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Abstract

General Purpose Graphics Processing Unit (GPGPU) programming enables substantial per-
formance improvements in massively parallel problems, but requires a firm understanding of
low level hardware concepts that are traditionally abstracted from an application layer pro-
grammer. Haskell, a purely functional programming language, is commonly referred to in the
literature as “elegant”, which has connotations with beautiful, modular and intuitive, but has
no formal definition. Haskell's elegance potentially offers a solution to enable quicker and
easier GPGPU programming. GPGPU programming in Haskell is a worthwhile exercise if this
elegance can be preserved alongside performance benefits.

In the literature there is no formal definition for elegance, but the same concepts permeate
discussions. Lazy evaluation, purity, type variables, higher-order functions, and elegant syn-
tax (referred to as declaration-style programming) are found to be properties of elegance in
Haskell. They form the working definition to assess the elegance of Haskell GRGPU program-
ming. Accelerate and fractals are chosen as the suitable GPGPU library and problem area
respectively under which to examine the question, before abstracting the results to Haskell
GPGPU programming in general.

Working examples of generating the Mandelbrot Set in Haskell exist in Accelerate, demon-
strating how to generate a static image, and a dynamic interactive GUI. The elegance of
these is assessed, before iterating on the dynamic version to maximize the elegance under the
working definition. The existing implementation is found to be high in purity, middling in
declaration style & type variables, and low in laziness & higher order functions. The iteration
introduces some improvements in type variables and declaration style, which remain limited
by Accelerate. Laziness is unable to be introduced due to the execution of the program as
a deep embedding in CUDA. Higher-order functions cannot be introduced to this specific
implementation, but are found to be possible in general, and restricted in this implementation
due to their link to laziness.

An evaluation of the results when applied to general GPGPU programming in Haskell show that
Haskell GRGPU programming is elegant in terms of purity, syntax and higher-order functions,
but not in terms of laziness and type polymorphism. An evaluation of research methods shows
that type polymorphism was an invalid property under which to judge elegance. Under the
iterated working definition, Haskell GPRGPU programming is mostly elegant, aside from lack of
lazy evaluation, which is seen to practically affect the elegance and modularity of code.
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Glossary of Terms

Haskell is a purely functional programming language.

A Graphics Processing Unit (GPU) is a specialised processor with a highly parallel

architecture, designed to efficiently compute massively parallel problems.

General Purpose GPU (GPGPU) programming is the use of GPUs for general purpose

programming, more generally than computation for computer graphics.

CUDA is a parallel computing platform and application programming interface developed by
NVIDIA, that allows software to use NVIDIA GPUs.

A Domain Specific Language (DSL) is computer language specialised to a particular

application domain.

An Embedded Domain Specific Language (EDSL) is a DSL written as an extension to

an existing host language.

Accelerate is an EDSL for GPGPU programming in Haskell.
Nikola is an EDSL for GPGPU programming in Haskell.
Obsidian is an EDSL for GPGPU programming in Haskell.

Lazy evaluation (laziness) is an evaluation strategy which delays the evaluation of an

expression until the value is needed.
A pure function is a function whose application has no side-effects.
Polymorphism is the use of a single symbol to represent multiple different types.

A higher-order function is a function that either takes one or more functions as

arguments, or returns a function as a result.

vii



1 Introduction

Haskell is a functional programming language commonly considered colloquially and in the
literature to be “elegant”. Concepts such as purity, lazy evaluation, higher-order functions,
type classes and elegant syntax enable a compositional approach to programming where
functions are first-class citizens. This enables a concise, modular approach to programming
where each function cleanly deals with a particular aspect of program behaviour at a suitable

level of abstraction.

Graphics processing units (GPUs) are specialised processors with a highly parallel structure.
This makes them highly efficient at computing highly parallel problems; problems that can
be solved across independent, concurrent threads. A GPU's reduced instruction set
architecture maximizes individual instruction speed, enabling each thread to execute very
quickly. GPU programming was traditionally based around graphics applications, but the
development of General Purpose GPU (GPGPU) programming tools allowed GPUs to be
leveraged for performance increases in different domains such as machine learning and image

processing.

GPGPU programming utilizes GPU hardware concepts, and generally, a GPGPU programmer
requires a firm understanding of these concepts to leverage performance benefits. GPGPU
tools such as CUDA and OpenCL operate at this level of abstraction and provide their
platform primarily through the C and C4++ programming languages. A consequence of this
is that GPGPU programs are typically of an imperative, procedural nature and deal with

low-level concepts such as memory allocation and address spaces.

Haskell offers a potential solution to the knowledge gap required for GPGPU programming.
Haskell's “elegance” is far removed from the imperative, procedural, low-level nature
traditionally required to leverage these concepts. GPGPU programming libraries exist in
Haskell, but there is little discussion in the literature about whether their use preserves its
elegance. A substantial move away from elegance would diminish the benefit of Haskell
GPGPU programming, as would a substantial move away from the performance boost of
traditional GPGPU tools. So while Haskell's elegance potentially provides the solution to
more accessible GPGPU programming, a lack of it would invalidate this solution in favour of

other higher-level languages.



With these motivations, the research question addressed in this project is: To achieve an
acceptable performance improvement in GPGPU Haskell programming, do any elegant
properties of a traditional functional approach need to be sacrificed? If so, what particular

ones need to be sacrificed, and why?

This question should be analysed under a particular problem area, one which can produce
generalizable results. The problem area chosen for this project is fractal generation. Fractal
generation is particularly suited to Haskell, as its functional and compositional nature allow a
program to closely resemble its mathematical counterpart, and its use of lazy evaluation
enables the processing of infinite lists which are a fundamental element of fractals. Fractal
generation is also particularly suited to GPGPU programming, as it is a massively parallel
problem where each pixel can be generated independently by individual GPU threads. The
elegance of Haskell and the performance of GPUs can both be utilized effectively in fractal
generation, which makes it a sensible problem under which to examine their

intersection.

To see if “elegance” can be maintained in Haskell GRGPU programming, the properties that
make a Haskell program elegant first need to be clearly defined. There is an element of
subjectivity to this, but it can be well informed and grounded by background research. An
appropriate Haskell GPGPU library must also be chosen to carry out the

implementation.

Once elegance has been defined and a library chosen, an existing implementation will be
chosen to assess the elegance of it. Once the elegance has been assessed, it will be iterated
on, to increase the elegance as far as possible. If it is not possible to achieve the full
elegance of the traditional functional approach, then some sacrifice to elegance has to be
made. The background research and work on the implementation will inform a discussion on

whether this sacrifice has to be made, to what extent, and for what reasons.



2 Background Research

2.1 “Elegance” in Haskell

Haskell is a general purpose, purely functional programming language. Haskell incorporates
many innovations in language design and as a result it is commonly considered in the
literature and colloquially to be “elegant”. This paper assumes a familiarity with Haskell of
the reader. Those unfamiliar with Haskell are guided to Hudak and Fasel's “A Gentle
Introduction to Haskell” [1] for an overview of the language, and the Haskell 2010 Language
Report [2] for a more in depth understanding. Nonetheless, this section introduces the key
properties of Haskell that will be referred to throughout the paper, and should provide a

basic understanding of these concepts to those unfamiliar with Haskell.

While Haskell is commonly considered elegant, there is no agreed formal definition of what
“elegance” actually is. One thing that is made clear by members of the original Haskell
committee in “A History of Haskell” is that the ability to elegantly code was intended by
design [3]. The paper never explicitly defines elegance, but touches on the concept
throughout, while discussing design choices and properties of Haskell which contribute to
It.

Haskell's core property as per the authors is that “Haskell is lazy”. Lazy evaluation is demand
driven; evaluation of functions and variables is deferred to when their values are required in a
computation, if at all. One of the authors, Hughes, had previously discussed this in his 1989
paper “Why Functional Programming Matters", citing laziness as one of the two key elegant
properties of functional languages [4]. Hughes particularly attributed laziness to the ability
to modularise a problem into a generator which generates possible answers, and a selector
which lazily selects the appropriate one. Laziness allows the generator to generate infinite
output, and termination conditions to be separated from loop bodies. Any lazily evaluated
part of a program can be modularised in this way. As Hughes notes, with a program made

up of functions, lazy evaluation can be used “as glue to stick their parts together".

As an immediate consequence of laziness comes Haskell's second core property; “Haskell is
pure” [3]. When code execution is demand-driven, it is difficult to reliably perform



side-effects, including 1/0O. So Haskell is also pure; each line of code has no side effects.
Without side-effects, every call to a function f returns the same value, meaning “f really is a
function in the mathematical sense”. The authors note that pure purity was an “elegant
attack on the challenge of programming, and it was that combination of power and beauty

that motivated the designers”.

While laziness and purity are Haskell's core properties, the authors note “Haskell's most
distinctive characteristic” as type classes. Type classes are groups of types which have the
same operations defined over them. For example, every instance of the Num type class must
have the function (4) defined over it. This is more elegant than a type system where
addition for each type must be defined with a unique function name. Functions may make
use of type classes by leveraging ad-hoc polymorphism, where its arguments are not bound
to a specific type, but a specific type class. This makes the function more general, but
ensures that its arguments will still have the necessary type class properties to work in a
computation. Haskell also allows parametric polymorphism, where a type is completely
unconstrained. Again this allows functions to be polymorphic in their type, reducing function

duplication and increasing generalisability.

Aside from language constructs like laziness, purity and type classes, the syntax and style of
Haskell are commonly credited with contributing to its elegance. The authors from the
Haskell Committee draw a distinction between two different “styles” of functional programs
that can be written. The first is “declaration style” programming, which defines functions as
multiple equations. Declaration style makes use of the where clause, places function
arguments on the left hand side of the equals, and uses pattern matching or guards to
identify which case each equation covers. The second type is “expression style”, in a function
is a larger body composed of smaller expressions. Expression style programming makes use
of let expressions, lambda abstractions, case expressions and if expressions to build larger
function bodies. The distinction between expression style and declaration style puts a formal
definition on the idea of style and syntax which later informed me when defining

elegance.

A fourth key feature noted in the History of Haskell as enabling elegant design is the use of
higher-order functions. A higher-order function is a function that takes one or more
functions as arguments, or returns a function as its result, which allow operations to be
combined in ways that otherwise would not be possible. As per the authors, they “allow
encoding nonstandard behaviours and also provide the glue to combine operations”. Hughes'
“Why Functional Programming Matters” states the ability to use higher-order functions to
be one of the two key elegant properties of functional languages [4]. Functional languages
allow functions to be expressed as a combination of a higher order function and particular
specialising functions. This modularisation leads to “smaller and simpler and more general

modules”, which can be used in other functions to encode other behaviours with little



effort.

2.2 NVIDIA CUDA

NVIDIA CUDA is a computing platform and programming model for GPGPU programming,
which specifically targets NVIDIA GPUs [5]. While CPUs gain speedup and hide memory
access latencies through data caching and flow control, GPUs achieve this through their

parallel architecture, designed to be utilized for highly parallel problems [6].

They gain their speedup and hide memory access latencies through these parallel
computations, unlike a CPU which achieves this with data caching and flow control [6]. A
program made up of parallel and sequential parts could leverage a mix of GPUs and CPUs to
utilize these distinct specialisations. Before CUDA was released, GPU tools were written
specifically for graphics applications. GPGPU problems needed to be translated into a
graphics context and written using graphics tools [7]. CUDA was released by NVIDIA in
2006 and allowed programmers to solve GPGPU problems without needing to translate them

into a graphics context.

CUDA's programming model consists of a set of language extensions to the C programming
language [6]. The language extensions expose three key concepts - a thread group hierarchy,

shared memories and barrier synchronization.

A key concept in CUDA is kernels. Each thread is identified by the thread ID, a

one-dimensional, two-dimensional, or three-dimensional index which represents the thread’s
position in its thread block. Thread blocks can contain up to 1024 threads. Blocks can be
grouped into one-dimensional, two-dimensional or three-dimensional grids. A kernel can be
executed by every thread in a grid of thread blocks. A grid of M blocks, each containing N

threads, would execute the kernel M*N times.

There are five memory spaces for a CUDA thread; the thread’s local memory, the thread
block's shared memory, global memory, constant memory and texture memory. Threads
within a block can coordinate their execution through shared memory and synchronization.
CUDA assumes that the CPU and GPU, the host and device respectively, have separate
memory spaces, so provides managed memory to bring them into a common address space.
The CUDA runtime provides functionality for device memory allocation, device memory

deallocation, and host-device data transfer.

Any C source file containing CUDA extensions must be compiled with the NVIDIA CUDA
Compiler (nvcc). These files can contain a mix of host code and device code. nvcc allows
for offline compilation, where all code is precompiled and linked, or just-in-time compilation,

where device code is compiled to binary code at runtime and specialised to the device.



Thread synchronization is an important concept in CUDA. Two threads which read from or
write to the same memory location without synchronization cause undefined behaviour. The

memory fence call, __threadfence(), enforces ordering on memory access. The

__threadfence () call can occur at three levels of abstraction; just the thread block, all
threads on the device, or all threads across the host and all devices. Another function used
to synchronize a thread block is __syncthreads (), which waits until all threads in the
block have reached it. If this is used in conditional code, where the condition is evaluated
differently within the same block, then the code may hang or produce unintended side

effects. CUDA also allows atomic functions on memory, e.g. atomicAdd ().

