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While doing some research, one tends to get lost in �nding papers related to the idea
or any other paper/article. Since everything is digital and connected, there are humongous
amounts of research papers or academic articles available at your �ngertip. They are a
source of data that can have many wide applications, which people have not worked upon
in the past, but searching through them is a dilemma. This dissertation aims to reduce that
task by using ML algorithms to �nd similarity between papers moreover, by generating a
graph that will help in easy visualization of the same. The signi�cant challenges faced were:
execution time and visualizing a massive graph. Checking whether two papers are similar or
not is based on theirTitle and Abstract. ACL Anthology dataset was used that had 77,000
research papers, out of which approximately 30,000 were in English and had bothTitle and
Abstract �elds. We �nd semantic similarities between their titles and abstract's using a
rich machine learning model (i.e., BERT) and then apply weights to merge them and get a
single similarity metric value. Then if the value crosses the threshold, it can be said that the
given two papers are similar or share some similar ideas. Based on the dataset, a prototype
graph was created, which showed similar papers properly, although with some inaccuracies.
The ML models were correlated with the STS-B dataset, which gave a 0.84 correlation and
another 0.9 correlation. There was no closed-source tool/data used.
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Chapter 1

Introduction

1.1 Introduction

When working on a project or carrying out research in a new area, one may require some

background information regarding the topic or research, and that background information

may be obtained by looking through various published papers/articles/journals. In academic

writing, it is common to discuss multiple concepts that are related to one another or mul-

tiple points of view on the same topic. Finding such relevant papers may be facilitated by

combining the papers and relating them to one another through the application of similarity

metrics (in the form of a similarity graph).

A similarity graph is an undirected graph depicting similarities between various papers.

Every research paper in the graph has its own node, and the connections between the nodes

are what serve as evidence for the similarity between them. It is an undirected graph since

there isn't a clear beginning or end; therefore, even if paper A and paper B are similar, the

opposite is also true.

Various insights can be deciphered from the graph. Topic Modeling can be used to create

clusters within the graphs that indicate papers that belong to a speci�c topic which can

be helpful for faster searching of similar papers. It can also be used as a base on which

a recommender system can be built. Researchers can search for the relevant papers using

this graph and cite them in their papers, thus contributing to a statistical study called

bibliometrics. It can also be used in plagiarism detection, searching a similar semantic paper

also, and the recommendation of citations. Similarity graph can be merged with Citation
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Network [10] into a powerful tool that can help researchers to continue with their research

with extra information related to similar papers and other papers that have cited those

similar papers at their �ngertip.

1.2 Motivation

A similarity graph can be an ocean of information for researchers. However, manually com-

piling a similarity graph requires searching for a paper, locating papers similar to it, and

then repeating the search for each one. The second step of displaying and interpreting the

search results adds time, e�ort, and potential complications.

The objective of this dissertation was to automate the search for related research pa-

pers/articles utilizing cutting-edge machine learning algorithms and enhanced visualization

capabilities, o�ering the researchers a rapid and straightforward application. As a result, the

users of this project will be able to get papers similar to a speci�c paper and those similar

to the papers found. This increases the user's capacity to explore a network, uncovering new

articles, trends, and insights.

1.3 Research Objectives

The main objective while working on this dissertation was to �nd a way that can be used

to check whether two academic articles or papers are similar or not. No machine learning

model can be as accurate as a human brain in deciphering the similarity between papers or

at any other task. However, it is also impossible for a human brain to read millions of papers

and construct a graph based on them. Therefore ML models which have been trained on

millions of data points and evaluated with the highest correlation were used.

The other objective was to generate a graph while keeping the computational cost at the

lowest. Di�erent ways of storing a graph were taken into consideration, and many tools were

looked into which can plot a dense, complex graph. The adjacency list turned out to be

reasonable compared to the Adjacency graph, as it helped in batch-wise processing and also

helped in reducing the space complexity.
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1.4 Key Terms

ˆ BERT : Bidirectional Encoder Representations from Transformers, is a machine learn-

ing model used widely in the �eld of NLP.

ˆ NLP : Natural Language Processing

ˆ ML: Machine Learning

ˆ STS: Semantic Textual Similarity

1.5 Structure of Dissertation

The current state of the art is outlined in Chapter 2, along with several visualization tech-

niques and methodologies, as well as the components that go into creating citation networks.

