Machine Learning
ML for NLP
Lecturer: Kevin Koidl Assist. Lecturer Alfredo Maldonado
https://www.cs.tcd.ie/kevin.koidl/cs4062/
kevin.koidl@scss.tcd.ie, maldonaa@tcd.ie
2017

Outline
• Does TC (and NLP) need Machine Learning?
• What can Machine Learning do for us (“what has machine learning ever done for us”?)
• What is machine learning?
• How do we design machine learning systems?
• What is a well-defined learning problem?
• An example

Why Machine Learning
• Progress in algorithms and theory
• Growing flood of online data
• Computational power is available
• Rich application potential
• The knowledge acquisition bottleneck

Well-Defined Learning Problems
• Learning = Improving with experience at some task
 – Improve over Task T,
 – with respect to performance measure P,
 – based on experience E.
• Example Checkers
 – T: Play Checkers,
 – P: Percentage of Games won in a tournament,
 – P: Games played against self.
Machine Learning Definitions

Machine learning is the subfield of computer science that gives computers the ability to learn without being explicitly programmed (Arthur Samuel, 1959).

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E (Tom M. Mitchell, 1998).

Machine Learning Challenges

• How can a computer program make an experience?
• How can this experience be codified?
• Examples of a codified experience?

User interface agents?

• An (artificial) agent may help users cope with increasing information:

 An agent is a computer system that is situated in some environment and that is capable of autonomous action in its environment in order to meet its design objectives. [Wooldridge 2002]

• Definition of a Rational Agent:

 A rational agent should select an action that is expected to maximize its performance measure, given the evidence provided. [Peter Norvig, 2003]

Do Agents need machine learning?

• Practical concerns:
 – large amounts of language data have become available (on the web and elsewhere), and one needs to be able to make sense of them all,
 – knowledge engineering methods don’t seem to be able to cope with the growing flood of data
 – Machine learning can be used to automate knowledge acquisition and inference

• Theoretical contributions:
 – reasonably solid foundations (theory and algorithms)
Machine Learning Categories

- Main Machine Learning Categories:
 - Supervised Learning: Computer receives input and output data aka 'labelled' data and creates a 'mapping' between both.
 - Unsupervised Learning: Input data has no labels are given. Learning algorithm has to identify structure in the input data.

Supervised Learning

- Supervised Machine Learning Problem Categories:
 - Regression Problem: Continuous Output. For example predict percentage grade (e.g. 76%) based on hours studied.
 - Classification Problem: Discrete Output. For example predict grade (e.g. A) based on hours studied.

Supervised Learning Models

- Typical Machine Learning Models:
 - Supervised Vector Machines (SVM)
 - Gaussian Process
 - Artificial Neural Networks (ANN)
 - Classification, Regression, Decision Trees, Random Forrest, Back Propagation....

- What is the goal of a model and how do I select the right one?

Application niches for machine learning

- ML for text classification for use in, for instance, self customizing programs:
 - Newsreader that learns user interests
- Data mining: using historical data to improve decisions
 - Medical records → medical knowledge
 - Analysis of customer behaviour
- Software applications we can’t program by hand
 - Autonomous driving
 - Speech recognition
Examples: data mining problem

Given:

- 9714 patient records, each describing a pregnancy and birth
- Each patient record contains 215 features

Learn to predict:

- Classes of future patients at high risk for Emergency Cesarean Section

Examples: data mining results

If No previous vaginal delivery, and Abnormal 2nd Trimester Ultrasound, and Malpresentation at admission
Then Probability of Emergency C-Section is 0.6

Over training data: 26/41 = .63,
Over test data: 12/20 = .60

Other prediction problems

- Customer purchase behavior:

<table>
<thead>
<tr>
<th>Customer103: (time=t0)</th>
<th>Customer103: (time=t1)</th>
<th>Customer103: (time=t2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex: M</td>
<td>Sex: M</td>
<td>Sex: M</td>
</tr>
<tr>
<td>Age: 53</td>
<td>Age: 53</td>
<td>Age: 53</td>
</tr>
<tr>
<td>Income: $50k</td>
<td>Income: $50k</td>
<td>Income: $50k</td>
</tr>
<tr>
<td>Own House: Yes</td>
<td>Own House: Yes</td>
<td>Own House: Yes</td>
</tr>
<tr>
<td>MS Products: Word</td>
<td>MS Products: Word</td>
<td>MS Products: Word</td>
</tr>
<tr>
<td>Computer: 386 PC</td>
<td>Computer: Pentium</td>
<td>Computer: Pentium</td>
</tr>
<tr>
<td>Purchase Excel?: ?</td>
<td>Purchase Excel?: ?</td>
<td>Purchase Excel?: Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Process optimization:

