
Non-stationary problems

- What happens if the “n-armed bandit” changes over time? How do we keep track of a changing mean?
- An approach: weight recent rewards more heavily than past ones.
- So, our update formula (4) could be modified to

$$Q_{k+1} = Q_k + \alpha [r_{k+1} - Q_k]$$

(5)

where $0 < \alpha \leq 1$ is a constant

- This gives us Q_k as an exponential, recency-weighted average of past rewards and the initial estimate
Recency weighted estimates

Given (5), Q_k can be rewritten as:

$$Q_k = Q_{k-1} + \alpha [r_k - Q_{k-1}]$$
$$= \alpha r_k + (1 - \alpha) Q_{k-1}$$
$$= \ldots$$
$$= (1 - \alpha)^k Q_0 + \sum_{i=1}^{k} \alpha(1 - \alpha)^{k-i} r_i \quad (6)$$

Note that $(1 - \alpha)^k + \sum_{i=1}^{k} \alpha(1 - \alpha)^{k-i} = 1$. I.e. weights sum to 1.

The weight $\alpha(1 - \alpha)^{k-i}$ decreases exponentially with the number of intervening rewards.
Picking initial values

- The above methods are biased by Q_0
 - For sample-average, bias disappears once all actions have been selected
 - For recency-weighted methods, bias is permanent (but decreases over time)
- One can supply prior knowledge by picking the right values for Q_0
- One can also choose optimistic initial values to encourage exploration
Picking initial values

- The above methods are **biased** by Q_0
 - For sample-average, bias disappears once all actions have been selected
 - For recency-weighted methods, bias is **permanent** (but decreases over time)
- One can supply **prior knowledge** by picking the right values for Q_0
- One can also choose **optimistic initial values** to encourage exploration (Why?)
The effects of optimism

With Q₀'s set initially high (for each action) q, the learner will be disappointed by actual rewards, and sample all actions many times before converging.

E.g.: Performance of Optimistic (Q₀ = 5, ∀a) vs Realistic (Q₀ = 0, ∀a) strategies for the 10-armed testbed
The effects of optimism

- With Q_0’s set initially high (for each action)q, the learner will be disappointed by actual rewards, and sample all actions many times before converging.
The effects of optimism

- With \(Q_0 \)'s set initially high (for each action) \(q \), the learner will be disappointed by actual rewards, and sample all actions many times before converging.

- E.g.: Performance of Optimistic \((Q_0 = 5, \forall a) \) vs Realistic \((Q_0 = 0, \forall a) \) strategies for the 10-armed testbed
Evaluation vs Instruction

- RL searches the action space while SL searches the parameter space.
- Binary, 2-armed bandits:
 - two actions: \(a_1 \) and \(a_2 \)
 - two rewards: success and failure (as opposed to numeric rewards).
- SL: select the action that returns success most often.
Evaluation vs Instruction

- RL searches the action space while SL searches the parameter space.
- Binary, 2-armed bandits:
 - two actions: a_1 and a_2
 - two rewards: success and failure (as opposed to numeric rewards).
- SL: select the action that returns success most often.
- Stochastic case (a problem for SL?):

```
<table>
<thead>
<tr>
<th>Success prob for action $a_1$</th>
<th>Success prob for action $a_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

- EASY PROBLEMS
- DIFFICULT PROBLEMS
- A
- B
Two stochastic SL schemes (learning automata)

- L_{r-p}, Linear reward-penalty: choose the action as in the naive SL case, and keep track of the successes by updating an estimate of the probability of choosing it in future.

- Choose $a \in A$ with probability $\pi_t(a)$

- Update the probability of the chosen action as follows:

$$\pi_{t+1}(a) = \begin{cases}
\pi_t(a) + \alpha(1 - \pi_t(a)) & \text{if success} \\
\pi_t(a)(1 - \alpha) & \text{otherwise}
\end{cases} \quad (7)$$

- All remaining actions $a_i \neq a$ are adjusted proportionally:

$$\pi_{t+1}(a_i) = \begin{cases}
\pi_t(a_i)(1 - \alpha) & \text{if a succeeds} \\
\frac{\alpha}{|A|-1} + \pi_t(a_i)(1 - \alpha) & \text{otherwise}
\end{cases} \quad (8)$$

- L_{r-i}, Linear reward-inaction: like L_{r-p} but update probabilities only in case of success.
See [Narendra and Thathachar, 1974], for a survey of learning automata methods and results.
Reinforcement comparison

▶ Instead of estimates of values for each action, keep an estimate of overall reward level \bar{r}_t:

$$\bar{r}_{t+1} = \bar{r}_t + \alpha [r_{t+1} - r_t]$$ (9)

▶ and action preferences $p_t(a)$ w.r.t. reward estimates:

$$p_{t+1}(a) = p_t(a) + \beta [r_t - \bar{r}_t]$$ (10)

▶ The softmax function can then be used as a PMF for action selection:

$$\pi_t(a) = \frac{e^{p_t(a)}}{\sum_{b \in A} e^{p_t(b)}}$$ (11)

▶ $(0 < \alpha \leq 1$ and $\beta > 0$ are step-size parameters.)
How does reinforcement comparison compare?

- Reinforcement comparison ($\alpha = 0.1$) vs action-value on the 10-armed testbed.
Pursuit methods

▶ maintain both action-value estimates and action preferences,
▶ preferences continually "pursue" greedy actions.
▶ E.g.: for greedy action $a^* = \arg\max_a Q_{t+1}(a)$, increase its selection probability:

$$\pi_{t+1}(a^*) = \pi_t(a^*) + \beta[1 - \pi_t(a^*)]$$ (12)

▶ while decreasing probabilities for all remaining actions $a \neq a^*$

$$\pi_{t+1}(a) = \pi_t(a) + \beta[0 - \pi_t(a)]$$ (13)
Performance of pursuit methods

- Pursuit ($\alpha = 1/k$ for Q_t update, $\pi_0(a) = 1/n$ and $\beta = 0.01$) versus reinforcement comparison ($\alpha = 0.1$) vs action-value on the 10-armed testbed.
Further topics

- Associative search:
 - suppose we have many different bandit tasks and the learner is presented with a different one at each play.
 - Suppose each time the learner is given a clue as to the which task it is facing...
Further topics

▶ Associative search:
 ▶ suppose we have many different bandit tasks and the learner is presented with a different one at each play.
 ▶ Suppose each time the learner is given a clue as to the which task it is facing...
 ▶ In such cases, the best strategy is a combination of search for the best actions and association of actions to situations
Further topics

- Associative search:
 - suppose we have many different bandit tasks and the learner is presented with a different one at each play.
 - Suppose each time the learner is given a clue as to the which task it is facing...
 - In such cases, the best strategy is a combination of search for the best actions and association of actions to situations

- Exact algorithms for computation of Bayes optimal way to balance exploration and exploitation exist [Bellman, 1956], but are intractable.
Bellman, R. (1956).
A problem in the sequential design of experiments.
Sankhya, 16:221–229.

Learning automata - a survey.

Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA.