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Abstract 
 
Graphic Interfaces with Semiotic Mediation for Learning Algebra 
 
Mathematics is considered to be difficult to learn and difficult to teach and has traditionally been 

taught by developing a set of skills and procedures which are then applied to solve problems 

(Wood 1988).  Learning mathematics is difficult for many but algebra seems to present a particular 

problem because of its abstract nature.   

 
Many researchers have examined the learning of mathematics and algebra but Bruner’s(1967) 

Theory of Instruction presents a model which he used to teach quadratic functions and which was 

adopted for use with ICT in this study.   The research was also informed by the work of Mariotti 

(2002) who advocates the use of an artefact as a channel of communication between student and 

artefact and student and teacher.   

 
 In this research using graphical interfaces, to replicate Bruner’s model enabled the user to move 

from the enactive to iconic to symbolic representations. This artefact was not designed for 

independent learning but to be used with the teacher’s intervention for the purpose of abstracting 

and developing concepts.  The study was implemented in a second level school with five 12/13 

year old students.   

 
Qualitative research was the most suitable in this context and the case study design was adopted.  

The testing sessions were conducted with individuals to enable video recording of participants’ 

interaction with the interfaces and of the dialogue between teacher and student.  This evidence was 

supported by a post test and an online questionnaire which formed the basis for individual taped 

unstructured interviews. These instruments provided data which was analysed and triangulated to 

produce reliable findings.   

The findings clearly indicate that the students learned some algebra in a very short time. The 

artefact helped them to overcome the common obstacle of closure in algebra.  They were assisted 

in arriving at an understanding of the source and use of symbolic notation. Meaningful dialogue, 

which contributed to meaning making and abstraction of concepts, occurred between student and 
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teacher using the graphic interfaces as a tool of semiotic mediation. The experience gave the 

researcher insight into the need for the adaptation of pedagogy when integrating ICT into teaching 

and learning.



 

1  

Chapter 1  Introduction 

1.1 Background 
Mathematics is a subject which children are usually introduced to in their own homes before ever 

attending school.  The idea of number arises in everyday life when a child knows how many are in 

his family or how many sweets he has got and several other simple examples.  The primary School 

Curriculum introduces mathematics from the very beginning and it is a core subject in all second 

level schools.  Many students experience difficulties in learning maths and teachers find it difficult 

to teach.  The aim of this study is to examine the effectiveness of using graphic interfaces to assist 

students in understanding mathematical concepts. 

   

1.2 Literature Review 
The difficulties with mathematics and more particularly with algebra have been acknowledged by 

many researchers who have explored the areas of teaching and learning maths and understanding 

mathematical concepts(Papert, 1993; Skemp, 1986; Wood, 1988).   The mere verbal transmission 

of information is not considered sufficient and students interpretation is often not that intended by 

the teacher.  Strategies which make the experience of learning maths and algebra more meaningful 

were explored and among them the use of technology.  

The methods by which technology could be incorporated in teaching and learning was of particular 

interest in order to assist in the design of  an artefact to teach maths. Tall and Thomas (1989; , 

1991) carried out research into the use of ICT(Information and Communication Technology) in 

mathematics and it clearly recommends the benefit of another facility added to textbook and 

teacher for getting the maths from the mind of the teacher to the mind of the student.  They 

described this method as the Enhanced Socratic Mode where the technology provides the 

enhancement. In the context of integrating technology into maths teaching and learning the role of 

the teacher is significant.    

The role was examined as the teacher could no longer be considered to be instructing or 

transmitting information but was to be a party to teaching and learning which used an artefact as a 

teaching tool.  Mariotti’s (2002) theory of semiotic mediation has a twofold aspect (a) the role of 

the artefact (b) the role of the teacher in assisting the student with meaning making while using the 
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graphic interfaces. This theory informed the author when deciding on a teaching strategy to adopt 

when using the artefact with participants. 

 

1.3 Research Questions  
From the literature reviewed the model employed by Bruner using Dienes blocks to teach quadratic 

functions influenced the author to replicate this model using graphic interfaces. Bruner(1967) in 

his Theory of Instruction stated that any domain of knowledge can be represented in 3 ways : a set 

of actions (enactive representation); a set of summary pictures or graphics (iconic representation); 

a set of symbols which are governed by rules or laws(symbolic representation).  

 
The research questions which the researcher examined  with this model are: 

How does an ICT replication of Bruner’s Enactive, Iconic to Symbolic representations assist 

students’ understanding of mathematical concepts?  

Can the researcher get insights into Marotti’s two-fold view of semiotic mediation regarding   

The role of the artefact? 

The role of the teacher?  

 

1.4 Design of the Artefact 
The artefact was designed in Multimedia Flash which was embedded in a website.  Users were in 

control and the interfaces provided the user with shapes for construction.  From the construction of 

squares and rectangles symbolic notation was developed and explored. The store of images created 

enabled dialogue to occur between student and teacher which facilitated making meaning and 

generalising from the patterns observed. The artefact was designed to enable learners to construct 

knowledge actively and develop understanding with the assistance of the teacher. 

 

1.5 Implementation 
The implementation occurred in a small rural second level school in Ireland.  The students were 

12/13 year olds and they were selected from a first year mixed ability group.  There were 2 boys 
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and 3 girls.  The researcher, a teacher in the school, though not of this group, carried out the 

research with each student individually over a five week period.  Students participated in two or 

three sessions depending on their pace of learning. 