When working with data structures as input and output in CUDA, the programmer must be
careful to index into them correctly. CUDA's low-level C implementation gives the
programmer full control over memory indexing, but also means that the programmer has the
same concerns as a C programmer, such as ensuring memory has been allocated, that the
memory space is large enough, and that different functions do not overwrite each others
results. With multi-threaded programming, there is the extra concern that multiple threads
will write to the same location. Thus the programmer must be careful to index correctly into
the data structure for each thread. This can be accomplished by calculating the index into
the data structure based on the block ID, block dimension and thread ID.

To summarize, GPGPU programming enables high performance benefits for highly
parallelisable problems. However it requires a firm understanding of low level concepts that
are traditionally not exposed to an application level programmer, including memory spaces,
address spaces, thread synchronization, indexing calculations, and data transfer. So while
GPGPU programming is useful for performance, it requires a removal of abstraction between

the hardware and application layers.

2.3 GPGPU EDSLs

2.3.1 Obsidian

Obsidian is a Haskell EDSL for GPGPU programming [8]. Its aim is to simplify the
development of GPU kernels - in particular, to reduce the dependence on thread IDs present
in CUDA [7][9]. This is for two reasons. Firstly, to remove the need to define indices based
on block IDs, block dimensions and thread IDs, which is a non-trivial problem. Secondly, to
reduce the close link between the number of threads and the size of the data structure the
kernel works on, caused by indexing by thread IDs. This leads to little flexibility once the
kernel is designed in terms of the size of the data structure or number of threads used.

Obsidian provides the functionality of CUDA kernel programming at a higher level; indexing

based on thread IDs is abstracted away from the user, as is the dependency between number



of threads and the data structure.

An Obsidian array does not specify an area of memory like its CUDA counterpart. Instead it
is a Haskell abstract data type: data Arr a = Arr (IndexE -> a) Int, defined by an
indexing function and a static length. Arrays can contain Integer, Float, Boolean, array or
tuple values. Obsidian provides a number of common array functions in its array library

including rev, fmap, foldr, pair and zipp.

To be executed by CUDA, an Obsidian array language program must be compiled to a kernel
function. The function pure converts an Obsidian function to the correct kernel type in
Haskell. These kernel types can be executed on the GPU from within GHCI using execute.

We can write a simple program using a GPU to increment an array's contents like such in

GHCI [9]:

execute (pure \$ fmap (+1)) [(0..9) :: IntE]
(+,2,3,4,5,6,7,8,9,10]

The above code generates a CUDA kernel which takes an input array and output array,
increments the contents of the input array and stores the result in the output array. This can
all be done in one line and the programmer does not need to allocate addresses or memory
as they would in native CUDA, as Obsidian handles this automatically. The programmer also
does not specify the number of threads either within the function or as an argument to
Obsidian. This is because Obsidian handles this automatically, using one thread per array
element. Obsidian then, has generated and run a CUDA kernel which uses ten threads to
increment a ten element array, abstracting the address space, memory allocation and thread

ID indexing from the programmer.

Two or more kernels can be sequentially composed using the ->- operator to create a new
kernel. The ->- operation between two pure functions combines them via Haskell function
composition, before generating the newly composed function in CUDA. Kernels can also be
combined by explicitly storing the result from the first kernel, and passing it to the second
kernel, using Obsidian’s sync function. Using sync results in a call to CUDA's
syncthreads () if the number of threads is greater than the number of threads that can

be run in one iteration, called a warp.

The knowledge that the size of a kernel's output determines the number of threads used, as
well as the ability to use sync, gives the Obsidian programmer a lot of control over the
CUDA code generated. For example, the programmer has the ability to make the call to
pair towards the end of their kernel, so that an output array [a, b, c, d, e, f]
becomes [(a,b), (c,d) (e,f)], halving the number of array elements, therefore halving
the number of threads. The close relationship between Obsidian and CUDA allows
programmers to continue to think about concepts like blocks, grids, shared memory and



synchronization while abstracting some more C-centric concepts like the address space and

index pointers.

One key limitations of Obsidian noted by Svensson is that the kinds of algorithms that can
be expressed are those where the size of the outputs can be determined by the size of the
inputs; it does not have the complexity for more general and data-dependent output sizes.
Another limitation noted is that Obsidian allows for the design and implementation of
individual kernels, but not for the coordination of kernels. GPGPU algorithms usually involve
the coordination of multiple kernels, much as a sequential program is made up of multiple

functions.

2.3.2 Accelerate

Accelerate is a Haskell EDSL for GPGPU programming, which, like Obsidian, aims to

simplify GPGPU programming by reducing the workload and expert knowledge required to
write CUDA programs [10][11].

Accelerate provides the developer with a higher level abstraction to GPGPU programming
than either native CUDA or Obsidian. Instead of directly creating GPU kernels, the
developer leverages Accelerate's paramaterized array operations. The compilation of array
operations to kernels is hidden from the user, enabling them to utilize GPUs for performance

benefits at a much higher level of abstraction.

Accelerate operations take place over arrays of type Array sh e, where sh specifies the
shape and e specifies the element type. e may be a signed integer, unsigned integer, floating
point number, double precision floating point number, character, boolean, tuple or array
index. The array's shape is constructed with the constructor Z and infix operator (:.). For
example, a three-dimensional array of floats is of type:

Array (Z:.Int:.Int:.Int) Float, and element ijk is indexed at (Z:.i:.j:.k).

Like CUDA and Obsidian, Accelerate distinguishes between CPU host memory and GPU
device memory. In Accelerate, this distinction is made by the type of the array. A CPU array
is of type Array sh e, while a tuple of one or more GPU arrays is identified by the type
constructor Acc. Host-to-device memory transfer, i.e. the conversion of a CPU array to a

GPU array, is achieved via the following function:
use :: (Shape sh, Elt e) => Array sh e -> Acc (Array sh e)

In addition to embedded array computations, Accelerate also enables embedded scalar
computations with the type constructor Exp. Like those on Acc terms, computations on Exp
terms are executed on the GPU device. Exp computations do not support recursion or
iteration, as computations of this form cannot be achieved efficiently on GPUs. In addition,

collective Acc operations may contain scalar Exp operations, but the inverse is not



true.

Scalar operations support Haskell's standard bitwise and arithmetic operations via
overloading. They also support equality and conditional operators. Since Bool cannot be
overloaded, this is achieved by appending * to the standard notation, e.g ==%, <=, <* etc.
Conditional expressions are possible in the form ¢ 7 (t, e), which evaluates to t if c is
true and otherwise evaluates to e. Accelerate’s collective array operations comprise of

common Haskell list functions including map, zipWith, fold and scan.

Key to the mapping of Accelerate’s collective array operations to CUDA kernels is the
concept of algorithmic skeletons. Algorithmic skeletons are pre-defined CUDA kernels
implementing each of the collective array operations. These skeletons were each hand-tuned
to ensure efficient use of global memory and shared memory for communication between
threads. The skeletons are paramaterized by types and scalar embedded expressions. For
example, one of the parameters to map is the expression to map over the array. The general
behaviour of map is predefined in CUDA to ensure efficient use of the GPU'’s hardware, but

the function to map over the array can be defined by the programmer.

Accelerate code is compiled and run as CUDA code utilizing the CUDA API binding library
[12] developed by the creators of Accelerate. This provides a single point of entry which

compiles and evaluates the embedded GPU program:
CUDA.run :: Arrays a => Acc a -> a

The execution of CUDA.run is a two-pass process. The first pass generates the code for
each collective array operation using nvcc. In this phase, memoisation is used to ensure that
any skeletons used more than once are not compiled more than once. Additionally, this
phase performs host-to-device memory transfer. The second pass performs any host-side
computations and also invokes the compiled GPU kernels. The GPU kernels execute
asynchronously, but the evaluator will block a kernel which requires the result of another

kernel until the latter has finished execution.

The authors of both Accelerate and Obsidian note that Accelerate is a higher level
abstraction from CUDA [9][11]. Obsidian exists at a lower level with the aim of providing
the programmer with finer control of the use of GPU resources, shared memory and thread
synchronization. Many of Accelerate’s built in array computations could be built using
Obsidian primitives. Accelerate abstracts away the concepts of shared memory and
synchronization and controls this under-the-hood. The key concept that Accelerate
maintains is the difference between device and host memory, although this does not need to
be fully understood by the user, just that a “CPU Array” and “GPU Array” are of different
types, and the type system ensures that this works correctly. While Obsidian programming
defines single individual kernels, which need to be synchronized separately, Accelerate array



computations can be made up of multiple kernels under-the-hood, and synchronization is
handled by the library. This enables purely-Accelerate GPGPU programs to be much larger
than purely-Obsidian ones, as they can be multi-kernel. The difference in level of abstraction
from CUDA is something intended by the creators of both EDSLs, as Obsidian aims to
provide finer-grained control over design decisions while Accelerate aims to remove them as
complications. While Obsidian gives an experienced GPGPU programmer more ability to
work with concepts like thread blocks, shared memory and synchronization for performance
benefits, Accelerate aims towards performance benefits in elements that it has abstracted,

such as hand-tuned code skeletons and kernel memoisation.

A limitation noted by the author is that Accelerate currently targets just one GPU on the

system, it does not target multiple GPUs on the machine where applicable.

2.3.3 Nikola

Nikola [13] is an EDSL for GPGPU programming in Haskell, which aims to simplify GPGPU
programming by allowing Haskell code to be run on GPUs with minimal syntactic changes
[14]. Like Obsidian and Accelerate, Nikola is compiled to CUDA code before it is run on the
GPU.

Nikola allows general function compilation onto the GPU. This means that the type of a
Nikola function is not fixed. They may be of any arity, take arguments of any size, and may
be called any number of times with arguments of different sizes. A Haskell function requires
minimal syntactic overhead to be converted to a Nikola function which will be executed on
the GPU.

Nikola takes a similar approach to overloading standard Haskell operators as Accelerate
does. Standard arithmetic operations are overloaded. Since Bool cannot be overloaded,
conditional syntax is altered slightly by appending a . before and after the standard
notation, e.g. .<. etc. Conditional expressions are possible in the form ¢ ? (t, e), which

evaluates to t if c is true and otherwise evaluates to e.

Function application in Nikola follows the same syntax as standard Haskell. Behind the
scenes, Nikola uses a concept called “let-sharing”, so that an expression which appears
multiple times in a function only needs to be evaluated once, after which all other
occurrences of it point to the evaluated result. This is possible because Nikola translates
pure functional code from Haskell, where let-sharing occurs by default. This does not occur
automatically in CUDA code however, so Nikola carries “reification” to enable let-sharing for
all sub-expressions in the function. Nikola also utilizes another sharing called
“lambda-sharing”, where sub terms that occur as a result of a lambda share that lambda.
For example, if there are multiple occurrences of the function square, this will only be

expanded once into /x -> x * x, and all occurrences of square will point to this one

10



expansion. Unlike let-sharing, this does not result in a performance increase but does reduce
the final CUDA code size. To make use of lambda-sharing the developers provide a function
called vapply, which ensures that the function it is passed undergoes lambda-sharing
instead of being inlined. Let-sharing is achieved via reification which is done in Nikola's

top-level function reifyAndCompile.

The translation of a Haskell function into a Nikola function is relatively simple; applying
vapply to utilize lambda-sharing, rewriting conditionals to the correct Nikola syntax, and
updating the type signature of the function to the Exp expression data type for Nikola to
parse. For example, a function of type Float -> Float would be changed to type

Exp Float -> Exp Float. These are the only changes needed due to the overloading of
standard Haskell notation and preservation of Haskell function application as Nikola function

application.

CUDA code is subject to a number of constraints that Nikola must take into account.
Recursion is not allowed as it cannot be achieved efficiently on the GPU. Function pointers
are also disallowed as their use does not support the device memory model. Additionally, all
memory used by a kernel must be allocated before its invocation. Nikola has language
features which enforce these properties. Functions are only allowed where all of its
arguments are bound, i.e. closures and partial applications are disallowed. Vector operations
are restricted to ones for which a static upper-bound memory requirement can be calculated.

The size inference is restricted to allow functions to be compiled to a single kernel.

Like that of Obsidian and Accelerate, Nikola code is translated to CUDA and compiled by
invoking nvcc. This is achieved in the reifyAndCompile function. The arguments are
copied into GPU memory, the kernel is built, additional memory needed is allocated, the
kernel is invoked, and finally the results are copied back to CPU memory. Nikola gives the
user the option to compile at either Haskell run-time or Haskell compile time. The benefit of
the latter is that a Nikola function does not need to be recompiled every time it is called,

leading to performance improvements.

2.4 Fractals

2.4.1 Fractals

Benoit B. Mandelbrot, who coined the term “fractal”, described fractals as “shapes whose
roughness and fragmentation neither tend to vanish, nor fluctuate up and down, but remain
essentially unchanged as one zooms in continually”. [15] Mandelbrot contrasted this to a
standard geometric shape which becomes “smoother” as we zoom in to a point on that
shape (e.g. a curve which seems to converge closer to a straight line, the tangent, as we

zoom in), or a chaotic shape whose roughness varies up and down under the same process.
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This key property of fractals is called self-similarity. A more concise definition for

self-similarity is that “each part is a linear geometric reduction of the whole.”

Fractals are often made up of “structures of great richness”, but the algorithms to generate
them are often quite short [15]. Typically, the algorithm is made up of loops of simple basic
instructions, which are followed repeatedly. Each iteration makes the shape increasingly

complex.

