In this session, we will

- look at how to subset data;
- learn how to implement simple linear algebra routines;
- explore our data using simple plotting and summary statistic techniques.

Subsetting data

Download the data file “Music.csv” from https://www.scss.tcd.ie/~arwhite/Teaching/STU33011.html and read it into R, giving it the name music. (See previous worksheet for details).

music has been read in as a data.frame object. (This is distinct from a matrix object. We will discuss this more in later labs.) To select elements of music we enter a command of the form music[i,j], where i denotes the row number(s) and j denotes the column number(s).

For example, music[1, 1] denotes the element in the first row and first column of music.

```
music[1, 1]  
```

[1] "Dancing Queen"

music[c(1, 2, 3), 2] denotes the elements in the second column of the first three rows of music:

```
music[c(1, 2, 3), 2]  
```

[1] "Abba" "Abba" "Abba"

music[1,] denotes the first row of music:

```
music[1,]  
```

X Artist Type LVar LAve LMax LFEner LFreq
1 Dancing Queen Abba Rock 17600756 -90.00687 29921 105.921 59.57379

music[, 2] denotes the second column of music:

```
music[, 2]  
```

[1] "Abba" "Vivaldi" "Vivaldi" "Vivaldi" "Vivaldi" "Vivaldi" "Vivaldi" "Mozart" "Mozart" "Mozart" "Mozart" "Mozart" "Mozart" "Eels"

1

Exercise

- Obtain the entries in the music data frame corresponding to rows 1, 3 and 4 and columns 2 through 5 and assign this subset of music as M2.

- Obtain the entries in the music data frame corresponding to columns 4 through 8 (i.e., the numeric variables) and assign this subset of music as music_num.

Plots and summary statistics

We can visualise data using the plot function. Say we wish to plot a quadratic curve. What does each line of the below code do?

```r
x <- sample(-1000:1000, size = 200, replace = FALSE)
x <- sort(x)
y <- x^2 + 3*x + 1
plot(x, y, type = "l", col = "red")
```

To make simple statistical summaries of numeric variables, use mean, sd, var, cov, and cor. For example to take the mean of variable 4 of the music dataset, just use music[, 4]. Unfortunately, in this case, it’s hard to get a good sense of what this means when the variable terms are not clearly defined. To get covariance and correlation estimates use:
cov(music[, 4:8])

<table>
<thead>
<tr>
<th></th>
<th>LVar</th>
<th>LAve</th>
<th>LMax</th>
<th>LFEnner</th>
<th>LFreq</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVar</td>
<td>6.983700e+14</td>
<td>1.393563e+08</td>
<td>1.487901e+11</td>
<td>1.008562e+08</td>
<td>-1.218687e+09</td>
</tr>
<tr>
<td>LAve</td>
<td>1.393563e+08</td>
<td>2.299347e+03</td>
<td>-1.484280e+04</td>
<td>4.635271e+00</td>
<td>1.538224e+03</td>
</tr>
<tr>
<td>LMax</td>
<td>1.487901e+11</td>
<td>-1.484280e+04</td>
<td>7.676086e+07</td>
<td>1.987469e+04</td>
<td>-4.122962e+05</td>
</tr>
<tr>
<td>LFEnner</td>
<td>1.008562e+08</td>
<td>4.635271e+00</td>
<td>1.987469e+04</td>
<td>3.005762e+01</td>
<td>-2.599052e+02</td>
</tr>
<tr>
<td>LFreq</td>
<td>-1.218687e+09</td>
<td>1.538224e+03</td>
<td>-4.122962e+05</td>
<td>-2.599052e+02</td>
<td>3.122046e+04</td>
</tr>
</tbody>
</table>

cor(music[, 4:8])