In Chapter 3, the application's design is described along with the justi�cations for the choices

that were taken. Chapter 4 provides a breakdown of the steps used to create the application.

Chapter 5 provides an evaluation of the application. Chapter 6 provides a summary of the

project's �ndings.
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Chapter 2

State of the Art

This chapter gives an overview of the current state of the art as well as a background on

the obstacles and possibilities that come with building a similarity graph. The review begins

with the dataset which will be used to build the network, which is by far the most critical

component in any graph network. Then follows di�erent ways of visualizing a dense graph,

and then �nally, closely related existing Machine Learning frameworks or tools that were

studied in order to reach the goal.

2.1 Dataset

In order to create a graph that depicts similarities between papers, we need a dataset of

research papers in order to compute how similar the papers are. There are various APIs

available that can provide us with access to papers, or we can build one manually or download

one o� the internet. If the data is poor and less in amount, then it can a�ect the usefulness

of the project.

2.1.1 Building a Dataset

There is a various large dataset that can be used for this project. Tensor
ow's scienti�c-

papers [11]. The datasets were retrieved from the ArXiv and PubMed OpenAccess libraries,

respectively. arXiV, which is maintained and run by Cornell University, has also published

a dataset [12] that contains 1.7 million articles. ACL Anthology [6] is an archive of 77,000
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research papers or articles. There are also closed source datasets which are Google Scholar

or Microsoft Academic Service (MAS).

2.2 Visualisation

Bibliobuild has a focus on users to help them read or discover research papers similar to

ones they are currently working on. The humongous data can be visualized in various ways.

Only the thing to keep in mind is that the visualization should be aesthetically pleasing and

should be easily comprehensible by the user. There are multiple ways of visualizing a dense

graph; some are open source libraries, whereas some are open source software tools, as well

as di�erent layouts and algorithms to make the graph aesthetic.

2.2.1 Tools helpful for Visualisation

ASK-GraphView [13] is a large-scale graph visualization system that addresses some of the

most important issues researchers face - dependency on the system's hardware for, e.g.,

RAM, interacting with the graph, clustering. A client-server system that creates a hierarchy

tree that considers the available random access memory (R), screen (S), and disk as three

bu�ers of varying sizes and access characteristics. It supports up to 200,000 nodes. It also

has a clustering feature that can be used without any requirement of additional hierarchical

knowledge.

Gephi [14] is an open source tool for viewing graphs and analyzing dense networks. It

speeds up the investigation by using a 3D render engine to show massive networks in real-

time. Given that it is based on a multi-task paradigm, it can handle huge networks (i.e.,

those with more than 20,000 nodes), and it makes use of multi-core processors. Node design

is customizable; in place of a traditional form, it might be a texture, a panel, or a picture.

Real-time execution of highly con�gurable layout algorithms is possible on the graph window.

For instance, in the Force Atlas algorithm, which is created by the Gephi team, real-time

parameters include speed, gravity, repulsion, auto-stabilize, inertia, and size-adjust.

Computing similarity values and projection of these metrics into a 2D system are made at

the cost of computation complexity. LargeVis [15] is a method that �rst builds a K-nearest

neighbor graph from the data that is approximative in every way and then arranges the graph

in a low-dimensional space. The stochastic gradient descent algorithm built with O(N) time
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complexity tends to reduce the computational cost, and hence LargeVis tend to outperform

state-of-the-art methods.

Graphic [16] is another such tool that is used to visualize or plot large complex datasets.

It supports many input formats. It supports 3D rendering as other tools do. Graphia can

generate and visualize graphs from numerical data tables and present the structures that

arise. It may also be used to see and analyze data that has previously been graphed. As

opposed to tools such as Gephi, it only supports one Force-Directed layout; moreover, for

large graphs, the rendering options are not good. Visualizations for graphs having millions

of edges are very cluttered and not aesthetic.

2.2.2 Algorithms and Layouts for Visualisation

There are various algorithms that are invented to make that plot look aesthetically pleasing

to the eyes, which will re
ect in getting good amount of information from the graph.

Spring-Electrical Model

Yifan Hu [17] states that one solution is to transform the graph drawing problem into the

challenge of determining the minimum energy con�guration of a physical system. The author

discusses the Spring-Electrical Model [18, 19] and a MultiLevel Approach which is better for

larger graphs. Fruchterman and Reingold [19] explain a modi�ed version of the model as

explained in [18]. The Fruchterman-Reingold layout is a force-directed layout technique that

uses edges as springs to move vertexes closer or further apart in an attempt to establish

an equilibrium that minimizes system energy. The main goal is to minimize energy.Force-

Directed algorithm, an iterative algorithm, is used to reduce the model's energy by shifting

the vertices in the direction of the forces acting on them.

