CS7DS3 Applied Statistical Modeling: Overview

Arthur White

Preliminaries

CS7DS3 Applied Statistical Modeling

- Instructor: Arthur White
- Email: arwhite@tcd.ie
- Office: Room 144, Lloyd Building
- Office hours: 10-12am Fridays
- Email me to schedule a meeting, or I can also meet you remotely using Teams
- All material will appear on blackboard and class page: [scss.tcd.ie/~arwhite/Teaching/CS7DS3.html]

Basic Structure

Lectures

- Monday 1pm LB 1.07
- Friday 9am LB 1.07
- Supporting videos will also be available on blackboard
- Case studies will accompany lecture material
 - Do these in your own time i.e., no lab
 - Contact me and post on blackboard with any questions you have
 - These are highly relevant to assessment

Communication

Email: arwhite@tcd.ie

Please use CS7DS3 in subject heading of all communication

Discussion board

- Ask any/all questions here
- Create new threads or join existing ones
- Anonymous questions are fine
- Please be respectful to me and each other in all interactions
- Your interaction and feedback are crucial
- Input from class reps always useful

Assessment

- ▶ This module is assessed 100% by coursework, i.e., no exam
- ▶ 2 x small assignments: 15% each. These will be problem sets
- Main assignment: 70%. This will be a report describing a detailed analysis of a complex data set
- All assignments will be submitted through Turnitin
- These will be scheduled with goal to give you plenty of time to complete, especially main assignment. More details to follow.

Online materials

- Case studies will use R.
- You should download R [http://www.r-project.org/], and Rstudio [https://www.rstudio.com/home/]
- Both are open source and free to download
- You will also need Word, or similar (LaTeX and Markdown are also good options) for your main assignment.
- Python is an option, but will not be supported by me

Reading material

There is no compulsory textbook for this course, but the following cover different aspects of the material:

 P.D. Hoff, A first course in Bayesian statistical methods. Springer, 2009. Library e-link: http: //stella.catalogue.tcd.ie/iii/encore/record/C___Rb17405199

 S.N. Wood, Core Statistics. Cambridge University Press, 2015. Library link: http: //stella.catalogue.tcd.ie/iii/encore/record/C__Rb16031862

and free pdf online:

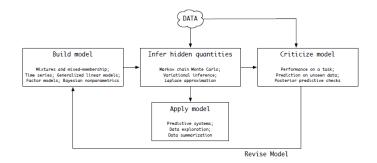
https://people.maths.bris.ac.uk/~sw15190/core-statistics.pdf

Reading material continued

 C.M. Bishop, Pattern recognition and machine learning. Springer, 2006. Library link: http: //stella.catalogue.tcd.ie/iii/encore/record/C___Rb16031862
Free pdf: https://www.microsoft.com/en-us/research/ publication/pattern-recognition-machine-learning/

 B. Efron & T. Hastie. Computer Age Statistical Inference: Algorithms, Evidence, and Data Science Cambridge University Press, 2016. Free pdf:

https://web.stanford.edu/~hastie/CASI_files/PDF/casi.pdf


Questions?

Module overview

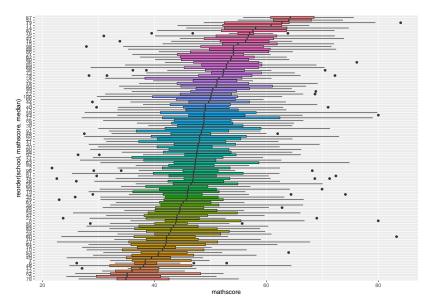
Description

- This module will provide an overview of statistical models and how to apply them to analyse data.
- We will focus on theory and application:
 - how to build models
 - how to fit them to data
 - how to evaluate their performance
- Our models will be motivated by different research problems

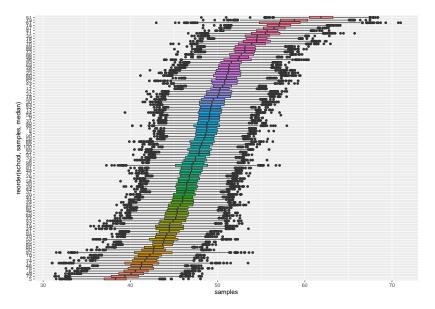
Build, compute, critique, repeat

Description

how to build models:


- simple and hierarchical models
- regression models
- latent variable models
- how to fit them to data:
 - frequentist and Bayesian frameworks for inference
 - optimisation and Monte Carlo computational methods
- how to evaluate their performance:
 - interpretation of parameters
 - model diagnostics
 - model comparison
 - visualisation and communication of results

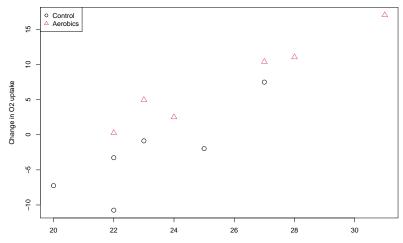
Examples – schools data


- Students from 100 different schools take a standardised test.
- Can we quantify which schools are best? By how much?