Mandelbrot coined the theory of fractals including the name and their properties in 1975,
although mathematical objects with these properties had been discovered independently in
the preceding century, including the Cantor set, Fatou sets and Julia sets. Mandelbrot's
advancement of the theory was aided by advances in computing, particularly in computer
graphics. These allowed him to generate and visualize large numbers of iterations not
previously possible with hand-drawn illustrations. He demonstrated the potential complexity

of fractals with highly detailed computer-generated images of Julia sets.

Fractal geometry occurs and has implications in a multitude of areas including physics,
probability theory, economics, hydrology, engineering and mathematics. The reason that |
am concerned with it is its suitability to both Haskell programming and GPU programming.
In section 2.4.2 | will examine why Haskell is a particularly good suitor to fractal generation,
due in particular to its compositional nature and ability to process infinite lists. In

section 2.4.3 | will examine how GPUs can be utilized for massive performance increases in
fractal generation. The applicability of both of these programming areas make fractals a

suitable lens under which to examine their intersection.

2.4.2 Elegance in Composing Fractals

Mark P. Jones' functional pearl “Composing Fractals” describes programs for composing
fractal art, in particular the Mandelbrot Set and the Julia Set [16]. The main goal of the
paper is to showcase the “elegance” of composing such a program with key properties of
Haskell. The author makes numerous references to elegance in the paper but it is never

explicitly defined. While “A History of Haskell” was an appropriate source from which to
define elegance generally, “Composing Fractals” demonstrates how this definition can be
applied in practice and how fractal generation is a suitable domain under which to test

elegance.

Leveraging lazy evaluation is a core feature of Jones' fractal generating functions. He utilises
the iterate function in combination with his next function on each point p, to generate an
infinite sequence corresponding to each point. The key test as to whether p is in the
mandelbrot set is whether this sequence diverges. However, this calculation is a non
computable function, as it will never terminate if the list does not diverge. Jones makes use

of the prelude function take to handle this, to take the first n elements of the list, and test if
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they diverge. This is an approximation which gets increasingly accurate as n increases, but it
is a computable function. Jones has used laziness to full effect in this program. The use of
iterate allowed him to construct an infinite data structure with minimal effort, and the use of
take allowed him to take the first n elements from it, making the function computable. Lazy
evaluation enables this approach. A strict approach would first try to evaluate the list, then
take the first n elements from it, while a lazy approach only evaluates each element as it is
needed. Laziness has enabled Jones to construct fractals concisely and closely to their
mathematical definition. There is no explicit mention of purity in this functional pearl, but
as a result of laziness all of the functions are pure with no side effects. Again, this helps to
ensure that the functions representing these mathematical concepts are truly functions “in a

mathematical sense”.

The use of type variables is another core feature of Jones' program. In his chooseColor
function, which select a color from a palette for a point p, the color returned and those in
the palettes’ type is a type variable. This enables flexibility and reuse of this function for
different implementations. For example this program can be used by an implementation with
palettes of ASCII characters, or palettes of RGB color values. This increases the flexibility of
the code without increasing the amount of code. Jones continues to use type variables to
the same effect throughout the program. An Image maps each point to a type variable
color. A grid is made up of points represented by the type variable a. The draw function
itself is polymorphic both in its color and image types. Jones takes advantage of this
flexibility by demonstrating how the same code can be leveraged by an ASCII terminal-based

or an RGB graphics window-based implementation.

Jones additionally attributes the use of Haskell's “lightweight syntax” to his elegant solution.
Upon inspection of the code throughout the paper, it is clear that his use of syntax is of the
“declaration style” conceived in A History of Haskell. Function arguments are on the left side
of the equals. There are no if statements or case statements. Where expressions are used
instead of let expressions throughout. The use of declaration style results in short,
understandable functions. The only move from declaration style programming is in the
outmost function, rgbRender, which takes place inside the |O monad. This sequential,
monadic style is unavoidable to safely perform 10, and in general should be avoided in

elegant programming aside from the outmost function where 10 should be performed.

Additionally, Jones attributes the elegance of the program to its compositional nature
enabled by higher-order functions. He increasingly defines and makes use of higher-order
functions as the abstraction level of functions increases. fraclmage takes a fractal function
as an argument, alongside a palette, to generate a fractal image. An image itself is a
function that maps from a Point to a color. An image function is one of the arguments to
sample, which samples the image at each position to generate a grid of colors to display.

The draw function takes both a fractal function and a render function and composes them
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together with other arguments to generate the final result. Use of higher-order functions
enables elegant Haskell programming in these examples by allowing nonstandard behaviour
in composing functions and arguments together concisely. A function taking and utilising
another function increases the flexibility available to the user and its use alongside

declaration style programming enables concise, elegant function definitions throughout.

Though Jones never explicitly defines the concept of elegance, by analysing the properties
leveraged in his approach we can see that they are the same as the key properties expressed
by the authors of a History of Haskell. By having a concrete definition of elegance, it is
possible to assess when a piece of code is “elegant”, i.e. when it follows these properties.
Fractal generation is clearly a domain particularly suited to Haskell, and this suitability can
be credited to the ability to elegantly program. Laziness, purity, type variables, higher-order
functions and declaration style programming all enabled a concise, understandable and
flexible implementation. This makes fractal generation a suitable domain in which to

examine the elegance of Haskell implementations.

2.4.3 Fractal Generation using GPUs

GPGPU programming, discussed in Section 2.2, can be used to generate fractals. The use
of GPUs in fractal generation can enable a substantial performance increase, which can be
seen in the generation of the Mandelbrot Set and corresponding Julia Sets. Wyatt et al.
explored this by implementing and comparing sequential and parallel-GPU versions [17].
Both implementations of both sets traversed the complex plane and generated each point.
The sequential version looped across the points, while the GPU version virtually assigned
processors to each. The implementation was written in the C programming language,
utilizing NVIDIA CUDA, discussed in Section 2.2, to leverage the GPUs. The comparison
ranged across image dimensions from 10-by-10 to 10,000-by-10,000, and ran on an Intel
Core i7-4770K CPU and an NVIDIA GeForce GTX TITAN graphics card.

Computation time was similar between the CPU and GPU implementations for small image
dimensions, but as the dimensions increased, computation time increased much more slowly
for the GPU implementation. Generation of the largest image, not including the constant
image display time, took longer than 10 seconds on the CPU implementation, and less than
0.0001 seconds on the GPU implementation. This enabled the creators to dynamically
update the fractals in real-time as the user updated the parameters, which would not have
been possible without the GPUs. Due to the strong link between the Mandelbrot Set and
the Julia Set, the authors demonstrated this by allowing the user to select a point on the
Mandelbrot Set, which instantly generates the corresponding Julia Set. The authors note

“smooth transitions” in the Julia Set as this point is changed on the GUI.

The authors noted that this has a number of implications and contributions. The knowledge
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that can be gained about the link between the Mandelbrot and Julia Set via real-time
interaction can be valuable to fractal artists or graphic designers in need of specific fractal
patterns. Examinations of the sets via deep zooms, possible with extreme precision due to
the performance improvement, have similar implications for exploring fractals. The authors
also note the educational implications, as freely varying parameters with visual feedback
gives much more accessible results than standard algorithmic workings. Whether for
aesthetic or mathematical reasons, users can “interact with the mathematics of chaos

without the need for rigorous background work”.
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3 Design

3.1 Design Choices from Research

3.1.1 Elegance

The first design choice from research that | needed to make was to form a rigid definition of
elegance. The design of my final implementation must maximize elegance by this definition.
My research showed that four key concepts were commonly attributed to elegant
programming; laziness/purity, type polymorphism, lightweight syntax and higher-order

functions.

An elegant program in Haskell should be lazy and pure throughout. In contrast, a
non-elegant program uses strict language features, and features which perform side effects.
These language features are in Haskell because they are essential in some use cases, but
their use moves away from some of the original design goals of Haskell, and reduces the

elegance of the program.

An elegant program should also make use of type variables to achieve ad-hoc and polymetric
polymorphism. Where possible, these types should be unconstrained, otherwise these types
should belong to the least restrictive type class possible. An elegant program should make
good use of style and syntax. To put more rigidity on this aspect of the definition, we can
look at the concepts of expression style and declaration style programming. Both are present
in Haskell, and are traditionally utilised in the same program, and sometimes in the same
function definition. However it can be argued that mixing these two programming styles
leads to redundant, less elegant code. In particular, expression style programming results in
lengthier functions, with concepts more commonly found in imperative programs than
mathematical functions. In keeping with the idea of an elegant program being made up of
pure functions “in a mathematical sense”, an elegant program should use declaration style
programming. It should not use expression style programming, or a Monadic, sequential style
of programming where possible.

In addition to laziness, purity, type polymorphism and lightweight syntax, the final property
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of elegance that my research informed me about was use of higher-order functions where

possible.
Guided by my research in Section 2.1, | state the following definition of elegance:
A Haskell program is elegant if it:

Is lazy and pure in 100% of its evaluations.
Makes use of type variables wherever possible to achieve type polymorphism.

Uses declaration style programming.

sl S s

Uses higher-order functions wherever possible.

These key elegant properties follow directly from the research in Section 2.1 and

Section 2.4.2. Each of these four properties were seen to be core concepts of Haskell in “A
History of Haskell”, with practical applications of them to conceive an elegant program in
composing fractals [3][16]. Additionally, laziness and higher-order functions were stated as
the two key properties that enabled the elegance of functional programming in “Why

Functional Programming Matters" [4].

3.1.2 Performance

My final implementation must achieve a “reasonable performance threshold” to be accepted.
Guided by my research in Section 2.4.3, | define the following threshold: - Generation of a
10,000 x 10,000 fractal image should take less than 0.001s.

| feel that this is a reasonable threshold as the research in Section 2.4.3 found that this is
achievable in less than 0.0001s. | have made the threshold less strict than this because |
expect Haskell to introduce additional overheads in comparison to a direct C
implementation, such as garbage collection, conversion of Haskell representations to CUDA
representations, and less control of optimisations to machine code. This threshold is still

acceptable as it is much faster than the 10s figure for a CPU implementation.

3.1.3 Choice of GPGPU Library

My research in Section 2.3 investigated three GPGPU libraries in Haskell; Obsidian,
Accelerate and Nikola. Out of the three libraries, Obsidian is the least appropriate for my
approach. Its low-level implementation and direct mapping to CUDA kernels does not map
well to elegance. While it does make use of function application, and the type system in
some cases, its nature does not allow for the pure, lazy functional programming desired.
Choosing Obsidian would force me into a low-level, strict, sequential implementation with
thread synchronization, which eliminates it as a suitable library for my implementation.

Accelerate and Nikola both seem much more capable of the elegance that | am aiming for.
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Nikola's functionality is quite a large subset of that of general Haskell, as the authors aimed
to allow Haskell to be converted to Nikola with minimal syntactic overhead. Let-sharing,
lamda-sharing and overloading of operations mean that Nikola's syntax is quite close to
Haskell's, so similar levels of “elegance” should be achievable. However there are some
restrictions with regards to recursion, bounding of arguments and memory size

inference.

Accelerate’s approach is much different from Obsidian. Accelerate deals with array
computations which exist at a similar level of abstraction to higher-order functions in Nikola.
Accelerate and Nikola were initially developed and published around the same time, but the
Accelerate repositories continue to be maintained while Nikola was last updated in 2013
[18][13]. Accelerate has its own website & documentation and is available as a package in
Cabal, which is not the case for Nikola [10][19]. Due to Accelerate’s continued upkeep it has
much more engagement than Nikola on both GitHub and the Haskell Reddit discussion
board [20][21]. Accelerate’s continued upkeep and use over the last decade indicates that it
is of a higher standard than Nikola today and is more suited to modern hardware and
software. In addition, Accelerate has two features that Nikola does not; it supports
generative functions, such as replicate, and it can span multiple CUDA kernels, rather than
just one. Due to the additional functionality and higher use and upkeep, | have decided to
use Accelerate in my implementation. The abstraction level should offer the same potential
for elegance as Nikola does, and using array computations may offer additional insights as to

whether they can play a role in program elegance.

3.1.4 Choice of Fractal

Implementations of the two most commonly generated fractals; the Mandelbrot Set and the
Julia Set, already exist as examples for the Accelerate library. The Julia Set has an
implementation in the official Accelerate-Examples library, while the Mandelbrot Set has one
both in this library and as a tutorial on the official Accelerate website [22][23]. The
programs in Accelerate-Examples allow GUI interaction with the fractals, much like that
discussed in Section 2.4.3. The Mandelbrot tutorial on Accelerate’'s website takes a different
approach and statically generates an image of the fractal. Nikola's central repository also
has an implementation of the Mandelbrot Set, which is adapted from the Accelerate version
[13].

| have chosen to implement the Mandelbrot set, as it is the most common fractal that |
encountered in my background research. In my design and implementation, | can utilize
learnings from Section 2.4.1, Section 2.4.2 and Section 2.4.3. Additionally | can utilize the
online resources mentioned in this Section, which gives me the strongest opportunity to

answer my question with regards to performance and elegance.
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The static Mandelbrot example offered on the Accelerate website compiles and runs as
expected. | feel that this is a good base upon which to start from as it is relatively short
(150 lines) and easy to understand. | will assess the performance and elegance of this, and

update it to make it as elegant as | can.

The dynamic Mandelbrot example on cabal fails due to a dependency on the gloss-accelerate
package, which fails to build. However, the code for this package is publicly accessible on
GitHub. | will examine this and integrate elements to improve the functionality towards a
dynamic implementation. Again | will assess the elegance and performance of this

integration.