<table>
<thead>
<tr>
<th>Product72: (time=t0)</th>
<th>Product72: (time=t1)</th>
<th>...</th>
<th>Product72: (time=tn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage: mix</td>
<td>Stage: cook</td>
<td>...</td>
<td>Stage: cool</td>
</tr>
<tr>
<td>Mixing-speed: 60rpm</td>
<td>Temperature: 325</td>
<td>...</td>
<td>Fan-speed: medium</td>
</tr>
<tr>
<td>Viscosity: 1.3</td>
<td>Viscosity: 3.2</td>
<td>...</td>
<td>Viscosity: 1.3</td>
</tr>
<tr>
<td>Fat content: 15%</td>
<td>Fat content: 12%</td>
<td>...</td>
<td>Fat content: 12%</td>
</tr>
<tr>
<td>Density: 2.8</td>
<td>Density: 1.1</td>
<td>...</td>
<td>Density: 1.2</td>
</tr>
<tr>
<td>Spectral peak: 2800</td>
<td>Spectral peak: 3200</td>
<td>...</td>
<td>Spectral peak: 3100</td>
</tr>
<tr>
<td>Product underweight?:</td>
<td>Product underweight?:</td>
<td>...</td>
<td>Product underweight?: Yes</td>
</tr>
</tbody>
</table>

Problems Too Difficult to Program by Hand

• ALVINN (Pomerleau 1994): drives 70 mph

Software that adapts to its user

• Recommendation services,
• Bayes spam filtering
• etc

Perspectives

• Common applications
 - First-generation algorithms: neural nets, decision trees, regression ...

5
Applied to well-structured databases

- Advanced applications; areas of active research:
 - Learn across full mixed-media data
 - Learn across multiple internal databases, plus the web and newsfeeds
 - Learn by active experimentation
 - Learn decisions rather than predictions
 - Cumulative, lifelong learning
 - Deep learning

Defining “learning”

- ML has been studied from various perspectives (AI, control theory, statistics, information theory, ...)

- From an AI perspective, the general definition is formulated in terms of agents and tasks. E.g.:

 [An agent] is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with E. [Mitchell 1997, p. 2]

- Statistics, model-fitting, ...

Agent Programs

- **Agent** = architecture + program
- **Architecture** = Sensors and Actuators
- **Program** = Decision Process

- Examples are: Simple Reflex Agents, Model-based reflex Agents, Goal-based Agents, Utility-based Agents and Learning (Intelligent) Agents.

Simple Reflex Agent
Model-based Reflex Agent
Learning agents

The architecture in some detail

- **Performance element**: responsible for selecting appropriate actions
- **Learning element**: responsible for making improvements
• **Critic**: evaluates action selection against a performance standard

• **Problem generator**: suggests actions that might lead to new and instructive experiences

Designing a machine learning system

• Main design decisions:

 – Training experience: How will the system access and use data?
 – Target function: What exactly should be learnt?
 – Hypothesis representation: How will we represent the concepts to be learnt?
 – Inductive inference: What specific algorithm should be used to learn the target concepts?

Accessing and using data

• How will the system be exposed to its training experience? Some distinctions:

 – Direct or indirect access:
 * indirect access: record of past experiences, corpora
 * direct access: situated agents → reinforcement learning
 – Source of feedback (“teacher”):
 * supervised learning
 * unsupervised learning
 * mixed: semi-supervised (“transductive”), active learning

Determining the target function

• The target function specifies the concept to be learnt.

• In supervised learning, the target function is assumed to be specified through annotation of training data or some form of feedback:

 – a corpus of words annotated for word senses, e.g. \(f : W \times S \rightarrow \{0, 1\} \)
 – a database of medical data
 – user feedback in spam filtering
 – assessment of outcomes of actions by a situated agent

Representing hypotheses and data

• The goal of the learning algorithm is to “induce” an approximation \(\hat{f} \) of a target function \(f \)

• The data used in the induction process needs to be represented uniformly

 – E.g. representation of text as a “bag of words”, Boolean vectors, etc
• The choice of representation often constrains the space of available hypotheses, hence the possible \(\hat{f} \)'s. E.g.:

 – the approximation to be learnt could, for instance, map conjunctions of Boolean literals to categories

 – or it could assume that co-occurrence of words do not matter for categorisation

 – etc

Deduction and Induction

• Deduction (conclusion guaranteed): From general premises to a conclusion. E.g. If \(x = 4 \) And if \(y = 1 \), Then \(2x + y = 9 \).

