Suppose an urn contains four balls labelled A, B, C, D. How many ways can they be selected?

\[
\begin{array}{cccc}
 \text{ABCD} & \text{BACD} & \text{CABD} & \text{DABC} \\
 \text{ACBD} & \text{BCAD} & \text{CBAD} & \text{DBAC} \\
 \text{ADBC} & \text{BDAC} & \text{CDAB} & \text{DCAB} \\
 \text{ACDB} & \text{BCDA} & \text{CBDA} & \text{DBCA} \\
 \text{ADCB} & \text{BDCA} & \text{CDBA} & \text{DCBA} \\
\end{array}
\]

There are \(4 \times 3 \times 2 \times 1 = 4! = 24\) ways to do so. In general, there are \(N!\) ways to order \(N\) items.

Choosing \(k\) objects from \(N\)

Suppose that two balls are drawn without replacement from an urn containing \(N\) distinctly labelled balls. There are \(N\) ways to select the first ball, and \(N - 1\) ways to select the second. Then there are \(N \times (N - 1)\) ways that two balls can be selected. Similarly, \(k\) balls can be drawn in \(N \times (N - 1) \times \cdots \times (N - k + 1)\) ways. It is more convenient to write this as \(N!/(N-k)!\):

\[
\frac{N!}{(N-k)!} = \frac{N \times (N-1) \times \cdots \times (N-k+1) \times (N-k) \times \cdots \times 2 \times 1}{(N-k) \times \cdots \times 2 \times 1} = N \times (N-1) \times \cdots \times (N-k+1).
\]

This sample can be re-ordered in \(k!\) ways. Therefore the number of distinct samples of size \(k\) drawn from \(N\) objects is

\[
\frac{N!}{(N-k)!} \times \frac{1}{k!} = \frac{N!}{k!(N-k)!} = N_C_k = \binom{N}{k}.
\]

Based extensively on material previously taught by Eamonn Mullins.
Example

A lottery competition involves the drawing of six numbers from a pool of 36. What is the probability of winning the lottery, i.e., correctly choosing all six?

\[P(\text{Winning}) = \frac{1}{\binom{36}{6}} = \frac{1}{1,947,792} = 5 \times 10^{-7}. \]

Hypergeometric Distribution

Now suppose an urn contains \(N \) balls, \(K \) of which are black and \(N - k \) of which are red. If a sample of size \(n \) is selected, what is the probability that it will contain \(k \) black balls and \(n - k \) red balls? We can select \(\binom{N}{n} \) different samples of size \(n \) out of a population of \(N \). We can similarly select \(\binom{K}{k} \) different samples of red balls (of size \(k \)) and \(\binom{N-K}{n-k} \) different samples of black balls (of size \(n - k \)) from populations of size \(K \) and \(N - K \) respectively. Then the total number of different samples of \(k \) black and \(n - k \) red balls is

\[\binom{K}{k} \binom{N-K}{n-k}, \]

and the probability that a sample of size \(n \) contains \(k \) black and \(n - k \) red balls is given by

\[P(k, n-k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}. \]

This is called the hypergeometric distribution.

Example

Suppose that three balls are drawn without replacement from an urn containing three red and two black balls. The probability distribution for \(k \), the number of red balls in the sample, is then as follows:

\[
\begin{array}{ccc}
 k & P(k, 3-k) & P_k \\
 1 & \binom{3}{1} \binom{2}{2}/\binom{5}{3} & \frac{4}{10} \\
 2 & \binom{3}{2} \binom{1}{1}/\binom{5}{3} & \frac{6}{10} \\
 3 & \binom{3}{3} \binom{2}{0}/\binom{5}{3} & \frac{1}{10}
\end{array}
\]

The Birthday Problem

Suppose that \(N \) people are in a room together. What is the probability that at least two people will share a birthday? How large does \(N \) have to be before the probability is at least 50%? Let \(P(\text{No one shares a birthday}) = p_1 \). Then

\[
p_1 = \frac{365 \times 365 - 1 \times \cdots \times 365 - N + 1}{365^N}.
\]

\[
= \frac{365 \times (365 - 1) \times \cdots \times (365 - N + 1)}{365^N}.
\]

2
Then $P(\text{At least two people share a birthday}) = 1 - p_1$. Inspecting this for a range of N, we see that:

<table>
<thead>
<tr>
<th>N</th>
<th>$1 - p_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.12</td>
</tr>
<tr>
<td>20</td>
<td>0.41</td>
</tr>
<tr>
<td>23</td>
<td>0.51</td>
</tr>
<tr>
<td>30</td>
<td>0.71</td>
</tr>
<tr>
<td>50</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Now suppose that you are in a room with N other people. What is the probability that at least one other person in the room shares your birthday? Let $P(\text{No one shares your birthday}) = p_2$. Then

$$p_2 = \frac{364}{365} \times \frac{364}{365} \times \cdots \times \frac{364}{365} = \left(\frac{364}{365}\right)^N,$$

and $P(\text{At least one other person shares your birthday}) = 1 - p_2$. Inspecting this probability over a range of N, we see that:

<table>
<thead>
<tr>
<th>N</th>
<th>$1 - p_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.03</td>
</tr>
<tr>
<td>20</td>
<td>0.05</td>
</tr>
<tr>
<td>50</td>
<td>0.13</td>
</tr>
<tr>
<td>100</td>
<td>0.24</td>
</tr>
<tr>
<td>250</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Why does this probability increase so much more slowly? In broad terms, in the first scenario, as N increases we start to run out of different birthdays. In the second, the number of available days per person does not change, even as N increases. Statistically, we say that this difference is caused by sampling with (for p_2) or without (for p_1) replacement.