Finally, | will iterate on the integrated example to maximise the elegance according to my
definition. This final iteration, and the final judgements on performance and elegance from

it, will enable me to answer my research question.
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4  Implementation

4.1 Machine Specifications

The implementation was designed, written and tested on the same machine over the course
of the project to maintain consistency for performance. The machine was a Dell XPS 8920
Desktop, with an Intel Core i7 7700k CPU and an NVIDIA GeForce GTX 1080 GPU. The
CPU is slightly faster while the GPU is slightly slower than those used by Wyatt et al. [17]. |
do not expect me to have an impact on my performance with regards to the performance

threshold, which | have set quite high to account for overheads also introduced through
Haskell.

4.2 Implementation Challenges

A key challenge faced in the implementation stage of the project was initial setup to get the
code running. The project required the installation of NVIDIA CUDA onto the machine to
leverage the NVIDIA GPUs. The starting project was not a stack project, as a result the
dependencies were installed using cabal. This was manageable for the static example, which
required three key libraries; accelerate to leverage Accelerate functions, accelerate-io

to generate the image and accelerate-1llvm-native to leverage the GPUs.

However, the second project required many more dependencies due to the presence of
boilerplate code required to generate the GUI. The Mandelbrot code and its boilerplate code
was from the Accelerate-Examples project on GitHub [22], but this failed to compile due to
dependency issues. As a result, the code for generating the mandelbrot set had to be
brought to a new project, along with the necessary boilerplate. It was difficult to determine
the minimum amount of boilerplate needed from the project, as redundant boilerplate would
lead to redundant dependencies on packages. Once this code and boilerplate was brought
over, the dependencies needed to be installed with cabal. This led to incompatibility issues
with packages, which needed to be solved with fresh re-installs and trial and error. The
setup of the project, including installation and configuration of CUDA, setup of the static

project, attempted compilation of Accelerate-Examples, transfer of code with boilerplate and
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installation of dependencies cost three weeks of development time. An assessment of this
method and reflection on how this could have been avoided can be found in Section 5. A list
of cabal dependencies required to run the dynamic project and their installation order can be
found in Appendix Al.1.

Once the dynamic implementation was set up and running, there were no further issues with

dependencies or boilerplate code when iterating on the elegance of the program.

4.3 Assessing Version 1: Static Image Example

The first version of the code that | assessed is the Mandelbrot Set example from the official
Accelerate website. This generates a .bmp image of the Mandelbrot set in the project

directory.

4.3.1 Elegance

mandelbrot

mandelbrot :: Int -> Int -> Int -> Float -> Complex Float -> Float
-> Acc (Array DIM2 (Complex Float, Int))

mandelbrot screenX screenY limit radius (x0 :+ y0) width

A.generate (A.constant (Z :. screenY :. screenX))

(\ix -> let z0

complex0fPixel ix

N

constant limit

zn = while (\zi -> snd zi
&& dot (fst zi) < constant radius)
(\zi -> step z0 zi)
(1ift (z0, comnstant 0))
in
zn)

where

The function mandelbrot exists at the top of the implementation. It contains multiple
functions in its where statement; complex0fPixel, dot, step and next. These functions
will be analysed under different headings for the purposes of assessing the elegance of each

function individually.

This function is pure as it is at the top level a call to A.generate, an Accelerate operation,
which are pure and do not mutate arrays [24]. However, the code is not lazy as Accelerate's
implementation as a deep embedding means that the function gets processed as an abstract
syntax tree which gets converted to CUDA code, which is then compiled and run to return

the result to Haskell. This compilation and running is not lazy, and executes the GPU
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kernels when A.generate is called.

There is no use of type variables in this function. All types are concrete types, meaning is no

parametric or ad-hoc polymorphism present.

The function is not written in declaration style, instead in a mix of declaration style and
expression style. Function arguments are on the left hand side and a where clause is used,

but lambda abstractions and a let expression are also present.

The function makes use of the higher-order Accelerate function while, which takes
functions as its first two arguments. But mandelbrot itself is not a higher-order function, as

it takes no functions as arguments.

complexOfPixel

-- Convert the given array index, representing a pizrel in the final
-- 2mage, wnto the corresponding point on the complex plane.
complex0fPixel :: Exp DIM2 -> Exp (Complex Float)

complex0fPixel (unlift -> Z :. y :. x) =

let
height = P.fromIntegral screenY / P.fromIntegral screenX * width
xmin = x0 - width / 2
ymin = y0 - height / 2
re = constant xmin + (fromIntegral x * constant width)
/ constant (P.fromIntegral screenX)
im = constant ymin + (fromIntegral y * constant height)
/ constant (P.fromIntegral screenY)
in

lift (re :+ im)

complex0fPixel is called from mandelbrot, so forms part of the abstract syntax tree
formed from the implementation due to the deep embedding. As a result it has the same
relationship to laziness and purity. The code is executed purely and strictly on the GPU. The
use of Exp ensures that this function gets evaluated as a deep embedding, meaning that it

cannot be leveraged by lazy code.

Again there is no use of type variables, so there is zero ad-hoc or parametric

polymorphism.

The function is not written in declaration style, instead in a mix of declaration and
expression style. Function arguments are on the left hand side, but the function is structured

as a let expression.

The function is not, and does not make use of, a higher-order function.
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dot

-- Divergence condition
dot :: Exp (Complex Float) -> Exp Float
dot (unlift -> x :+ y) = x*x + y*y

Again dot is called utilizing the deep embedding to form an AST, so is pure, but strict. Exp

in the function signature enforces this.
There is no use of type variables, so there is zero ad-hoc or parametric polymorphism.

The function is written in declaration style. Function arguments are on the left hand side

and no expression style constructs are used.

The function is not, and does not make use of, a higher-order function.

step

-- Take a single step of the recurrence relation
step :: Exp (Complex Float) -> Exp (Complex Float, Int)
-> Exp (Complex Float, Int)

step ¢ (unlift -> (z, 1)) = 1lift (next c z, i + constant 1)

Like dot, step is pure, but strict. It has no ad-hoc or parametric polymorphism. It is
written in declaration style, with function arguments on the left hand side and no expression

style constructs. It is not, and does not make use of, a higher order function.

next

next :: Exp (Complex Float) -> Exp (Complex Float) -> Exp (Complex Float)

next c z =c¢c + z * z

Like dot and step, next is pure, but strict. It has no ad-hoc or parametric polymorphism.
It is written in declaration style, with function arguments on the left hand side and no
expression style constructs. It is not, and does not make use of, a higher order

function.

escapeToColour

-- Convert the iteration count on escape to a colour.
escapeToColour :: Int -> Exp (Complex Float, Int) -> Exp Colour
escapeToColour limit (unlift -> (z, n)) =
if n == constant limit
then black
else ultra (toFloating ix / toFloating points)
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complex0fPixel forms part of the abstract syntax tree rooted at mandelbrot due to

where
mag
smooth

ix

scale
shift

points

magnitude z

logBase 2 (logBase 2 mag)

truncate (sqrt (toFloating n + 1 - smooth)

* scale + shift) “mod™ points

256
1664
2048 ::

Exp Int

Accelerate's deep embedding, so forms part of the pure, but strict, code. There is no ad-hoc

or parametric polymorphism. It is written in a merge of declaration style and expression style

programming, with function arguments on the left hand side and a where clause used, but

also an if statement. It is not, and does not make use of, a higher order function.

ultra

-- Pick a mice colour, given a number in

ultra ::

ultra

if p <= pl then
if p <= p2 then
if p <= p3 then
if p <= p4 then

wher
pO
pl
p2
p3
p4
p5

-- 2nterpolate each of the RGB components

p:

e
= 0.0;
= 0.16;
= 0.42;
= 0.6425;
= 0.8575;
=1.0;

interp
interp
interp
interp

interp

O o O
N = O
I I I

Exp Float -> Exp Colour

(p0,p1) (cO,cl)
(p1,p2) (c1,c2)
(p2,p3) (c2,c3)
(p3,p4) (c3,c4)
(p4,p5) (c4,cb)

rgh8 0 7  100;
rgh8 32 107 203;
rgh8 237 255 255;

c3 = rgb8 255 170 0;
c4 =rgh8 0 2 O;

cb = c0;

the range [0,1].

(mO,m1) p else

(m1,m2) p else

(m2,m3) p else

(m3,m4) p else

(m4,m5) p
m0 = (0.7843138, 2.4509804,
ml = (1.93816, 2.341629,
m2 = (1.7046283, 0.0,
m3 = (0.0, -2.2812111,
md = (0.0, 0.0,
m5 = mO

interp (x0,x1) (yO,y1) ((mrO,mg0,mb0),(mrl,mgl,mbl)) x =

let

RGB r0 g0 b0

RGB rl1 gl bl =

in

rgb (cubic (x0,x1)
(cubic (x0,x1)

unlift yO :: RGB (Exp Float)
unlift y1 :: RGB (Exp Float)

(r0,r1) (mrO,mrl) x)
(g0,g1) (mg0,mgl) x)
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(cubic (x0,x1) (bO,bl) (mbO,mbl) x)

ultra forms part of the deep embedding’s AST due to its call from complexFromPixel
and its Exp filled type signature, so it is pure but strict. There is no ad-hoc or parametric
polymorphism. It is written in a merge of declaration style and expression style
programming, with function arguments on the left hand side and a where clause used, but
also lambda abstractions, a 1let expression and if statements used. It is not, and does not

make use of, a higher order function.

linear

-- linear interpolation

linear :: (Exp Float, Exp Float) -> (Exp Float, Exp Float) -> Exp Float
-> Exp Float

linear (x0,x1) (y0,y1) x = yO + (x - x0) * (y1 - yO) / (x1 - x0)

linear forms part of the deep embedding’s AST, so it is pure but strict. There is no ad-hoc
or parametric polymorphism. It is written in declaration style, with function arguments on
the left hand side and no expression-style constructs used. It is not, and does not make use

of, a higher order function.

main

main :: P.I0 ()

main =
let
width = 10000
height = 10000
limit = 1000
radius = 256
img = A.map packRGB
$ A.map (escapeToColour limit)
$ mandelbrot width height limit radius ((-0.7) :+ 0) 3.067
in

writeImageToBMP "mandelbrot.bmp" (run img)

main is the outmost function of the program, written in the I0 monad. The format of the
function is pure and lazy. The I0 monad preserves purity by design. The function does not
use the do construct to force sequencing of operations, so the code is lazy in general.
Haskell lazily evaluates the code until the last line. writeImageToBMP processes its
argument at its beginning, so requires the evaluation of run img. This forces the evaluation

of img, which forms the abstract syntax tree. run then runs all of the steps between
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converting the syntax tree to getting the end GPU result strictly, and returns its answer to
Haskell, to continue to work with lazily. So we can say that the code is lazy and pure, with

one call to a strict function.

main contains no type polymorphism in its type signature. Each number variable is
initialised without a concrete type, which leaves potential for type polymorphism in them,

but mandelbrot's lack of polymorphism forces each of their evaluations to a particular

type.

The function is not declarative style, instead it is expression style, composed of a let

statement.

The function does make use of higher order functions, in particular the Accelerate map

function in two different contexts.

Summary of Results

The table below signifies whether a particular function had a high, middling or low level of

an elegant property:

Function Lazy/Pure | Type Polymorphism | Declaration Style | Higher-Order
mandelbrot mid low mid mid
complexOfPixel | mid low mid low
dot mid low high low
step mid low high low
next mid low high low
escapeToColor | mid low mid low
ultra mid low mid low
linear mid low high low
main high low low mid

Table 4.1: Assessment of Elegance for Static Mandelbrot Example.

Conclusion
Analysis of the elegance of the mandelbrot code showed similar patterns throughout.

With regards to laziness and purity, the code was only found to be lazy at the top level,
which executed in the host language Haskell rather than the embedded language Accelerate.
Once execution fell to the function run, it was handed to Accelerate's execution agent,
which formed the AST, compiled to CUDA code, executed the underlying kernels and
returned the result to Haskell strictly. This strict execution encompassed the majority of the

code, including all of the GPU code. In contrast, purity was preserved, through both the 10
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monad and Accelerate execution engine, which computes its results without side

effects.

There was no use of type variables or type classes in the code to achieve either ad-hoc or

parametric polymorphism. The code was not elegant in this sense.

Overall, the code was written in a mix of declaration style and expression style constructs,
with some shorter, mathematical functions being written completely in declaration

style.

In general, the code made very little use of higher-order functions. None of the implemented
functions were higher-order, but mandelbrot and main utilized some, in particular use of

Accelerate’s higher-order functions, which utilized the GPU themselves.

Overall, the elegance of the program was low, particularly in the areas of laziness, type

polymorphism and and higher-order functions.

4.4 Assessing Version 2: Dynamic GUI Example

4.4.1 Elegance

mandelbrot

mandelbrot :: forall a. (Num a, RealFloat a, FromIntegral Int a)
=> Int -> Int -> Acc (Scalar a) -> Acc (Scalar a)
-> Acc (Scalar a) -> Acc (Scalar Int32) -> Acc (Scalar a)
-> Acc (Array DIM2 (Complex a, Int32))
mandelbrot screenX screenY (the -> x0) (the -> y0) (the -> width)
(the -> limit) (the -> radius) =
A.generate (A.constant (Z :. screenY :. screenX))

(\ix -> let z0

complex0fPixel ix

while (\zi -> snd zi < limit
&% dot (fst zi) < radius)

zn

(\zi -> step z0 zi)
(1ift (z0, comnstant 0))
in
zn)

where

Like its equivalent in Section 4.3.1, mandelbrot’s evaluation is done by the host language
Accelerate, which forms the AST, evaluates it, translates it to CUDA, compiles the kernels,

runs them, and returns the result to Haskell. This is a strict process done at the top level
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call to run. For the same reasons, the code is also still pure.