##		school	mathscore
##	1	1	52.11
##	2	1	57.65
##	3	1	66.44
##	4	1	44.68
##	5	1	40.57
##	6	1	35.04
##	7	1	50.71
##	8	1	66.17
##	9	1	39.43
##	10	1	46.17
##	11	1	58.76
##	12	1	47.97

Schools data

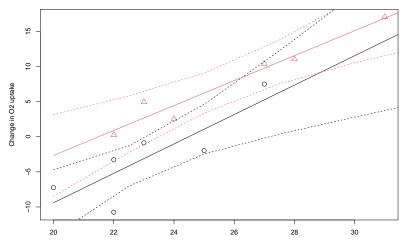
Schools data – hierarchical analysis



Examples – aerobics programme

- Special aerobics vs standard running programme, n = 12
- Can we quantify the programme's effect on oxygen increase, accounting for age?

##		uptake	aerobic	age
##	1	-0.87	0	23
##	2	-10.74	0	22
##	3	-3.27	0	22
##	4	-1.97	0	25
##	5	7.50	0	27
##	6	-7.25	0	20
##	7	17.05	1	31
##	8	4.96	1	23
##	9	10.40	1	27
##	10	11.05	1	28
##	11	0.26	1	22
##	12	2.51	1	24

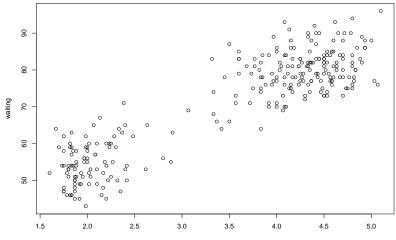

Aerobics programme data

Change in O2 uptake based on exercise programme and age

age

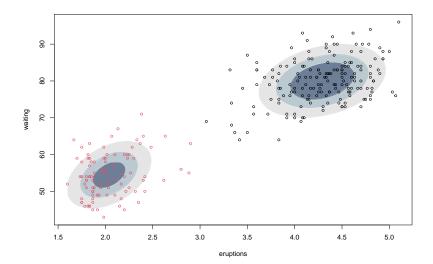
Aerobics programme – regression output

Change in O2 uptake based on exercise programme and age


age

Examples – Old Faithful data

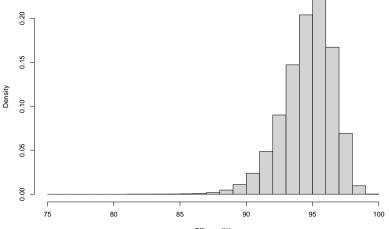
- Duration of eruption and time between eruptions of Old Faithful geyser, n=272
- Can we identify groups of similar eruptions times?


##		eruptions	waiting
##	1	3.600	79
##	2	1.800	54
##	3	3.333	74
##	4	2.283	62
##	5	4.533	85
##	6	2.883	55
##	7	4.700	88
##	8	3.600	85
##	9	1.950	51
##	10	4.350	85
##	11	1.833	54
##	12	3.917	84

Old Faithful data

eruptions

Old Faithful data – cluster analysis



Example: COVID-19 Vaccine

- "Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine," Polack et al (2020)
- Sample of 43,548 participants randomized to receive mRNA Covid-19 Vaccine or placebo (i.e., control group).
- Authors report that 8 cases of Covid-19 recorded from vaccinated patients while 162 cases recorded from the control arm.
- ► Vaccine efficacy estimated by VE = 100 × (1 − RR), where RR is the estimated ratio of confirmed cases of Covid-19 in vaccine vs. placebo groups.
- How effective is the vaccine?

COVID-19 Vaccine – Efficacy estimate

Monte Carlo estimate of vaccine efficacy

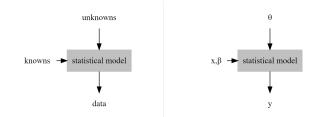
Efficacy (%)

Summary of examples

- These examples have some aspects in common
 - Using data (specific individuals) to describe a population (model parameters)
 - Limited/finite sample sizes (at least e.g., per group)
 - Presence of variability in the data must be accounted for
- The models that were used, and the research question involved had different aims
 - Schools data: a hierarchical model is used to compare the performance between schools
 - Aerobics data: a regression model compares groups of participants, while accounting for their age
 - Faithful data: a cluster model identifies hidden structure in the data
 - Covid vaccine: we quantify the efficacy of the vaccine, including the uncertainty in our estimate
- In general, the statistical models that we fit to the data will depend on the nature of the data in question and the point of view of the research stakeholders

Questions of interest

- Generically, a statistical model will have parameter(s) θ .
- A typical statistical analysis will be interested in answering some or all of of these questions:
 - Point estimation: What value(s) of θ, is(are) most consistent with the observed data y?
 - Hypothesis testing Are the estimated value(s) of θ consistent with some pre-specified value(s) θ₀?
 - Interval estimation: What range(s) of value(s) of θ are most plausibly consistent with y?
- Often we will have different, related models for consideration, in which case we will have to decide:
 - Model choice: Which model is the most appropriate to use for the data? Which aspects of the data (i.e., variables) are most important to our research objective?
- We will examine how to answer these questions using both frequentist and Bayesian methods


Statistical models

- The statistical models we will investigate will involve some of the below:
 - ▶ y: a random vector of the observed data
 - θ : a vector of parameters of unknown value
 - x: covariates/explanatory variables/predictor variable
 - β : the associated coefficients to x
 - \blacktriangleright Z : a latent variable that identifies hidden structure in the data

A simple/hierarchical model - schematic

A regression model - schematic

A latent variable model - schematic

Summary

We are going to study different models:

- simple and hierarchical models
- regression models
- latent variable models
- We will use frequentist and Bayesian inference frameworks to estimate model parameters
- We will use optimisation and Monte Carlo computational methods
- We will communicate our findings in terms of the original context of the research question