The algorithm devised in [19] models the graph as a system of springs between neighboring

vertices which tend to pull the vertices together, at the same time, repulsive forces that exist

push all vertices away from each other as shown in Fig 2.1, hence minimizing the overall

energy given by the formula 2.1 will result in a readable layout.

Energy(x; K; C ) =
X

i 2V

f 2(i; x; K; C ) (2.1)
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where:

ˆ x is a vector of coordinates,x = f x i ji 2 Vg

ˆ K is optimal

ˆ C regulates the forces

Figure 2.1: Spring Electrical
Note: Taken from [1]

Stress and Strain Model

In [17] the author also talks about Stress and Strain model, which overcomes the limitations of

Spring-Electrical model, which is when the edges have �xed length. The stress model implies

that springs link all pairs of network vertices, with the ideal spring length equal to the edge

length. The goal is the same as in Spring-Electrical Model, to minimize the Energy which

can be done using the iterative Force-Directed Algorithm in [19] or using Stress Majorization

[20].

Energy =
X

i 6= j

wij (jjx i � x j jj � dij )2 (2.2)

where:

ˆ dij is the distance betweeni th and j th vertex
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ˆ w is the weight factor

Strain Model is nothing but as same as Multidimensional Scaling (MDS) [21], which is

used to convert "information about the pairwise 'distances' among a group of n items or

persons" into a point con�guration translated onto an abstract Cartesian space. In most

cases, the ideal distance between all pairs of vertices must be computed, which necessitates

an all-pair shortest path computation, which is why MDS is not good for large graphs.

2.3 Graphing

Graphs are a common way of denoting relationships between di�erent parties or nodes in our

case. The nodes in a graph represent items, such as research papers/articles in a network.

The edges connect the nodes that exhibit relationships, such as similarities between two

papers. Graphs are the most common way to illustrate relationships between parties, and a

visual representation is easily understood by the human brain. If a graph has clusters, it can

be helped in pattern recognition. Many di�erent kinds of graphs serve di�erent purposes.

2.3.1 Issues arising in graphing

While working with graphs, one major thing to keep in mind is that, how to store a graph.

How is a graph stored can a�ect the space and time complexity of your entire program.

There are �ve basic formats or structures in which a graph is stored - Adjacency Matrix,

Adjacency List, Edge List, Incident List, Incident Matrix. All the 5 structures are compared

in [22].

Adjacency matrix and Adjacency list are the most commonly used data structures for

graphs with fewer nodes which is less complex. The key factors considered in the assessments

were the algorithms' e�ciency and space needs. Adjacency matrix, although it stores data

for edges, it also stores a value of 0 where the edge is not present; hence a lot of space gets

wasted. Adjacency List is considered to be the best for this dissertation because it can be

used to search similar papers in a fast and e�cient way; it will take less time and space

required as compared to other structures. This way, duplicate entries can also be removed.
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2.4 Machine Learning Approaches

It is easier for humans to understand the real meaning behind something and compare any

two documents, whereas it is di�cult for a machine to do so. The authors state a few reasons

for this in [23]:

ˆ Focus is not maintained in a long document, it keeps shifting from topic to topic,

therefore a general meaning cannot be made out of it.

ˆ Textual structure di�ers from document to document; therefore analysis gets di�cult.

ˆ Background knowledge such as fundamental lexical knowledge and common sense

knowledge is frequently overlooked throughout the document creation process.

Most research documents generally have a �xed format. The authors have derived a semantic

pro�le that covers key topics - Target, Methodology, Domain, Style, Date, and Keywords.

This semantic pro�le makes up a general semantic representation of academic publications,

as well as the development of a semantic enrichment approach based on external knowledge

resources. They have also developed a framework that can determine the semantic similarity

between any two pro�les, which uses external resources and ontologies to provide semantic

meaning. Lastly, they have come up with a Joint-Word Embedding model for better word

representations. This model is also combined with background knowledge.