The syntax of this function is mostly unchanged, aside from removal of the calls to
constant, which are not needed due to the new types of 1imit and radius. As a result
the function is still a merge of declaration style and expression style, with function
arguments and a where clause, but also lambda abstractions and a let expression. It also

still makes use of two Accelerate higher order functions, generate and while.

In terms of type polymorphism, we do see changes in this iteration of the code. The type
signature replaces instances of Float with Acc (Scalar a). This is for performance
reasons due to the dynamic nature of the code [24]. Defining these inputs as Accelerate
arrays, represented with the type constructor Acc, ensures that when the code is compiled to
CUDA, they are represented as GPU arrays, rather than as part of the kernel. If they were
part of the kernels, then every time they change, the kernel would need to be recompiled.
This would reduce the performance benefits gained by leveraging GPUs. Memoisation in
Accelerate ensures that the CUDA kernels are not recompiled if they don't need to be, e.g.
when the dynamic parameters are represented as GPU arrays. The Scalar type constructor
simply signifies to Accelerate that the Accelerate array contains a scalar value rather than

being a multi-element array.

Despite the restriction to the Acc and Scalar constructs for performance, this version of
mandelbrot is more polymorphic in its type signature than that in Section 4.3.1. The
Float arguments are replaced with Acc (Scalar a), with the restrictions Num a,
RealFloat a and FromIntegral a. So the function operates on any type a that fits these
restrictions, enclosed in the Acc and Scalar type constructors. These type classes are
Accelerate type classes, which, aside from the expected numerical restrictions, enforce that a
is a member of the E1t type class. The E1t type class is the class of those that are allowed
inside an Accelerate embedded expression Exp. This restricts a to a smaller subset than

similar Prelude type classes would.

Overall, we see no improvement in mandelbrot in terms of elegance, apart from in type
polymorphism. The introduction of the type variable a enabled some ad-hoc polymorphism.
There are still some restrictions to the polymorphism though, with the enforcement of Acc

arrays and type class restrictions, in particular of the E1t class.

complexOfPixel

-- Convert the given array index, representing a pizel in the final
-- image, into the corresponding point on the complex plane.
complex0fPixel :: Exp DIM2 -> Exp (Complex a)
complex0fPixel (unlift -> Z :. y :. x) =

let
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height = P.fromIntegral screenY / P.fromIntegral screenX * width
xmin = x0 - width / 2
ymin = yO - height / 2
re = xmin + (fromIntegral x * width)
/ fromIntegral (constant screenX)
im = ymin + (fromIntegral y * height)

/ fromIntegral (constant screenY)
in
lift (re :+ im)
complex0fPixel contains very little changes in the value level code, with similar small
changes in using the constant function due to changes in the function’s type signature. As
a result there are no changes in the laziness, purity, programming style or level of

higher-order functions.

There is an improvement present in the type polymorphism, as the return type

Exp (Complex Float) is abstracted to Exp (Complex a), with a inheriting its type class
restrictions from mandelbrot. a is wrapped in the Complex type constructor to signify a
complex number in Accelerate. As this function is a calculation of a complex number, it is
to be expected that it would return a complex type. It is wrapped in another type

constructor, Exp, to represent an embedded expression that forms part of the AST.

Overall, there is no improvement in the elegance of complex0fPixel, apart from in type
polymorphism. The introduction of a enabled some ad-hoc polymorphism, but there are still
some polymorphism restrictions including representation as embedded Exp types and

restriction to Accelerate type classes which force the E1t restriction.

dot, step, next

-- Divergence condition
dot :: Exp (Complex a) -> Exp a
dot (unlift -> x :+ y) = x*x + y*y

-- Take a single step of the recurrence relation
step :: Exp (Complex a) -> Exp (Complex a, Int32) -> Exp (Complex a, Int32)

step ¢ (unlift -> (z, i)) = 1lift (next c z, i + constant 1)

next :: Exp (Complex a) -> Exp (Complex a) -> Exp (Complex a)

next c z =c¢ + z * z

There is no change in the value level code for dot, step and next. As a result, most of the

elegance remains the same. The code is strict, but pure. There is no use of higher-order
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functions. Each of these functions remain in full declaration style, rather than a mix of

declaration and expression style like most of the others.

Again there are changes at the type level, with each instance of Float abstracted to the
type variable a, inheriting the type class restrictions from mandelbrot. They remain within

the Exp constructors which form the AST.

Overall, there is no improvement in the elegance of these functions apart from in terms of
type polymorphism. Introduction of the type variable a enabled some ad-hoc polymorphism,

again restricted by Accelerate constructs including Exp and Elt.

escapeToColour

escapeToColour :: (RealFloat a, ToFloating Int32 a)
=> Acc (Scalar Int32) -> Exp (Complex a, Int32) -> Exp Word32
escapeToColour (the -> limit) (unlift -> (z, n)) =
if n == limit
then packRGB black
else packRGB \$ ultra (toFloating ix / toFloating points)
where

mag = magnitude z

smooth = logBase 2 (logBase 2 mag)

ix = truncate (sqrt (toFloating n + 1 - smooth)
* scale + shift) “mod™ points

scale = 256

shift 1664

points = 2048 :: Exp Int

The type signature of escapeToColour is quite different. The first argument representing
the cutoff limit for colouring the mandelbrot set has been wrapped in the Acc and Scalar
constructs. This is for the same reason as in mandelbrot. In Section 4.3.1, this parameter
was set once when running the program, to generate the static image. In this example, it is
dynamic, as the user can alter the limit in real time. As a result, for performance reasons, it
must be an Accelerate array which exists on the GPU and outside of the kernel. There is one
improvement in type polymorphism as z is abstracted from Float to a, with Accelerate type

class restrictions.

There are few value level changes, aside from those forced by changes in the type signature,
e.g. use of the the function to unpack the limit from its Accelerate array. It is still strict and
pure, forming part of the Accelerate AST enabled by the Exps in the type signature. It is still
a mix of declaration and expression style, with function arguments on the left hand side and

a where clause used, but also an if statement. No higher order functions are used.
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Overall there is no improvement in elegance apart from the introduction of type variable a,

restricted by Accelerate type classes.

ultra, linear and main

There are no type level or value level changes in ultra or linear. main has been
abstracted to the boilerplate code of the dynamic example, which leverages other libraries

such as Accelerate Gloss to render the GUI window.

Summary of Results

Function Lazy/Pure | Type Polymorphism | Declaration Style | Higher-Order
mandelbrot mid mid mid mid
complexOfPixel | mid mid mid low
dot mid mid high low
step mid mid high low
next mid mid high low
escapeToColor | mid mid mid low
ultra mid mid mid low
linear mid mid high low

Table 4.2: Assessment of Elegance for Dynamic Mandelbrot Example.

Conclusion

Overall, the move to dynamic code caused little change to the mandelbrot code. This
demonstrates the portability and modularity of the code, certainly an end goal of elegance as
found in Section 2.1. As a result, there were no improvements in the elegance of the value

level code in terms of laziness, programming style or higher order functions.

The main change in the mandelbrot code to allow for dynamic GUI interaction was changes
to the type signature of functions. At the top level, dynamic variables were converted from
concrete types to Acc arrays enclosing Scalars. While the author could have simply
wrapped these around the concrete types, they instead wrapped ad-hoc type variables, with
Accelerate type class restrictions enabling them to be propagated on. The improvements in
type polymorphism at the top level propagate down through the code, with many of the
embedded Exp types containing type variables with the same restrictions. This showed that
the level of elegance possible for the implementation was not necessarily fixed, and could be

improved.

While type polymorphism was improved, it was still restricted in this implementation. Some
restrictions were analogous to those found in non-GPGPU programming, but others were
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introduced through GPU concepts, particularly the Acc input arrays, deeply embedded Exp
types, and restrictions to the E1t type class. Fully elegant code from a type polymorphism
perspective would remove these restrictions specifically introduced by GPU concepts, and be
restricted by non-GPU type classes in the same way as regular Haskell code. This
abstraction was something that | would attempt when iterating the elegance of the

implementation in terms of polymorphism.

4.5 Improving Elegance

4.5.1 Update to Declaration Style

The first property that | chose to iterate on was the style and syntax of the program. To
update to declaration style | needed to update each of the following syntactic

constructs:
e let expressions to where clauses
e Lambda abstractions to named functions with arguments on the left hand side
e case expressions to pattern matching in function definitions
e if expressions to guards on function definitions

Forcing these syntactic construct changes would lead to a full conversion to declaration
style; away from longer expressions and towards shorter equations. The goal here was to see
if Haskell GRGPU programming, specifically Accelerate programming, restricted the ability
to satisfy this elegant property.

mandelbrot

The mandelbrot function was composed of both declaration style and expression style
constructs, with lambda abstractions and let expressions being of the latter. mandelbrot
was a call to the higher level function A.generate, whose second argument was both
lambda abstraction and a let expression. | converted the lambda abstraction to a named
function, mandelLoop, and wrote its implementation in a where clause. | also converted
mandelLoop's let statement to a where clause. There were two more lambda abstractions
passed as arguments to the Accelerate function while (analogous to a loop construct in
iterative programming). These represented the condition and updation constructs of a loop,

so | named them as such and specified their implementation in the inner where clause.

These changes fulfilled the syntactic constructs of declaration style, but | made one more
change, moving the complex0fPixel, dot, step and next functions from the existing

where clause, to the global scope. | did this because declaration style programming favours
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shorter equations over longer expressions, and having these functions in the general scope
felt more in keeping with that. In keeping with the idea of modularity linked with declaration
style, laziness and higher-order functions, they seemed more appropriate as modules at a
global scope, especially considering their mathematical nature. This had implications on the
type signature of each of these functions, as type class restrictions needed to be listed
explicitly on each instead of inherited from mandelbrot. This later became useful to more
clearly assess the type polymorphism when attempting to improve it. Another implication of
this was that additional arguments, screenX, screenY, x0, yO and width, needed to be

passed to complex0fPixel instead of inherited from mandelbrot.

mandelbrot
:: forall a. (Num a, RealFloat a, FromIntegral Int a)
=> Int -> Int -> Acc (Scalar a) -> Acc (Scalar a)
-> Acc (Scalar a) -> Acc (Scalar Int32) -> Acc (Scalar a)
-> Acc (Array DIM2 (Complex a, Int32))
mandelbrot screenX screenY (the -> x0) (the -> y0) (the -> width)
(the -> limit) (the -> radius) =
A . generate (A.constant (Z :. screenY :. screenX)) mandellLoop
where
mandellLoop :: Exp DIM2 -> Exp (Complex a, Int32)
mandellLoop ix = while condition updation initialization
where
condition zi = snd zi < limit && dot (fst zi) < radius
updation zi = step z0 zi
initialization = 1lift (z0, comnstant 0)

z0 = complexOfPixel ix screenX screenY x0 yO width

complexOfPixel

In complex0fPixel | first updated the arguments and type signature due to the additional
arguments brought over from mandelbrot. | also brought over the type restrictions on a
from mandelbrot. The only change to declaration style was updating the let statement to

a where clause, which was a straightforward conversion.

complexOfPixel :: forall a. (Num a, RealFloat a, FromIntegral Int a)
=> Exp DIM2 -> Int -> Int -> Exp a -> Exp a -> Exp a -> Exp (Complex a)
complex0OfPixel (unlift -> Z :. y :. x) screenX screenY x0 y0 width =
lift (re :+ im)
where
height = P.fromIntegral screenY / P.fromIntegral screenX * width
xmin = x0 - width / 2
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ymin = yO - height / 2
re = xmin + fromIntegral x * width

/ fromIntegral (constant screenX)
im = ymin + fromIntegral y * height

/ fromIntegral (constant screenY)

dot, step, next

The functions dot, step and next were already written in declaration style as shown in my
analysis. The only change required was to copy the type restrictions from mandelbrot on

a.

dot :: forall a. (Num a, RealFloat a, FromIntegral Int a)
=> Exp (Complex a) -> Exp a
dot (unlift -> x :+ y) = x*x + y*y

step :: forall a. (Num a, RealFloat a, FromIntegral Int a)
=> Exp (Complex a) -> Exp (Complex a, Int32) -> Exp (Complex a, Int32)

step ¢ (unlift -> (z, 1)) = 1lift (next c z, i + constant 1)

next :: forall a. (Num a, RealFloat a, FromIntegral Int a)
=> Exp (Complex a) -> Exp (Complex a) -> Exp (Complex a)

next c z =c¢ + z * z

escapeToColour

The only expression style construct in escapeToColour was an if then else statement,
which tested whether the iteration depth had reached its limit before calculating the colour.
As per declaration style programming, these should be changed to guarded expressions.
However, this was not possible, as the if then else construct here was not Haskell's,
which is analogous to guards, but instead used RebindableSyntax to overload the
construct to represent Accelerate’s 7 function. | replaced the construct explicitly with the ?

function to illustrate this. 7 is of the following type signature:
(?) :: E1t t => Exp Bool -> (Exp t, Exp t) -> Exp t

As this function was not accounted for in “History of Haskell"'s distinction between
expression style and declaration style programming, it required judgment to decide which
style this construct fit into. While updating to ? was a move away from expression style, it
was not close enough to declaration style. Declaration style favours short equations using
pattern matching or guarded expressions. Ultimately the 7 expression is analogous to the

if then else construct, as evidenced by the overloaded syntax. This ? function determines

its outcome based on an Exp Bool, which is Accelerate’s expression of a Bool, therefore
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should be treated as such. In elegant Haskell we would expect this Bool to be processable
by guards. This showed up one limitation of declaration style Accelerate programming; we

are restricted to expression style checking of the Bool rather than checking by guards.

escapeToColour
(RealFloat a, ToFloating Int32 a)
=> Acc (Scalar Int32)
-> Exp (Complex a, Int32)
-> Exp Word32
escapeToColour (the -> limit) (unlift -> (z, n)) =
n == limit 7 (packRGB black,
packRGB $ ultra (toFloating ix / toFloating points))
where
mag = magnitude z
smooth = logBase 2 (logBase 2 mag)
ix = truncate (sqrt (toFloating n + 1 - smooth)
* scale + shift) “mod™ points
scale = 256
shift 1664
points = 2048 :: Exp Int

ultra

ultra contained nested uses of the if then else construct. As with escapeToColour, |
replaced these with ? to remove this construct explicitly but was limited in full conversion to
declaration style. | also moved the sub-expression interp to global scope, for the same

reasons as moving |mandelbrot|'s sub-expressions listed above.

ultra :: Exp Float -> Exp Colour
ultra p =
p<=pl7(
interp (pO,pl) (cO0,cl) p,
p <=p27(
interp (p1,p2) (ci1,c2) p,
p <=p37(
interp (p2,p3) (c2,c3) p,
p<=ps4 7 (
interp (p3,p4) (c3,cd) p,
interp (p4,p5) (c4,c5) p))))

pO = 0.0 ; cO=1rgh8 O 7 100
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pl = 0.16 ; ¢l = rgb8 32 107 203
p2 = 0.42 ; €2 = rgb8 237 255 255
p3 = 0.6425 ; c3 = rgb8 255 170 0O
p4d = 0.8575 ; c4 =rgh8 0 2 O
pb = 1.0 ; ¢b = ¢c0

interp

interp contained a let statement, which | updated to a where clause.

