EXTRINSIC CAMERA PARAMETERS
ESTIMATION FOR SHAPE-FROM-DEPTHs

Jonathan Ruttle, Claudia Arellano and Rozenn Dahyot
Trinity College Dublin, Ireland

European Signal Processing Conference
August 30th, 2012
Problem: 3D reconstruction of an object from Kinect scans.

Figure: 3D reconstruction of an object using the kinect and turning table.
Problem: 3D reconstruction of an object from Kinect scans II

Objective: Inferring an accurate 3D surface of the object from a set of \(C \) noisy Kinect scans

Strategy:

▶ Define a smooth differentiable cost function to estimate the surface of the object,

▶ The cost function should be robust,

▶ The uncertainty associated with each observation should be taken into account.
Standard approach I

Observations: $\mathbf{x}^{(i)}_c = (x^{(i)}_{1,c}, x^{(i)}_{2,c}, x^{(i)}_{3,c})$ have been collected:

- $x^{(i)}_{1,c}$ x-coordinate of the pixel i in the scan recorded by camera c
- $x^{(i)}_{2,c}$ y-coordinate of the pixel i in the scan recorded by camera c
- $x^{(i)}_{3,c}$ depth value of the pixel i in the scan recorded by camera c

Camera model

$$P(\psi) = \begin{bmatrix} f_x & 0 & u_0 \\ 0 & f_y & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \psi_4 \\ \psi_5 \\ \psi_6 \end{bmatrix}$$ \hspace{1cm} (1)
The coordinate of the centre of the camera $C(\psi)$ can then be computed with:

$$C(\psi) = -\begin{bmatrix} R(\psi) \end{bmatrix}' \begin{bmatrix} \psi_4 \\ \psi_5 \\ \psi_6 \end{bmatrix}$$ (2)
Standard approach III

Link function: The function $F(x, \psi, \Theta)$ that links the observation x, the corresponding 3D position Θ, and the camera parameters ψ is defined as:

$$F(x, \psi, \Theta) = \begin{pmatrix} F_1(x, \psi, \Theta) \\ F_2(x, \psi, \Theta) \\ F_3(x, \psi, \Theta) \end{pmatrix} = \begin{pmatrix} x_1 - \frac{\theta_1 P(\psi)_{11} + \theta_2 P(\psi)_{12} + \theta_3 P(\psi)_{13} + P(\psi)_{14}}{\theta_1 P(\psi)_{31} + \theta_2 P(\psi)_{32} + \theta_3 P(\psi)_{33} + P(\psi)_{34}} \\ x_2 - \frac{\theta_1 P(\psi)_{21} + \theta_2 P(\psi)_{22} + \theta_3 P(\psi)_{23} + P(\psi)_{24}}{\theta_1 P(\psi)_{31} + \theta_2 P(\psi)_{32} + \theta_3 P(\psi)_{33} + P(\psi)_{34}} \\ x_3 - \sqrt{(C(\psi)_1 - \theta_1)^2 + (C(\psi)_2 - \theta_2)^2 + (C(\psi)_3 - \theta_3)^2} \end{pmatrix} = 0$$

F is non linear in Θ and ψ.
Standard approach IV

Standard approach: [e.g. KinectFusion]

- Filtering of the kinect scans (removing the noise)
- Estimation of camera parameters,
- Conversion of the scans to point clouds: \(x_c^{(i)} \rightarrow \Theta_c^{(i)} \)

Problem:

- Filtering remove noise (good) and smooth the surface (bad)
- Difficult to model the uncertainty on \(\Theta_c^{(i)} \) while uncertainty about \(x_c^{(i)} \) is known.
Our Robust Modelling I

Stochastic equation:

\[\lambda + F(x, \Theta, \Psi) = \epsilon \sim p_\epsilon(\epsilon) \]

- \(\lambda \) is an additive auxiliary variable and the conditional density of \(\lambda \) given \(x \), \(\Theta \) and \(\Psi \) can then be written:

\[p_{\lambda|\Theta\Psi x}(\lambda|\Theta, \Psi, x) = p_\epsilon(\lambda + F(x, \Theta, \Psi)) \]

The case of interest is when \(\lambda = 0 \).