• Induction (conclusion likely): from instances to generalisations. E.g. All of the swans we have seen are white. Therefore, (we expect) all swans to be white.

• Machine learning algorithms produce models that generalise from *instances* presented to the algorithm

• But all (useful) learners have *some form of inductive bias*:

 – In terms of *representation*, as mentioned above,

 – But also in terms of their preferences in *generalisation procedures*. E.g:

 * prefer simpler hypotheses, or
 * prefer shorter hypotheses, or
 * incorporate domain (expert) knowledge, etc etc

Given a function \(\hat{f} : X \rightarrow C \) trained on a set of instances \(D_c \) describing a concept \(c \), we say that the inductive bias of \(\hat{f} \) is a minimal set of assertions \(B \), such that for any set of instances \(X \):

\[
\forall x \in X (B \land D_c \land x \vdash \hat{f}(x))
\]

Choosing an algorithm

• Induction task as *search* for a hypothesis (or model) that fits the data and sample of the target function available to the learner, in a large space of hypotheses

• The choice of learning algorithm is conditioned to the choice of representation

• Since the target function is not completely accessible to the learner, the algorithm needs to operate under the *inductive learning assumption* that:

 an approximation that *performs well* over a *sufficiently large set of instances* will perform well on unseen data.

• Note: *Computational Learning Theory*
Computational learning theory deals in a precise manner with the concepts highlighted above, namely, what it means for an approximation (learnt function) to perform well, and what counts as a sufficiently large set of instances. An influential framework is the probably approximately correct (PAC) learning framework, proposed by [Valiant, 1984]. For an accessible introduction to several aspects of machine learning, see [Domingos, 2012]. For some interesting implications see the “no-free lunch” theorems and the Extended Bayesian Framework [Wolpert, 1996].

An Example: learning to play (Mitchell, 1997)

- Learning to play draughts (checkers):

 ![Diagram of a draughts (checkers) board]

 - Task? (target function, data representation) Training experience? Performance measure?

A target function

- A target function for a draughts (checkers) player:
 - \(f : \text{Board} \rightarrow \mathbb{R} \)
 - if \(b \) is a final board state that is won, then \(f(b) = 100 \)
 - if \(b \) is a final board state that is lost, then \(f(b) = -100 \)
 - if \(b \) is a final board state that is drawn, then \(f(b) = 0 \)
 - if \(b \) is a not a final state in the game, then \(f(b) = f(b') \), where \(b' \) is the best final board state that can be achieved starting from \(b \) and playing optimally until the end of the game.

- How feasible would it be to implement it?
- Not very feasible...
- ... and how can we find intermediate game states?
Representation

- collection of rules? neural network? polynomial function of board features? ...
- Approximation as a linear combination of features:

\[
\hat{f}(b) = w_0 + w_1 \cdot bp(b) + w_2 \cdot rp(b) + w_3 \cdot bk(b) + w_4 \cdot rk(b) + w_5 \cdot bt(b) + w_6 \cdot rt(b)
\]

where:
- \(bp(b)\): number of black pieces on board \(b\)
- \(rp(b)\): number of red pieces on \(b\)
- \(bk(b)\): number of black kings on \(b\)
- \(rk(b)\): number of red kings on \(b\)
- \(bt(b)\): number of red pieces threatened by black (i.e., which can be taken on black’s next turn)
- \(rt(b)\): number of black pieces threatened by red

Training Experience

- Distinctions:
 - \(f(b)\): the true target function
 - \(\hat{f}(b)\): the learnt function
 - \(f_{\text{train}}(b)\): the training value
 - A training set containing instances and its corresponding training values
- Problem: How do we estimate training values?
- A simple rule for estimating training values:
 - \(f_{\text{train}}(b) \leftarrow \hat{f}(\text{Successor}(b))\)
 - \(\text{Successor}(b)\) denotes the next board state following the programs move and the opponent’s response.
 - Note: \(\text{Successor}(b)\) is an ‘estimation’ of the value of board state \(b\).
 - Does the \(\hat{f}(b)\) tend to become more or less accurate for board states closer to the end of the game?