-- 2nterpolate each of the RGB components
interp :: (Exp Float, Exp Float)-> (Exp Colour , Exp Colour)
-> Exp Float -> Exp Colour
interp (x0,x1) (y0,yl1) x =
rgb (linear (x0,x1) (r0O,rl) x)
(linear (x0,x1) (g0,gl) x)
(linear (x0,x1) (b0,bl) x)
where
RGB r0 g0 b0 = unlift yO :: RGB (Exp Float)
RGB rl gl bl = unlift y1 :: RGB (Exp Float)

Il

linear

linear was already a declaration style expression, so did not need to be updated.

Conclusion

Overall, the Accelerate mandelbrot code was highly portable to declaration style. Accelerate
was well suited to declaration style, as evidenced by the fact that some functions were
already written in it, and some others could be converted either through changing syntactic
constructs or moving functions to global scope. The flexibility of the syntax meant that
Accelerate could possibly fit other definitions in relations to style and syntax, as well as my

own. This made the finding more generalisable.

However, the code was restricted in terms of the flexibility of if statements, which could
not be swapped to guard expressions due to their underlying representation. This showed a
real limitation on the syntax caused by Accelerate GPU constructs. So although the syntax
was quite flexible, this showed up a limitation on that flexibility, meaning that the code

could not be made fully elegant in the area of style/syntax.
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4.5.2 Improving Type Polymorphism

The next elegant property that | chose to improve was the type polymorphism of the
program. Based on my research, these conversions would fall under three broad

categories:
e Abstracting concrete types to type variables, where possible.
e Making type variables parametrically polymorphic, i.e. unconstrained, where possible.

e Where type variables must be ad-hoc polymorphic, i.e. constrained by type classes,

ensuring the fewest constraints on them possible are applied.

These abstractions would make functions more general, increasing their modularity and
portability. Type restrictions were expected throughout, particularly in the use of type
classes, Haskell's “most distinctive characteristic” [3]. The goal was to see whether GPGPU
programming restricted types in a way that non-GPGPU programming would not, just as it

had restricted the ability to use guards on GPU Bool expressions.

mandelbrot

The first types that | looked to abstract were screenX and screenY's Int types. They
could not be abstracted further, as they were used to specify the array dimensions passed to
A.generate. Accelerate array dimensions must be specified with Ints. This is a reasonable

requirement as an array dimension cannot traditionally be of a floating point length.

The next abstraction that | attempted was the abstraction of the Acc (Scalar a) types.
These were types bounded by the type class restrictions on a (e.g. numeric types), wrapped
in the Acc and Scalar type constructors. As the code operated on a itself, a possible
abstraction was to change each occurrence of type Acc (Scalar a) to just a. It is possible
to remove Acc and Scalar, as seen in the static example analysed earlier. However, this has
implications on the performance. Representing the arguments as Acc (Scalar a) ensures
that the compiled CUDA code treats them as GPU arrays. Otherwise, they are represented
as elements within the compiled CUDA code, meaning that each time they change, the
CUDA code must be recompiled [24]. These parameters change each time the user interacts
with the GUI, which would mean recompilation of the CUDA kernel on every interaction,
which would drastically reduce performance. So to effectively leverage GPUs in Accelerate,

we are restricted in the types of these arguments.

In terms of restrictions on a itself, a must be of the RealFloat and FromIntegral type
classes as these restrictions are required by complexByPixel. The type class restriction

Num a however, is redundant so can be removed.

The type Acc (Scalar Int32) can be abstracted further to Acc (Scalar b). b must
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stay inside these type constructors for the same performance reasons as a. b must be of the
Ord type class so that it can be compared in the mandelLoop condition, which is a
reasonable restriction that would also be present in non-GPU code. Both b and Exp b are
tied to the P.Num type class (the prelude’s Num class, as opposed to Accelerate’s), due to a
restriction of step. This is more restrictive than traditional non-GPU code, as we need the

restriciton on both b when it is wrapped in a GPU expression, and unwrapped from it.

mandelbrot
:: forall a b. (RealFloat a, FromIntegral Int a,
Ord b, P.Num b, P.Num (Exp b))
=> Int -> Int -> Acc (Scalar a) -> Acc (Scalar a)
-> Acc (Scalar a) -> Acc (Scalar b) -> Acc (Scalar a)

-> Acc (Array DIM2 (Complex a, b))

In summary, we see the following additional restrictions on type polymorphism caused by

GPU programming:

e Each dynamic type must be Acc (Scalar a) instead of just a.
e a and b must be part of Accelerate type classes, which enforce membership of the E1t
type class.

e Both b and its GPU expression must be members of P.Num.

complexOfPixel

complex0fPixel’s first argument, of type Exp DIM2, represents a two-dimensional GPU
expression. This cannot be abstracted further as it is passed down from mandelbrot
representing the 2 dimensional array in which to store the result. The dimensions of the

array must match so that complex0fPixel can correctly index into the array.

The next two arguments, of type Int, represent the screen width and height. These
arguments were earlier required by mandelbrot to be of type Int when constructing the 2D

array.

The final three arguments; x0, yO and width, are of type Exp a. These represent embedded
scalar GPU expressions, which have been extracted from the scalar arrays in mandelbrot.
This is required for these values to be represented as GPU expressions in the backend. We
cannot extract a value a from an expression Exp a, as this represents running the GPU
expression at the top level. The whole idea here is that the entire GPU expression is
compiled and run at the top level, rather than executing many smaller GPU expressions
within Haskell code, causing overheads of host-device memory transfer. So these values

must remain as Exp a.

The type restriction Num a is redundant and can be removed. a is used in calculations, and
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the restriction RealFloat a must remain so that these can be floating point calculations.
Additionally, FromIntegral Int a must remain so that the Int values x and y can be
brought to type a in these calculations. It is important to note that these type classes are
from Accelerate rather than the prelude, and as well as the expected restrictions they also
enforce that a be of the type class E1t, meaning a type that can be enclosed in a GPU
expression. This is an extra restriction on the type a that would not be present in non-GPU

code.

The result of complexFromPixel is of type Exp (Complex a). We would expect this value
to be a complex type in non-GPU code (as the function is calculating a complex number),
but we see the additional restrictions on a and the Exp type constructor that we saw for the

function arguments.

complexOfPixel :: forall a. (RealFloat a, FromIntegral Int a)
=> Exp DIM2 -> Int -> Int -> Exp a -> Exp a -> Exp a -> Exp (Complex a)

In summary, we see the following additional restrictions on type polymorphism caused by

GPU programming:

e Each dynamic type must be Exp a instead of just a.
e a must be part of Accelerate type classes, which enforce membership of the E1t type

class.

dot

With dot, we see that the declaration style improvements enable improvements in type
polymorphism. The type restrictions RealFloat a and FromIntegral Int a, brought
over from mandelbrot, are not needed so can be removed. This increases the polymorphism
of a. Num a is still required, which is shorthand for (E1t a, P.Num (Exp a)). l.e. a must
be able to be embedded in a GPU expression, and that GPU expression must be of the
prelude’'s Num class. The restriction of P.Num is something that we would see in non-GPU
code, but again there are extra restrictions due to it being an embedded GPU expression.
The argument to the function is a Complex GPU expression. The complex element of this is
analogous to a restriction that we would see in non-GPU code, as this function is designed

to process a complex number.
dot :: (Num a) => Exp (Complex a) -> Exp a

In summary, we see the following additional restrictions on type polymorphism caused by
GPU programming:

e Each dynamic type must be Exp a instead of just a.
e a must be part of Accelerate type classes, which enforce membership of the E1t type

class.
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step

Again we see that declaration style improvements have enabled improvements in type
polymorphism, as the RealFloat a and FromIntegral Int a restrictions can be removed.
Additionally, each instance of Complex a can be abstracted to a, as the restriction to
complex numbers is not required in this function, so we can make it more general. We still
require that a is of the Num class and enclosed in an Exp constructor for the same reasons as
in dot.

Additionally the Int32 type is too restrictive and can be abstracted to type b. b must be of
the E1t class so that it can be enclosed in a GPU expression, and its expression must be of
the P.Num class due to requirements in mandelbrot, so this is captured with Num b.
Additionally, b must also be part of P.Num, as it is unlifted from the GPU expression and

used in a calculation before being lifted back in.
step :: (Num a, Num b, P.Num b) => Exp a -> Exp (a, b) -> Exp (a, b)

In summary, we see the following additional restrictions on type polymorphism caused by

GPU programming:

e Each dynamic type must be enclosed in a GPU Exp.
e a and b must be part of Accelerate type classes, which enforce membership of the E1t
type class.

e Both b and its GPU expression must be members of P. Num.

next

This type signature can be made much more polymorphic. The body of the function is
simple linear arithmetic, utilising the (+) and (*) constructs. The type class restriction
required for these operations is that a belongs to P.Num. So each of the other restrictions,

including both the Complex and Exp constructors, can be removed.
next :: (P.Num a) => a -> a -> a

GPU programming does not restrict the type polymorphism of this function. It has been
generalised and can be utilized by other functions, including non-GPU ones. In terms of type

polymorphism, it is an elegant function.

escapeToColour
escapeToColour's type signature cannot be made more polymorphic.

escapeToColour'’s first argument is of type escapeToColour. This is restricted to the Acc
and Scalar constructors for the same performance reasons as mandelbrot, as it is also a

dynamic parameter to a function called at the top level.
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The second argument is of type Exp (Complex a, Int32). This argument needs to be of
type Exp (Complex a, b) to accept the return type of mandelbrot in the code, which
itself is restricted by the return type of complexOfPixels.

In both arguments the wrapped values are restricted to Int32 as they are used in Int32

calculations.

The return type is Exp Word32. This cannot be abstracted further as it is the type returned
by packRGB, and is propagated higher to render the result.

escapeToColour :: (RealFloat a, ToFloating Int32 a)
=> Acc (Scalar Int32) -> Exp (Complex a, Int32) -> Exp Word32

In summary, we see the following additional restrictions on type polymorphism caused by

GPU programming:

The dynamic type must be Acc (Scalar a) instead of just a.

The second type is restricted to a GPU Exp.

The number types are restricted to Int32 due to the library implementation.

The return type is restricted to Word32 due to the library implementation.

ultra

The type signature for ultra cannot be made more polymorphic due to restrictions caused
by the interp function. The argument of type Exp Float cannot be abstracted further as
it needs to be passed to the restricting interp function, and the return type Exp Colour

cannot be abstracted further as it is returned by the restricting interp function.
ultra :: Exp Float -> Exp Colour

In summary, we see the following additional restrictions on type polymorphism caused by

GPU programming:

e The argument and return type are restricted by GPU restrictions in interp.

interp
The type signature for interp cannot be made more polymorphic.

The function takes a pair of Exp Colours, which cannot be abstracted further as they are
operated on by Accelerate’'s unlift function, unlifted into the RGB constructor. Unlifting

into the RGB constructor requires type Exp Colour.

The function also takes three Exp Floats, which cannot be abstracted further as they are
passed to linear alongside other Exp Floats unlifted from the colours, and linear

requires that all arguments be of the same type to perform its calculation.
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interp :: (Exp Float, Exp Float)
-> (Exp Colour , Exp Colour) -> Exp Float -> Exp Colour

In summary, we see the following additional restrictions on type polymorphism caused by

GPU programming:

e Each dynamic type must be enclosed in a GPU Exp.

e The number type is restricted to Float due to the library implementation.

linear

This type signature can be made much more polymorphic. The body of the function is
simple linear arithmetic, utilising the (+), (¥) and (/) constructs. The type class restriction
required for these operations is that a belongs to P.Fractional. So the restrictions that

the arguments be Exp Floats, or even just Floats, is unnecessary.
linear :: (P.Fractional a) => (a, a) -> (a, a) -> a -> a

GPU programming does not restrict the type polymorphism of this function. It has been
generalised and can be utilized by other functions, including non-GPU ones. In terms of type

polymorphism, it is an elegant function.