<table>
<thead>
<tr>
<th></th>
<th>LVar</th>
<th>LAve</th>
<th>LMax</th>
<th>LFEnner</th>
<th>LFreq</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVar</td>
<td>1.00000000</td>
<td>0.11168505</td>
<td>0.6426304</td>
<td>0.69611717</td>
<td>-0.2609936</td>
</tr>
<tr>
<td>LAve</td>
<td>0.1116850</td>
<td>1.00000000</td>
<td>-0.0358804</td>
<td>0.01790643</td>
<td>0.1843789</td>
</tr>
<tr>
<td>LMax</td>
<td>0.6426304</td>
<td>-0.0358804</td>
<td>1.0000000</td>
<td>0.41376440</td>
<td>-0.2663298</td>
</tr>
<tr>
<td>LFEnner</td>
<td>0.6961172</td>
<td>0.01790643</td>
<td>0.4137644</td>
<td>1.00000000</td>
<td>-0.2682983</td>
</tr>
<tr>
<td>LFreq</td>
<td>-0.2609936</td>
<td>0.18437887</td>
<td>-0.2663298</td>
<td>-0.26829833</td>
<td>1.0000000</td>
</tr>
</tbody>
</table>

Exercise

- Visualise variables 7 and 8 in the music dataset. How does the behaviour of the data correspond with the variables's correlation?

Matrix Eigendecomposition

Eigendecomposition of matrices in R is simple when using the inbuilt eigen function. Make sure to check the help file for this command.

Exercise

- Create a matrix \(A \) such that:

\[
A = \begin{pmatrix}
1 & 2 \\
2 & 5
\end{pmatrix}
\]

Now enter the following command:

\[
\text{res} \leftarrow \text{eigen}(A)
\]

The above assigns the result of the eigendecomposition of \(A \) to the name \(\text{res} \). Typing \(\text{res} \) into the console then calls the result up. It would have been fine to simply enter \(\text{eigen}(A) \) to see the result of the function, but assigning it with a name means we can use it again in the future without having to repeat the earlier command.

\[
\text{res}
\]

```
## eigen() decomposition
## $values
## [1] 5.8284271 0.1715729
##
## $vectors
##
## [,1]        [,2]
## [1,] 0.3826834 -0.9238795
## [2,] 0.9238795  0.3826834
```

The numbers following the term $values are the eigenvalues of \(A \), given in decreasing order. The columns of the matrix returned after the term $vectors are the corresponding orthonormal eigenvectors. That is to say the output informs us that the matrix \(A \) has one eigenvalue of 5.8284271 that corresponds to
orthonormal eigenvector (0.3826834, 0.9238795), and another smaller eigenvalue of 0.1715729 that corresponds
to orthonormal eigenvector (-0.9238795, 0.3826834).

To request the eigenvalues and eigenvectors of the matrix A directly, now enter the following:

res$values

[1] 5.8284271 0.1715729

res$vectors

[,1] [,2]
[1,] 0.3826834 -0.9238795
[2,] 0.9238795 0.3826834

Exercise

- Write an R code that directly returns only the first eigenvalue of A.
- Write an R code that directly returns only the second eigenvector of A.

Matrix Multiplication

We can check to see if eigen returns correct eigenvalues and eigenvectors. Recall that $Av = \lambda v$ for any
eigenvector v and its corresponding eigenvalue λ. In R, the command %*% is used to multiply two matrices
together. (What happens if * is used instead?) Use %*% to view the help file.

To check the result for the leading eigenvalue and eigenvector, enter the following:

$A \%*\% res$vectors[,1]

[,1]
[1,] 2.230442
[2,] 5.384765

Does this result agree with the following?

res$value[1] * res$vectors[,1]

Exercise

- Check that the second eigenvalue and eigenvector are also correct.
- The cranial length and cranial breadth of 35 female frogs have expected value $\mu = (23, 24)^T$ and
covariance $\Sigma = \begin{pmatrix} 17.7 & 20.3 \\ 20.3 & 24.4 \end{pmatrix}$. What are the eigenvalues and eigenvectors of Σ?
- Can you think of any other ways to double check whether or not the eigenvalues are appropriate? Hint: in R we transpose a matrix or vector with the t function, and make a diagonal matrix using the diag function.