Example: Choosing a Function Approximation

- Learning the target function by approximation \(\hat{f}(b)\)
- Based on a set of training examples describing a board state \(b\)
- And the corresponding training value \(f_{\text{train}}(b)\)
- Each training example results in an ordered pair of the form \(< b, f_{\text{train}}(b) >\)
- Example: \(< < bp = 3, rp = 0, bk = 1, rk = 0, bt = 0, rt = 0 >, +100 >\)
- \(f_{\text{train}}(b)\) is therefore +100 and black has won.
How do we learn the weights?

Algorithm 1: Least Mean Square

1. \texttt{LMS(}c: \texttt{learning rate})
2. \texttt{for each training instance }<b, f_{train}(b)> \texttt{do}
3. \hspace{1em}compute error(b) for current approximation
4. \hspace{1em}(using current weights):
5. \hspace{2em}error(b) = f_{train}(b) - \hat{f}(b)
6. \hspace{1em}for each board feature $t_i \in \{bp(b), rp(b), \ldots\}$,
7. \hspace{2em}update weight w_i:
8. \hspace{3em}$w_i \leftarrow w_i + c \times t_i \times \text{error}(b)$
9. \texttt{done}
10. \texttt{done}

LMS minimises the squared error between training data and current approx.: $E = \sum_{(b,f_{train}(b)) \in \mathcal{D}} (f_{train}(b) - \hat{f}(b))^2$ Notice that if error(b) = 0 (i.e. target and approximation match) no weights change. Similarly, if or $t_i = 0$ (i.e. feature t_i doesn’t occur) the corresponding weight doesn’t get updated. This weight update rule can be shown to perform a gradient descent search for the minimal squared error (i.e. weight updates are proportional to $-\nabla E$ where $\nabla E = [\partial E/\partial w_0, \partial E/\partial w_1, \ldots]$).

That the LMS weight update rule implements gradient descent can be seen by differentiating ∇E:

$$\frac{\partial E}{\partial w_i} = \frac{\partial \sum_{(b,f_{train}(b)) \in \mathcal{D}} [f(b) - \hat{f}(b)]^2}{\partial w_i}$$

$$= \sum \frac{\partial [f(b) - \hat{f}(b)]^2}{\partial w_i}$$

$$= \sum 2 \times [f(b) - \hat{f}(b)] \times \frac{\partial}{\partial w_i} [f(b) - \hat{f}(b)]$$

$$= \sum 2 \times [f(b) - \hat{f}(b)] \times \frac{\partial}{\partial w_i} [f(b) - \sum_{i} w_i t_i]$$

$$= -\sum 2 \times \text{error}(b) \times t_i$$

Learning agent architecture
Performance standard

Critic

Training instances

Feedback

Environment

Sensors

Performance

Sensors

Effectors

Hypothesis

Learning

element

Problem

generator

Solution

(b1,...,bn)

Environment

New problem (e.g. initial board)

Design choices: summary

Determine Target Function

Determine Representation of Learned Function

Determine Type of Training Experience

Determine Learning Algorithm

Completed Design

Mapping and structure

- Some target functions (specially in NLP) fit more naturally into a transducer pattern, and naturally have a signature

\[f: \text{sequence over vocab } \Sigma \Rightarrow \text{sequence over } (\Sigma \times \text{labels } C) \]

- eg. POS-tagging (Part-of Speech Tagging)

 last week IBM bought Lotus \Rightarrow \text{last/JJ week/NN IBM/NNP bought/VBD Lotus/NNP}
Targeting Sequences and Trees

- other functions do not fit this pattern either, but instead have a signature

\[f: \text{sequence over vocab } \Sigma \Rightarrow \text{tree over } (\Sigma \cup \text{labels } \mathcal{L}) \]

- eg. parsing: last week IBM bought Lotus ⇒

Issues in machine learning

- What algorithms can approximate functions well (and when)?
- How does number of training examples influence accuracy?
- How does complexity of hypothesis representation impact it?
- How does noisy data influence accuracy?
- What are the theoretical limits of learnability?
- How can prior knowledge of learner help?
- What clues can we get from biological learning systems?
- How can systems alter their own representations?

Some application examples we will see in some detail

- Applications of Supervised learning in NLP:
 - Text categorisation
 - POS tagging (briefly)
 - Word-sense disambiguation (briefly)
- Unsupervised learning:
 - Keyword selection, feature set reduction
 - Word-sense disambiguation (revisited)
References