Conclusion

Overall, it was possible to improve the type polymorphism for this mandelbrot program. This
was best seen in next and linear where there were very little type class restrictions, apart
from single Prelude type classes intended to enable polymorphism over calculations. Smaller
polymorphism improvements were made in other functions, while certain functions, like

complex0fPixel, could not be abstracted at all.

Overall, the restrictions in type polymorphism throughout the program manifested as the

following problems:

Top level dynamic parameters enforced as Acc (Scalar a).

The lifting and unlifting of values enforcing parameters as Exp a.

Restriction to Accelerate type classes enforcing the additional restriction E1t a.

Library specific implementations returning types which could be more general, e.g.
Int32.

The attempted iteration of type polymorphism of the mandelbrot code showed that
Accelerate GPU constructs reduce the elegance possible in code in terms of type

polymorphism.
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4.5.3 Higher-Order Functions

The analysis of the mandelbrot code showed that it made very little use of higher-order
functions. One notable higher-order function which was used was while, whose function

signature is as follows:

while :: forall e. Elt e
=> (Exp e -> Exp Bool) -> (Exp e -> Exp e) -> Exp e -> Exp e

“while" is notable for because:

e It is an Accelerate/GPU function.

e It is a higher-order function, as its first two arguments are functions.

The first argument takes a Exp e and returns a Exp Bool. The second takes a Exp e and

returns a Exp e. These are the condition and updation of the while loop construct.

So although the mandelbrot implementation does not make much use of higher-order
functions, the use of while shows that they can be used in Accelerate programs. In
particular, it shows that higher-order functions dealing with GPU expressions can be

used.

While the use of higher-order functions is dependent on the implementation and the amount
of abstraction possible/desired, Haskell programmers traditionally make use of higher-order
Prelude functions which capture common patterns of computation. Some notable ones
include zipWith, map, filter, scan and fold [25]. When we examine the Accelerate
documentation, we can see that the GPU equivalent of these higher-order functions exist in
Accelerate [26]. We can compare Accelerate’s hackage listing with the Haskell prelude’s one
to see that accelerate enables equivalent higher-order functions for GPU arrays and

expressions [27]:

-- Prelude function:

zipWith :: (a -> b -> ¢) -> [a] -> [b] -> [c]

-- Accelerate function:

zipWith :: forall sh a b c. (Shape sh, Elt a, Elt b, Elt c)
=> (Exp a -> Exp b -> Exp ¢) -> Acc (Array sh a) -> Acc (Array sh b)
-> Acc (Array sh c)

-- Prelude function:
map :: (a -> b) -> [a] -> [b]
-- Accelerate function:
map :: forall sh a b. (Shape sh, Elt a, Elt b)
=> (Exp a -> Exp b) -> Acc (Array sh a) -> Acc (Array sh b)

43



-- Prelude function:

filter :: (a -> Bool) -> [a] -> [al]

-- Accelerate function:

filter :: (Shape sh, Elt e)
=> (Exp e -> Exp Bool) -> Acc (Array (sh :. Int) e)
-> Acc (Vector e, Array sh Int)

We can see that the prelude’s higher-order functions have Accelerate equivalents, where
GPU arrays take the place of generic arrays, and GPU Expressions take the place of ad-hoc
type variables. The types are restricted by Accelerate conventions as discussed earlier, but
the higher-order functions work with these type restrictions to allow them to be performed
efficiently on the GPU. Additionally, standard higher-order Prelude functions can be

leveraged in a function dealing with more traditional types.

So higher-order functions can be leveraged in an Accelerate program just as in a traditional
Haskell program, on both GPU expressions/arrays and traditional variables/arrays.
Accelerate does not get in the way of passing functions as arguments to other functions, and

processing them. In fact, it seems to encourage them.

An interesting note is that the mandelbrot implementation is low on higher-order functions.
This restriction is implementation specific, as the implementation is built up of functions
required specifically for mandelbrot calculations. An observation can be made that this
implementation makes less use of higher-order functions than Jones' non-GPU Haskell
implementation [16]. The Accelerate implementation is forced to be fundamentally different
from Jones' not due to Accelerate’s relationship with higher-order functions, but its
relationship with laziness. Laziness is at the core of Jones' implementation, on top of which
he composes Haskell prelude functions. As | will examine in Section 4.5.4, this is not possible

in Accelerate, which restricts the composition of functions in this implementation.

4.5.4 Laziness and Purity

Inspecting the laziness and purity of the Mandelbrot implementation revealed the same
result throughout each function, that the code was pure, but not lazy. To assess this final
property of elegance with regards to GPU programming, the next step was to try to improve
this property in the implementation, to deeper understand the implications of GPU

programming on it.

Unlike declaration style and type polymorphism, which had not been maximised, and
higher-order functions, which were applicable in general but not to this problem, laziness and
purity had already been maximised.
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Analysing Accelerate solely under the property of purity, it is clear that Accelerate
implementations are pure. In the Accelerate language, “Accelerate operations are pure and
thus do not mutate arrays’ [24]. At the top level, “run is a pure function at the level of the
user-level Accelerate API". When we examine the mandelbrot code, “run” occurs at the top
level of the mandelbrot set generation. “run” is the top level function of Accelerate which
returns the output of the GPU operation, which can be interleaved into regular Haskell code.
Assuming that the regular Haskell code outside of “run” is pure, and knowing that the code
inside of “run” is pure, then the purity of the code cannot be improved. So purity is not a

property of Haskell that needs to be sacrificed to leverage GPU programming.

While the code is pure, much of it is not lazy. The Haskell code is evaluated lazily until
evaluation of run is required, which hands over execution to Accelerate. Accelerate
processes the AST, compiles it to CUDA code, runs this CUDA code, and returns the result
to Haskell as the output from run. Any code that needs to leverage the GPU, forms part of
this AST and thus is executed strictly by CUDA. CUDA's strict, sequential C-based
implementation means that the author cannot leverage laziness in composing modules as
Jones did in his functional pearl [16]. Instead of deciding the depth to visualise with take,
the code uses while, a structure more commonly used in imperative languages. So the use
of Accelerate has restricted the program'’s elegance with regards to laziness, restricting the
modularity as described by Hughes [4] and making the programmer leverage certain

imperative concepts rather than functional ones.

4.5.5 Final Results

Summary of Results

Function Lazy/Pure | Type Polymorphism | Declaration Style | Higher-Order
mandelbrot mid mid high mid
complexOfPixel | mid mid high low
dot mid mid high low
step mid mid high low
next mid high high low
escapeToColor | mid mid mid low
ultra mid mid mid low
linear mid high high low

Table 4.3: Assessment of Elegance for Final Iteration.
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Evaluation of Results

The assessment and iteration of the code showed the following implications of Accelerate

GPGPU programming on elegance:

Accelerate GPGPU code is pure, is not lazy, restricts type polymorphism, restricts
declaration style programming and allows higher order functions. GPGPU programming

therefore limits the elegance of Haskell.

As discussed previously, Accelerate’s execution agent takes control of the program at the top
level run command, processing the AST, compiling the appropriate CUDA kernel, running it
and returning the result back to Haskell. The Haskell runtime has no way of enforcing
laziness and purity due to the handing over of execution. Despite this, Accelerate’s
developers make a conscious effort to keep the execution pure, preserving a key elegant
property of Haskell. The same is not true for laziness, as the CUDA code is compiled and

run strictly before handing the result back to Haskell.

We see restrictions on the type polymorphism of the program, primarily through the forcing
of Exp types and their enclosed types belonging to E1t. Some polymorphism is still possible,
one example being ad-hoc polymorphism adhering to E1t within Exp. In some instances,
polymorphism without restriction to these constructs is possible. This is where values do not
have to be 1ifted or unlifted out of and into GPU expressions. In this case, functions are
more generalisable and can be used by both GPU and non-GPU code. In general though,
this is not the case, and the programmer may have to write GPU expression-specific

functions.

Declaration style could achieved throughout most of the program, with many expression
style constructs being updated to declaration style, and longer function bodies being
updated to shorter equations. This showed the flexibility of Accelerate in terms of
programming style. Declaration style could not be fully achieved though, with restrictions on
guarded expressions and pattern matching. This is due to Accelerate's deep embedding. The
value of the pattern match would only be known by Haskell once the expression has been
evaluated, i.e. once Accelerate has returned its result to Haskell, which would be reliant on
the pattern match, resulting in a circular dependency [28]. This same problem occurs with
if statements within the deep embedding, so Accelerate overwrites the syntax to represent
its own conditional operator which is handled at CUDA runtime. Pattern matching is more
general than if though, as it works on more than just Boolean operators, so cannot be
replaced by a single equivalent function. As a result, the expression style if statement is
available to us while guards and pattern matching are not. GPGPU programming through

deep embedding has restricted the elegance of the syntax in this way.

Analysis also showed that higher-order functions may be leveraged in Accelerate GPU
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programming, including equivalents to higher-order Prelude functions in Accelerate that
receive and return embedded expressions. This specific implementation used very few
higher-order functions in comparison to the elegant, sequential implementation analysed, but
that was due to the latter's use of laziness being central to its modularity, which could not
be leveraged in Accelerate [16]. This is a practical example of Hughes' argument in “Why
Functional Programming Matters’, on how laziness and higher-order functions together are
the glue that enable modularity in functional programming [4]. Without laziness some of
this modularity was unavailable, but in general higher-order functions are still available to be

leveraged where possible.
Overall, the following elegant properties of Haskell hold for GRGPU programming;:

e The code is pure.

e The code uses higher-order functions, where possible.
The following limitations to elegance of Haskell GRGPU programming were observed:

e The code is not lazy.
e Type polymorphism is restricted.

e Declaration style programming is restricted.
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5 Evaluation

5.1 Choice of Library

The evaluation of results showed that purity and higher-order functions could be leveraged in
Accelerate, while there were restrictions to laziness, type polymorphism and declaration style
programming. The positive results hold for GRGPU programming in general; if a property is
possible in Accelerate, then it is possible in GPGPU programming. However, if a property is
not possible in Accelerate, this may be a library specific limitation that is not present in
another library, therefore not a limitation on GPGPU programming in general. It is
important to evaluate the properties found not to hold more generally, using knowledge from
Section 2.2 and Section 2.3 to understand if these properties could have been preserved with

a different choice of library.

Laziness is a property found not to hold for Accelerate programming, due to Accelerate’s
deep embedding and handing off to the CUDA runtime, which executes strictly. This is not
unique to Accelerate. Section 2.3 showed that Obsidian and Nikola operate under the same
premise. They are deeply embedded in Haskell, with their syntax building an AST, which
gets translated to CUDA and executed before handing the result back to Haskell. This is a
sensible requirement; for Haskell to leverage GPUs, it must hand its execution to tools which
leverage the GPU. So code that runs on the GPU cannot be lazily evaluated by Haskell, and
is evaluated by the underlying GPU technology. GPGPU tools’ implementation as an
extension of C means that they get executed strictly. The lack of laziness is not due to the

choice of the Accelerate library, and is a more general result of GPGPU programming.

Type polymorphism is a property found to be restricted by Accelerate programming. In
particular, variables needed to be enclosed as Acc arrays or Exp scalars. These enclosed
types needed to be of the type class E1t, i.e. types that were valid as part of GPU
expressions in the AST. In Section 2.3 we saw a similar construct in Nikola, where every
value in the type signature of a Haskell function needed to be have an Exp type constructor
to make it a Nikola function. However Nikola sought to be less restrictive with types,
enabling general Haskell function compilation onto GPUs. Obsidian was more restrictive

than Accelerate, enabling kernel computations on arrays of values of Integers, Floats,
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Booleans, arrays or tuples. Nikola's approach shows that less restrictive approaches are
possible with regards to type polymorphism, but the lack of support for Nikola for the past

ten years means that this can currently be leveraged in theory but not in practice.

Declaration style is a property found not to hold for Accelerate programming. Though most
of the functions of the mandelbrot implementation could be iterated to declaration style,
those containing if statements could not be iterated to ones which pattern matched on
guards. This is due to the deep embedding, and is a problem that the authors of Accelerate
are currently working on [28]. Pattern matching occurs at Haskell runtime, but Haskell
cannot know the outcome of the pattern match until after the patterns have been evaluated,
i.e. after the deeply embedded AST has been evaluated and the result returned to Haskell,
at which point it is too late to evaluate the pattern. This is a shortcoming of deep
embeddings in general, rather than specifically Accelerate or GPGPU programming. Yet, it is
one that Accelerate’s developers are working on, defining a general method for pattern
matching in deeply embedded languages, using Accelerate as a specific EDSL to illustrate
this method. So while this particular shortcoming in terms of declaration style is currently
unavoidable in deep embeddings, therefore unavoidable in Haskell GRGPU programming, it
soon will be avoidable in Accelerate specifically, and other EDSLs which choose to

implement this method.