- \(x \) is the random variable associated with the observations \(\{x^{(i)}_c\} \)
- $\Theta \in \mathbb{R}^3$ is the latent information of interest.

- Ψ are the camera parameters (nuisance parameters) and F is the link function.

- $\epsilon \in \mathbb{R}^3$ is the noise and p_ϵ is chosen Gaussian with a diagonal covariance matrix with bandwidths $h_1 = h_2 = 1$ (pixel precision) and $h_3 = 0.002m$ (depth precision).
Our Robust Modelling III

Cost function: The p.d.f. $p_{\lambda \Theta \Psi}$ can be computed by:

$$p_{\lambda \Theta \Psi}(\lambda, \Theta, \Psi) = p_\Theta(\Theta) \ p_\Psi(\Psi) \int p_\epsilon(\lambda + F(x, \Theta, \Psi)) \ p_x(x) \ dx$$

$$= p_\Theta(\Theta) \ p_\Psi(\Psi) \underbrace{\mathbb{E}[p_\epsilon(\lambda + F(x, \Theta, \Psi))]}_{p_{\lambda_1 \Theta \Psi}(\lambda_1 | \Theta, \Psi)}$$

Using observations from the first camera scan, the empirical average can be computed (with $\lambda = 0$):

$$\mathbb{E}[p_\epsilon(F(x, \Theta, \Psi_1))] \approx \frac{1}{N_1} \sum_{i=1}^{N_1} p_\epsilon(F(x_1^{(i)}, \Theta, \Psi_1)) = \bar{\text{lik}}(\Theta, \Psi_1)$$
Our Robust Modelling IV
Comparing an isotropic KDE fitted on 3D point clouds \(\{ \Theta^{(i)} \} \) (right) with our modeling \(\overline{\text{lik}} \) (left) in the \(\Theta \)-space.
Estimation of the extrinsic camera parameters I

The extrinsic camera parameters can be estimated (noted $\hat{\Psi}_c, \forall c$) via calibration:

$$\bar{\text{lik}}(\Theta) = \sum_{c=1}^{C} \text{lik}(\Theta, \hat{\Psi}_c)$$
In practice, the extrinsic camera parameter needs to be refined and re-estimated from the data.

Choosing camera $c = 1$ as a reference camera ($\hat{\Psi}_1$ is available), we formulate the problem as follow:

$$\forall c = 2, \cdots C, \quad \hat{\Psi}_c = \arg\max_{\psi_c} \int \frac{\text{lik}(\Theta, \hat{\Psi}_1)}{\text{lik}(\Theta, \psi_c)} d\Theta$$

Estimation is performed thanks to a gradient ascent algorithm.
Estimation of the extrinsic camera parameters III

Figure: Camera parameter refinement using a Kinect and a turning table. The red cameras show the original position and orientation of the cameras. The blue cameras show the position and orientation after refinement. Note the reference camera at the top.
Comparison with Shape from silhouettes (SfS)
Impact of the number of camera views C_1
Impact of the number of camera views $C II$
Impact of the number of camera views C_{III}
Comparison with Laser scan (Minolta vivid 700)

One Kinect scan

Our reconstruction from multiple kinect scans

One laser scan

Average error: 0.8 mm

Surface error between laser scan and our reconstruction
Comparison with Laser scan (Minolta vivid 700)

One Kinect scan
One laser scan
Our reconstruction from multiple kinect scans

Surface error between laser scan and our reconstruction
Scale in cm
Average error: 1.4 mm
Conclusion

We propose

- a smooth kernel objective function for 3D reconstruction from depth scans.
- with a robust estimation of nuisance parameters (i.e. extrinsic camera parameters)
Any question?

Related work:

