Lab 6

Simulations AR, MA, ARMA models

<table>
<thead>
<tr>
<th>Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Simulation of AutoRegressive model</td>
</tr>
<tr>
<td>• Simulation of Moving Average model</td>
</tr>
<tr>
<td>• ACF and PACF for AR(1), AR(2), MA(1), MA(2)</td>
</tr>
</tbody>
</table>

AutoRegressive (AR) and Moving Average (MA)

You can simulate the following models (run them several times, you should increase the number of points $n = 10000$ or more, and also change the coefficients):

1. AR(1)

 > tsdisplay(arima.sim(n=100, list(ar = c(0.8897)), sd = sqrt(0.1796)))

2. AR(2)

 > tsdisplay(arima.sim(n=100, list(ar = c(0.8897, -0.4858)), sd = sqrt(0.1796)))

3. MA(1)

 > tsdisplay(arima.sim(n=100, list(ma = c(-0.2279)), sd = sqrt(0.1796)))

4. MA(2)

 > tsdisplay(arima.sim(n=100, list(ma = c(-0.2279, 0.2488)), sd = sqrt(0.1796)))

Try to understand every argument used. Indicate which of MA(1), MA(q=2), AR(1), AR(p=2) has a ACF that has:

- an exponential decay
- an exponential decay or damped sine wave.
• Spike at lag 1, then 0.
• Spikes at lags 1 to q=2, then zero.

and a PACF that has:
• Spike at lag 1, then 0.
• Spikes at lags 1 to p=2, then zero.
• Exponential decay.
• Exponential decay or damped sine wave.

Check your results with the lecture notes.

AutoRegressive Moving Average (ARMA)

You can also simulate models that combine AR and MA components. These models are called ARMA models. For instance ARMA(2,2):

```
arima.sim(n = 100, list(ar = c(0.8897, -0.4858), ma = c(-0.2279, 0.2488)), sd = sqrt(0.1796))
```

In this case when time series has both an AR and MA components, it is very hard to identify the patterns in the ACF and PACF.