This analysis shows that Accelerate was an appropriate choice of library to tackle the
question of elegance in Haskell GPRGPU programming. Use of Accelerate showed that purity
and higher-order functions were possible. Restrictions in laziness would have shown in any
other Haskell GPGPU library due to the requirement of deep embedding and execution by
GPGPU tools. Very little restrictions were shown to declaration style programming, and
those that were found are actively being worked on by Accelerate’s developers to solve a
more general problem. So use of and further investigation of Accelerate has shown that
declaration style is possible in theory in GPGPU programming, and will soon be possible in
future. Accelerate was only found to be overly-restrictive in its type polymorphism,
restricting types within the Exp construct in a way that Nikola does not. However, Nikola's
lack of maintenance and low userbase makes it an unreasonable choice for GPGPU
programming in practice, and its type signature still requires Exp type constructors to signify

a deep embedding.

5.2 Definition of Laziness

Background research in Section 2.1 and Section 2.4.2 informed a working definition of
elegance. This definition consisted of four key properties; laziness/purity, type
polymorphism, declaration style programming and higher-order functions. Having applied

this definition to research, it was now possible to evaluate the definition itself to assess if the
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same properties were still relevant.

Laziness and purity were two concepts linked together in the definition, informed by the
background research. “A History of Haskell” noted the link between laziness and purity, and
the idea of lazy evaluation leading to unreliable side-effects, noting that “laziness kept us
pure” [3]. Analysis of the mandelbrot code, Accelerate library and Haskell GPGPU
programming in general showed that these concepts should not be linked as the same
property. The level of elegance for this property throughout the code was middling, but this
was really an average of two properties; the code was pure, but it was not lazy. This does
not contradict any concepts found in the background research - laziness implies purity, but
purity does not imply laziness. This elegant property should be separated into two properties
in the working definition for elegance; “An elegant program is lazy in 100% of its

evaluations” and “An elegant program is pure in 100% of its evaluations”.

In terms of the validity of these individual properties themselves, they remain valid properties
of elegance. Purity's importance as found in Section 2.1 and Section 2.4.2 was reinforced by
analysis of Accelerate, which found that its developers ensured that its computations
remained pure, making it a “purely functional embedded language” [24]. Purity has beneficial
implications in Accelerate; immutable arrays mean that device arrays can be shared, reducing
the memory required. An array only needs to be transferred to the device on first use, as it
cannot be changed ahead of later uses. Concurrent evaluation is also always sound due to
purity. Indeed McDonnell argues that “purely functional embedded languages represent a
good programming model for making effective use of massively parallel SIMD hardware”
[24]. The benefits of purity also show in the ongoing work on embedded pattern matching,
where “the construction of the AST for the embedded program has to be a pure function”
for it to be successful [28]. Purity's importance to the elegance of Haskell, as analysed under
both discussions of the design committee and also its importance to fractals, has been

reinforced when looking at its role in leveraging GPGPU programming in Haskell.

While purity was central to GPGPU programming in Haskell, laziness was mostly absent,
only appearing in regular Haskell code and being swapped for strict execution when the
CUDA runtime took control. This calls into question whether laziness is a necessary elegant
property in Haskell if GPGPU programming can be achieved effectively without it. While the
functionality could be achieved, analysis of it when acknowledging the background research
shows that there is a sacrifice in Haskell's elegance to achieve it. Hughes previously
attributed laziness and higher-order functions as two elegant properties that were the “glue”
of functional languages, enabling concise modularity [4]. It was also attributed to the
modularity of Jones' elegant implementation of generating the Mandelbrot Set in Haskell,
where we see a practical example of the separation of a generator and a selector as described
by Hughes [16][4]. The Accelerate code does not have laziness at its core, as this is

restricted by GPGPU programming. Instead, it achieves the functionality with an imperative
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while construct. Without laziness at its core, the generator/selector model falls away, as
does the combination of laziness and higher-order functions as the glue of the program. This
affected the elegance judgement of the program for the property of higher-order functions,
even though higher-order functions are present in Accelerate. The absence of laziness in
GPGPU programming negatively affected the elegance of the implementation studied,

therefore making laziness a valid property of elegance.

As well as laziness, higher-order functions were deemed to be a property of which the
implementation was particularly lacking. Although it was low in this particular
implementation, it was shown to exist in Accelerate, with the lack of it in this
implementation being due to a lack of laziness. As the implementation was achieved
effectively without higher-order functions, the same question arises as for laziness: is it a
necessary elegant property? The analysis showed that it is, and that a less concise and less
modular implementation in Accelerate was due to lack of laziness and higher-order functions
in the code. Higher-order functions are as crucial as laziness in making an elegant, concise
and modular program as discussed by Hughes [4]. Based on the same logic as laziness being
a valid elegant property, so too is use of higher-order functions. The developers of
Accelerate are clearly aware of this importance, ensuring to provide implementations of
prelude higher-order functions for the programmer to leverage in a GPU context. But,

without laziness, a programmer cannot fully utilize their elegance.

A fourth aspect of the definition of elegance was the ability to achieve declaration style
programming as defined in History of Haskell [3]. This was a choice to but some formal
definition on the property of elegant style and syntax, which is usually an intuitive property
attributed to Haskell's elegance. The choice was grounded in a distinction made in styles by
members of the original Haskell committee, but was somewhat arbitrary. Seeing this style
leveraged in other literature which referenced elegant style and syntax showed the validity of
this choice [16]. The properties of declaration style enabled some grounded analysis of the
syntax of the mandelbrot example, Accelerate, GPGPU programming and deep embeddings,
most notably the distinction between utilizing if statements while being unable to utilize
pattern matching. The background research coupled with analysis of the implementation
showed the importance of having some rigid property of elegant style and syntax as part of
the definition. However, the choice of exactly which syntactic elements is still subjective, so
this property of the working definition of elegance is the most malleable. A future iteration
of elegance may emphasise expression style, or some mix of syntactic components, as
elegant syntax, provided that this property has some credibility.

The fifth property of elegance was the use of type polymorphism. This property was
informed by discussions of type classes, Haskell's “most distinctive characteristic”, in History
of Haskell [3]. Type classes were a key contribution of Haskell to functional programming,

and were a property that didn't exist a the time of Hughes' Why Functional Programming
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Matters. They enable overloading of operations and type polymorphism. Polymorphism was
also a key feature of Jones' functional pearl composing fractals [16]. Polymorphism was thus
defined as an elegant property. This property was tested for in the mandelbrot
implementation by assessing whether additional restrictions were placed on type
polymorphism by Accelerate - if so, the elegance was restricted. This was common across
the implementation, with type signatures typically being enclosed in the Acc or Exp type
constructors, and enclosed types belonging to the class E1t. But this restriction is desired
by the authors. As part of current work on embedded pattern matching in Accelerate, Bool
is being removed from the E1t class, due to evaluation of boolean expressions being
replaced by pattern matches on conditions [28]. The set of types now “contains only real
machine types: signed and unsigned integers ..., floating point numbers ..., and SIMD
vectors of these types”. It is clear that the authors have purposely restricted the
polymorphism of E1t with the aim of representing real GPU types. When looking at the
restrictions from this end, we can see that the authors are leveraging type classes to ensure
that functions can only process appropriate GPU types. The Exp type constructor, which
represents an embedded expression, is also necessary to distinguish between an embedded
type and non-embedded type, allowing types to be lifted into and unlifted from the deep
embedding, thus allowing them to be used for different functionality. We see its presence in
Nikola as additional evidence of its necessity to the deep embedding required. So the
restriction of type polymorphism in elegance, as it stands, should be removed from the
working definition. It stands to reason from the research that some property of elegance in
Haskell relate to type classes and type polymorphism, but it is difficult to strike the balance

between desired restrictions and parametric polymorphism in the general case.

5.3 Research Method

The first step of the research method was to carry out background research. This included
background research on elegance in Haskell, Haskell GPGPU programming, and fractals.
These areas were researched to form a well founded working definition for elegance, choose
and understand an appropriate GPGPU library, and select a suitable problem domain
specifically. Following this, elegance was defined and Accelerate was chosen. Research into
fractals and Accelerate showed that two different Mandelbrot Set examples had been written
by the developers. It was decided to assess the elegance of these, note a difference in
elegance, and iterate on the more elegant one. This would demonstrate practically the

limitations of elegance in Haskell GRGPU programming.

Upon reflection, one substantial improvement that could have been made to the research
method was to answer aspects of the question in the background research stage. Assessment

of the elegance in the background research stage would have revealed certain answers earlier,
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including Accelerate’s relationship with purity and laziness. This would have guided the
implementation stage better, giving more direction to assessing each of the elegant

properties rather than seeking to fully understand by analysing the implementation.

Additionally, the project would have benefited from writing the implementation from scratch,
rather than iterating on existing examples. Guided by background research of the elegance
achievable in Accelerate, an implementation could have been written which seeks to
maximise elegance from the start. This would be guided by the elegant, non-GPGPU,
Haskell-based approach implemented by Jones [16]. This would enable an elegant design
from first principles, saving some time in assessing and iterating already existing code. This
could be written from scratch utilizing Stack or Nix for package management, mitigating the
time lost in package and project setup in Cabal. Additionally, this While the project was
completed and the research question was answered on time, saving time using this method

could have enabled progress on some of the Future Work in Section 5.4.

While time could have been saved in certain areas of the project, the research method
enabled the question to be answered. Research into elegance using the chosen sources led to
a sound working definition for elegance, and research into GPGPU libraries in Haskell
enabled the one to be chosen which, upon reflection, allowed the most generalisable results.
Assessment and iteration of the code did enable the question to get answered, and learnings
on Haskell, GRGPU programming, Accelerate and deep embeddings in general. Fractals, in
particular, were an ideal problem domain under which to examine elegance and GPGPU
programming, due to their suitability to both, and led to results which could be generalised

to broader Haskell GRGPU programming.

5.4 Future Work

5.4.1 Testing with Obsidian

Background research before the implementation, and evaluation afterwards, showed that
Accelerate was the most suitable library with which to assess the elegance of GPGPU
programming. Nikola's lack of support and maintenance ruled it out as a suitable contender
for modern GPGPU programming. Obsidian, a lower level EDSL, was ruled out due to its
closer ties to imperative GPGPU constructs. While this project showed that elegance is
mostly possible in GPGPU programming, it may be beneficial to see if a similar level of
elegance is possible with another library, i.e. Obsidian. This would contribute to the
literature in demonstrating whether there is flexibility in library choice to achieve elegant
Haskell GRGPU programming. In terms of the current research, the future work could make
use of the current working definition of elegance, findings about restrictions of GPGPU

programming, findings about restrictions of EDSLs and a best case measure of elegance for
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GPGPU programming in Haskell.

5.4.2 Pattern Matching in Accelerate

As discussed, there is ongoing work in implementing embedded pattern matching in
Accelerate. When this is implemented, future work could re-examine the elegance of
Accelerate, to understand if declaration style may be now fully leveraged in Haskell GPGPU

programming.

5.4.3 Evaluation of Boilerplate Code

The evaluation and iteration of the Mandelbrot code at each stage of the process involved
working with the core code that generated the set, not concerned with how it was visualised.
The second, dynamic, example visualised the set with an interactive GUI, which required
boilerplate code to achieve this with Accelerate. While evaluation of the core Mandelbrot
code answered questions about GPGPU programming, evaluation of the boilerplate code
could make a good case study on evaluation of the elegance of graphical programming in
Accelerate, which is a more specific domain of GPU programming. This could lead to
equivalent discoveries on the capabilities and restrictions on Haskell GPU programming in

the graphics domain as were discovered in the general purpose domain.
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6 Conclusion

It is clear from the research that Haskell GRGPU programming is not fully elegant.
Limitations exist in laziness, type polymorphism and syntax. However, limitations in type
polymorphism exist by design, and as a result of deeply embedded expressions, a property
much more general than to just GRGPU programming. Similarly, the limitations in syntax
exist as a general result of deep embedding, a limitation that is being actively overcome in

Accelerate with general implications on deeply embedded languages.

The only unique restriction that GPGPU programming places on Haskell is on laziness. This
is not enough of a restriction to discount Haskell as a solution to the difficulties of GPGPU
programming. An elegant program is the ideal case, and in the real world many programs
will not be fully elegant. That a GPGPU program can be mostly elegant shows that it
leverages most of the properties that make Haskell worthwhile. Haskell GPGPU
programming leverages the performance efficiencies of GPUs and the core properties of
Haskell. While there are sacrifices in both, they are worthwhile for a programmer that wishes

to leverage both at once.

Accelerate is a powerful library and EDSL that enables GPGPU programming to a high
standard, leveraging Haskell to high potential. It remains supported over a decade after its
release, and the authors continue to improve its features, including those which directly
affect elegance such as embedded pattern matching. Overall, it is a useful and
ever-improving tool for a functional programmer who seeks to gain performance increases in
their code, or a GPGPU programmer that seeks to leverage the benefits of functional

programming.

The definition of elegance in this dissertation remains a working definition. Purity, laziness
and higher-order functions play a key role, as does syntax - albeit with a more flexible and
subjective interpretation. Background research also indicates that type classes and
polymorphism have a part to play in the elegance of a program, but it is difficult to bound a
restriction on what is “too restrictive” or “too polymorphic”. In any case, the working
definition of elegance provides ample groundwork on assessing the usefulness of domain
specific programming in Haskell, understanding if they leverage its key properties enough to

justify its use over other high level languages.
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Al Appendix

Al.1 dependencies.txt

List of cabal installations required:

gloss

gloss-accelerate
accelerate-debug
criterion

fclabels

accelerate
test-framework
network-http
network-conduit

HTTP

http-types
test-framework-providers
test-framework-hunit
test-framework-quickcheck?2
statistics-0.15.2.0
accelerate-llvm
accelerate-llvm-native
accelerate-io
accelerate-io-codec
accelerate-io-bmp

colour-accelerate

59