In [24] the authors state that the semantics of a large document can be determined

by combining the semantics of tiny text units. Much recent research has used this idea

to determine the semantic similarity between bigger text chunks. As we know, there is

a constant shifting of focus from topic to topic, making gathering the semantics of the

entire document di�cult. However, the authors believe that those topics in a document are

coherent, and those correlations can be obtained by conducting a comprehensive analysis

of various aspects of a document. Similar to semantic pro�le but di�erent in structure,

the authors represent the entire meaning of a document by an event known as Topic Event

(TE). The construction of TE is done in a similar way as a semantic pro�le in [23], built

on the article structure and employs several information �elds such as research objectives,

methodology, keywords, and domains to explain various aspects of the research endeavor.

For increasing accuracy, the authors have also developed two ontologies - Research Style

Ontology and Domain Ontology.

9



Various BERT Approaches

BERT (Bidirectional Encoder Representation from Transformers) [2] is a model developed

by Google researchers for NLP tasks. It is based on Transformers [7] which does not rely on

Recurrent Neural Networks (RNN) or Convolution Neural Networks (CNN). BERT is useful

where unlabeled textual data comes into the picture. It has two steps: pre-training and

�ne-tuning, as shown in Fig 2.2.

Figure 2.2: Overall pre-training and �ne-tuning procedures for BERT
Note: Taken from [2]

The model is trained on unlabeled data across several pre-training tasks during pre-

training. The BERT model is �ne-tuned by �rst initializing it using the pre-trained param-

eters and then �ne-tuning all of the parameters using labeled data from the downstream

jobs.

Roberta [25] is a replication of the BERT model but outperforms all versions of BERT

models. The authors have done simple and basic modi�cations over the original model, like

training on longer sequences for a longer period of time, and they have increased the size of

the batches, also increasing the volume of data to be trained on. There is a slightly di�erent

version of Roberta. The model 'stsb-roberta-large' is a variation which is trained using

sentence-transformers CrossEncoder [26] class, and it is trained on STS-Benchmark data

[27]. CrossEncoders are generally used where you want to compare two textual information

or a list of pairs of texts. We send both phrases to the Transformer network at the same
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time as shown in Fig 2.3. It then returns a number between 0 and 1, indicating how similar

the input sentence pair is. CrossEncoder is more accurate than Bi-Encoder, in which we

send phrases A and B to BERT separately, resulting in sentence embeddings. The cosine

similarity of these sentence embeddings may then be compared.

Figure 2.3: CrossEncoder
Note: Taken from [3]

The similarity between any two items in mathematical terms means how far they are

apart in a Vector Space. The more the distance between them, the less similar they are and

vice versa. There are many distance metrics developed - Edit Distance, Jaccard Distance,

Cosine Distance. For dealing with texts, Cosine Similarity gives good results as compared

to other metrics because it �nds the cosine of the angle between two vectors rather than

�nding the distance between them. There may be a case where the distance is greater

between two vectors because of the size, but the angle between them might be small. Cosine

Similarity states that the smaller the angle, the more similar the vectors are. For using Cosine

Similarity, the textual information should be converted into a vector-like representation that

can be understood by the machine.

SPECTER [28] is a model which is developed for such purposes. In a research paper,

Title and Abstract are enough to convey the general idea about the paper. SPECTER takes

in the Title and Abstract of a paper and converts it into a vector representation. Internally

SPECTER uses SciBERT [29] which is an enhanced version of BERT, trained on a large

corpus of scienti�c text. Once we have the vector representations of two papers, we can
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use Cosine Similarity to �nd how similar those two vectors are and hence how similar those

papers are.

LSTM

Long Short-Term Memory (LSTM) [30] networks are recurrent neural networks as shown

in Fig 2.4 that can learn order dependency in sequence prediction challenges. Long-term

dependence concerns are deliberately avoided with LSTMs. Long-term memory is basically

their default habit; it is not something they have to work hard to learn. This is a necessary

behavior in complicated problem areas like as machine translation, speech recognition, and

others.

Figure 2.4: Repeating module in LSTM
Note: Taken from [4]

Manhattan LSTM (MaLSTM) [5] is an adaptation of the original LSTM. Siamese net-

works are those that contain two or more identical sub-networks. Siamese networks appear

to perform well on similarity tests, and have been employed for tasks such as phrase semantic

similarity, detecting counterfeit signatures, and many more. The architecture of MaLSTM

is shown in Fig 2.5.

