Module Details for ST2005 APPLIED PROBABILITY II

Current Record
Module Details

Module Code ST2005

Module Name ST2005 APPLIED PROBABILITY II

ECTS weighting 5

Semester/term taught Semester 2

Contact Hours 3 lectures per week including some tutorials and software labs

Module Personnel Lecturer – Dr Jason Wyse

Learning Outcomes At the end of this module, students should be able to:

- Derive confidence intervals and hypothesis tests for means and variances
- Derive prediction intervals for simple statistical models and explain how they differ from confidence intervals
- Define maximum likelihood estimates and how compute them
- Implement a bootstrap to construct confidence intervals
- Construct a q-q plot and use simple transformations of data that can make it more normally distributed
- Construct a probability plot for any given distribution where its
distribution function is known

Calculate the properties of multivariate distributions

Derive marginal and conditional probabilities of the bivariate normal distribution

Module Learning Aims

This module will develop several important ideas in statistical analysis making use of some of the ideas introduced in ST2004. It acts as a bridge to the sophister years by introducing the fundamental ideas that are used in the more advanced statistics modules that will take place then.

Module Content

- Recap: derivation of the confidence interval and tests of hypothesis for normal data; the difference between a confidence interval and a prediction interval
- The Central Limit Theorem and what it says about confidence intervals and tests of hypothesis
- The bootstrap approach to confidence intervals and tests of hypothesis
- Introduction to maximum likelihood estimation and computation
- The q-q plot and transforming data to make it more Gaussian
- Introduction to multivariate distributions

Recommended Reading List

Module Pre Requisite

ST1002, ST2004

Module Co Requisite

Assessment Details

ST2005: 15% continuous assessment in the form of labs, 85% written examination through a 2 hour exam in Trinity term.