Probabilities are a mathematical way to describe an uncertain outcome. For example, suppose a physicist disintegrates 10,000 atoms of an element A, and records the outcome each time. Two outcomes are observed:

i). $A \mapsto B + C$ 3,100 times.

ii). $A \mapsto D + E$ 6,900 times.

Then the model for a disintegration of a single atom will be $\mathbb{P}(i) = 0.31; \mathbb{P}(ii) = 0.69$.

In general, we assign to an outcome A a probability $\mathbb{P}(A)$ equal to the relative frequency r that outcome A would appear if an experiment were to replicated many (N) times. In particular,

\[
\begin{align*}
\mathbb{P}(A) &= r/N \\
0 &\leq \mathbb{P}(A) \leq 1 \\
\sum_i \mathbb{P}(X_i) &= 1
\end{align*}
\]

where i labels all possible outcomes.

Alternatively, we can also assign probabilities based on our knowledge of physical properties, rather than from conducting numerous experiments. For example, if a coin is fair, then a natural model would be

\[
\begin{align*}
\mathbb{P}(\text{Heads}) &= 1/2 \\
\mathbb{P}(\text{Tails}) &= 1/2.
\end{align*}
\]

In this way, each outcome is equally likely.

Based extensively on material previously taught by Eamonn Mullins.
Another obvious example is a fair six sided die:

\[P(1) = P(2) = \ldots = P(6) = 1/6. \]

We call the set of all possible outcomes the sample space. An event is then any subset of outcomes which we are interested in. An event can then be a single sample point, e.g. “3”, or a collection of points, e.g., “3 or 5,” or “> 2.”

The assignment of probabilities on this basis leads to the following definition for the probability of an event \(A \):

\[P(A) = \frac{\text{Number of possible outcomes corresponding to } A}{\text{Total number of possible outcomes}}, \]

if the sample points are all considered to be equally likely\(^1\).

Example 1

Roll two fair six sided dice and list the resultant face values. The sample space for this example is:

\[
\begin{array}{ccccccc}
1,1 & 1,2 & 1,3 & 1,4 & 1,5 & 1,6 \\
2,1 & 2,2 & 2,3 & 2,4 & 2,5 & 2,6 \\
3,1 & 3,2 & 3,3 & 3,4 & 3,5 & 3,6 \\
4,1 & 4,2 & 4,3 & 4,4 & 4,5 & 4,6 \\
5,1 & 5,2 & 5,3 & 5,4 & 5,5 & 5,6 \\
6,1 & 6,2 & 6,3 & 6,4 & 6,5 & 6,6 \\
\end{array}
\]

Since all outcomes are equally likely, we assign each outcome a probability of 1/36. What is \(P(\text{sum of dice} = 7) \)? What is \(P(\text{sum of dice} = 9) \)? What is \(P(\text{sum of dice} = 7 \text{ or } 9) \)?

Mutually Exclusive Events

If two events \(A \) and \(B \) are mutually exclusive events, then the probability of observing \(A \) or \(B \) (sometimes written as \(P(A \lor B) \)) is the sum of the probabilities:

\[P(A \text{ or } B) = P(A) + P(B). \]

For example, in Exercise 1, we saw that \(P(\text{sum of dice} = 7 \text{ or } 9) = 10/36 = P(7) + P(9) = 6/36 + 4/36. \)

\(^1\)The number of possible outcomes corresponding to \(A \) is also known as the cardinality of the subset \(A \).
Example 2

A card is drawn randomly from a standard deck of cards. A standard deck consists of 52 cards, comprising 13 ranks (2 to 10, jack, queen, king and ace) and 4 suits (clubs, diamonds, hearts and spades). Then the probability the card is the ace of hearts, \(P(\text{Ace of hearts}) = \frac{1}{52} \).

The probability the card is an ace is:

\[
P(\text{Ace}) = P(\text{Ace of clubs or Ace of diamonds or Ace of hearts or Ace of spades})
= P(\text{Ace of clubs}) + P(\text{Ace of diamonds}) + P(\text{Ace of hearts}) + P(\text{Ace of spades})
= \frac{1}{52} + \frac{1}{52} + \frac{1}{52} + \frac{1}{52} = \frac{1}{13}.
\]

Non-Mutually Exclusive Events

If two events \(A \) and \(B \) are not mutually exclusive, then the probability of observing \(A \) or \(B \) is the sum of the probabilities:

\[
P(\text{A or B}) = P(\text{A}) + P(\text{B}) - P(\text{A and B}).
\]

This prevents us from double counting events which can occur for both \(A \) and \(B \). We often denote \(P(\text{A and B}) \) as \(P(\text{A} \land \text{B}) \), or sometimes as \(P(\text{A, B}) \).

Note that if \(A \) and \(B \) are mutually exclusive, then \(P(\text{A and B}) = 0 \), and we get the expression discussed previously. The second expression is thus the more general form.

Example 3

What is the probability that a randomly drawn card from a standard deck is an ace or a spade?

\[
P(\text{Ace or Spade}) = \frac{16}{52}
\]

\[
P(\text{Ace}) = \frac{4}{52}
\]

\[
P(\text{Spade}) = \frac{13}{52}
\]

\[
P(\text{Ace and Spade}) = \frac{1}{52}.
\]
Exercise 1

In a delivery of 1,000 screws, 140 were badly threaded (\(BT\)), 3/4 of these also being rusty \((R)\). Two hundred and fifty screws in total were rusty. If a screw is picked at random, what is the probability that it is:

i). badly threaded;

ii). rusty;

iii). rusty and badly threaded;

iv). rusty or badly threaded;

v). rusty and not badly threaded \((BT = \text{not } BT)\);

vi). badly threaded and not rusty.

Independent Events

Two events \(A\) and \(B\) are statistically independent if \(P(A \text{ and } B) = P(A) \times P(B)\).

For example, suppose we toss a fair coin twice. There are four possible outcomes:

<table>
<thead>
<tr>
<th>Possible Outcomes</th>
<th>HH</th>
<th>HT</th>
<th>TH</th>
<th>TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assigned Probability</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
</tr>
</tbody>
</table>

Note that we are taking the order of events into account here, i.e., observing a head then a tail is different from observing a tail then a head.
We have already seen that, for a single toss, the probability of a head is the same as that for a tail, $P(H) = P(T) = 1/2$. Then $P(H \land T) = 1/2 \times 1/2 = 1/4$.

Independent events don’t necessarily occur from separate experiments. For example, the probability of randomly drawing the ace of spades from a deck of cards is given by

\[
\begin{align*}
P(\text{Ace of Spades}) &= P(\text{Ace} \land \text{Spade}) \\
&= P(\text{Ace}) \times P(\text{Spade}) \\
&= 1/13 \times 1/4 = 1/52.
\end{align*}
\]