There are two networks, LSTMa and LSTMb, that each process one of the phrases in a

given pair, however in this study, we only look at siamese architectures with linked weights,

such that LSTM a = LSTM b. The model uses an LSTM to read in word-vectors representing

each input sentence and employs its �nal hidden state as a vector representation for each

12



Figure 2.5: MaLSTM Architecture
Note: Taken from [5]

sentence. Subsequently, the similarity between these representations is used as a predictor of

semantic similarity. The authors have names the model Manhattan LSTM, since they found

using Manhattan Distance as the similarity metric increases the accuracy as compared with

Cosine Similarity.

2.5 Closely-Related Projects

STriP Net - Semantic Similarity of Scienti�c Papers (S3P) Network

STriP Net [31] is a project whose main motive is to plot a graph of papers who are seman-

tically similar to each other. This project leverages the used of SPECTER as explained in

Section 2.4. The title and abstract are combined using a [SEP] token and the entire thing

is encoded. Once the vector representations are created, then a cosine similarity matrix is

matrix which is computed after computing the cosine similarity between each vector with all

the other vectors. This gives an Adjacency Matrix, which can be easily plotted.

BERTopic [32] is used for Topic Modeling, which in the end is used to cluster similar topic

related papers, which is very helpful in analysis of the graph. Supervised, (semi-)supervised,

and dynamic topic modeling are all supported by BERTopic. BERTopic builds document

embeddings using pre-trained transformer-based language models, clusters these embeddings,
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and then uses the class-based TF-IDF technique to generate topic representations. BERTopic

creates coherent topics and stays competitive over a wide range of benchmarks incorporating

both traditional models and the more current clustering approach to topic modeling.

NetworkX [33] is a python based framework used for network analysis. NetworkX graph

nodes may be any Python object, and edges can carry arbitrary data; this 
exibility makes

NetworkX perfect for describing networks seen in a variety of scienti�c subjects. PyVis [34]

is a Python package that allows you to see and interact with network graphs in Jupyter

notebooks or as a standalone web application. Pyvis is built on the strong and mature VisJS

JavaScript framework, which enables quick and responsive interactions while abstracting

away low-level JavaScript and HTML.

2.6 Conclusion

The above sections in this chapter focused on the similar work which has been done by

authors on �nding similarity between documents, layout of a graph, how to make a graph

look aesthetically pleasing using various models and algorithms. The literature review gave

critical insights that helped improve the application's performance, usefulness, and design,

as well as prevent hazards.
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Chapter 3

Design

3.1 Introduction

This chapter outlines the design, structure and the 
ow of the application, from collection

and storing data, to visualising the similarity graph in the user interface. It is organized

chronologically, with each successive segment building on the previous one.

3.2 ACL Anthology Dataset

This project requires a source where the papers can be obtained from. Instead of using

open-source API's which would lead to more time consuming process including managing

network latency, requests and quota, a dataset was used. Using an API involves responding

to another entity, which does not provide additional control and usability over the data.

ACL Anthology's dataset which hosts 77,000 papers and keeps continuously growing was

used. The dataset was downloaded on 24th of May, 2022.

3.3 Database

Following the choice to employ a dataset, the next critical design decision was how to store

it. Since we were going to apply Machine Learning methods to compare the similarity, we

didn't require any traditional SQL or No-SQL database. Even various graph databases like

Neo4j, GraphQL were not required.
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Such a storing structure was required which was developed for easy data interchange,

since the data present in ACL Anthology is in XML as shown in Fig 3.1, so instead of relying

on ACL's repository for the data, it was decided to gather all the data at once and store in

a particular format. JSON (Javascript Object Notation) uses less bytes for transit and it is

built for easier and faster data interchange. Moreover, it is very easy to parse JSON as the

parsers are less complex to understand.

Figure 3.1: Authoritative XML Format
Note: Taken from [6]
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3.4 Service

The data should be imported from the ACL Anthology's repository and stored in JSON

format for computing similarities and converting it into a graph. For visualizing the graph,

since the edges are in millions, a tool had to be decided on which will be e�cient and easy

to use.

3.4.1 Data Operations

Python is the language that is widely used when it comes to Machine Learning and handling

data, and it is easy to write and easily understandable by anyone who reads it. There are

ready-made libraries and frameworks which have been created by developers for developers.

A python script was created to handle the conversion of data from XML to JSON, and

once data is extracted, it will be passed to the machine learning libraries for computing the

similarities. The similarity values from the ML model will be stored and passed to Gephi for

visualization.
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