 

1.6 Methodology 
The nature of the research was qualitative and the case study was the design adopted.  Data was 

collected primarily on video tape during each session with the student in order to gain insights into 

the level of interaction between student and artefact, the role of the artefact as a tool for semiotic 

mediation between teacher and student and the role of the teacher.  A post test questionnaire was 

completed at the end of the sessions with each student.  These provided a basis for individual taped 

interviews.  Post test questions provided the only element of quantitative data which showed what 

actual learning, if any, occurred during the research.  These sources of data were used to 

triangulate the evidence and thus provide reliability within the research. 

 

1.7 Findings  
The students were successful in learning algebra in a short time which was evident from their 

scores on the post test.  The artefact enabled the participants to achieve clarity, from their 

constructions in distinguishing the concept of length and area and writing them appropriately in 

algebraic notation.  The students, through their constructions, were provided with a store of images 

which they could refer to when explaining emerging patterns and generalizations. The artefact 

enabled the teacher to engage in dialogue with the student in order to clarify and make meaning at 

all stages of the learning process.  The role of the teacher was different when teaching with this 

medium and necessitated the adoption of a different pedagogy to that which would be used when 

transmitting knowledge in a more traditional setting. 

 
 

1.8 Conclusions 
In a case such as this it is not possible to generalise because the sample was so small. The evidence 

suggests that this was a successful way to teach algebra and it assisted students in understanding 

the concepts but the reality in schools is that classes are taught as a unit. Further study could be 
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done with this artefact to examine if it would be suitable for use in a whole class situation with an 

interactive whiteboard as a tool for mediation and collaboration.  
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Chapter 2   Literature Review 

2.1 Overview 
This study aims to examine the effectiveness of the integration of ICT in teaching mathematics to 

assist student’s understanding of concepts.  The areas of relevant literature to be examined as a 

background to this study cover the philosophy of constructing knowledge, the difficulties of 

teaching and learning mathematics and in particular algebra and the formation of mathematical 

concepts. In order to inform the researcher in creating an effective artefact the impact of 

integrating ICT into the teaching and learning of maths and the role of the teacher in this process 

was explored.  

2.2 Methods 
A review of the literature was conducted from books, journal articles and conference proceedings 

papers sourced from the library of Trinity College, Dublin.   

On-line journals and articles were sourced from the internet and keywords used were:  learning, 

mathematics, algebra, technology, teaching, ICT, semiotic mediation. 

 

2.3 The Constructivist Approach 
Constructive practices are described by many as student centered teaching as distinct from the 

teacher dominated practices and instruction should be the process which supports construction 

rather than communicating knowledge. During the construction of knowledge learners are actively 

engaged in exploring, creating, recreating and interacting with the environment.  They learn to 

build structures which lead to critical thinking and an ability to solve problems.  This constructivist 

approach enables students to learn content and process at the same time(Malabar & Pountney, 

2002; Marlowe & Page, 1998). These are the opinions of recent researchers but the notion of 

constructing knowledge has been well established by theorists such as (Bruner, 1967; Piaget, 1967; 

Vygotsky, 1978).  Construction and discovery were at the core of Bruner’s Theory of Instruction 

and Bruner and Piaget stress that procedures must be grounded in practical activities if they are to 

be meaningful.  Vygotsky (1978)concurred with the constructivist theory of learning with the 

addition of social interaction for meaning making (Piaget, 1967).  
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Sfard (1991) considers that the major aim of teaching maths is to develop understanding and he 

suggests that the constructivist approach with teacher interaction enables learners to build 

understanding. 

 

2.4 Difficulties with mathematics 
In the case of mathematics there are a plethora of theories and opinions as to why difficulties exist.  

They can be divided into teaching issues and learning issues. Papert(1993) referred to the difficulty 

with learning maths as mathphobia which he explained as a widespread fear of mathematics. He 

claimed this belief in individuals was very deep and as individuals encountered failure when 

attempting a mathematical task the consequence was further reinforcement of fear.  He argues that 

this type of experience prevents people from doing anything that they recognise as maths related  

  
Wood (1988)accepted that mathematics was difficult to learn and difficult to teach.  He argues that 

the difficulty arises as a result of traditional mathematics methodologies which are instructivist and 

where attention is given to drills and procedures while neglecting conceptual understanding.  

Skemp (1986) stated that training students to manipulate symbols and memorise a set of rules with 

little or no meaning attached was what was inflicted on students when learning mathematics.  He 

argues that this unconnected material is hard to remember and boring.  This approach involves rote 

learning of rules and procedures and Tall(1986) would hold that rote learning of facts may assist to 

build a foundation but meaningful learning of facts is necessary for flexible thinking which is 

needed in mathematics.  He argues that this procedural thinking gives short term results but is 

likely to lead to failure in the long term.  These short term results may well be what motivates 

teachers to pursue this approach as it may enable students to pass examinations at school but will it 

permit them to pursue maths at any higher level or to choose a career with a well developed 

mathematical requirements?  Kaput(2000) argues that the procedural approach drives people away 

before thy have an opportunity to experience any construction of mathematical knowledge or to 

realise the importance of mathematics and its usefulness in their lives.     
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2.5 Difficulties with Algebra 
This difficulty with mathematics becomes more apparent with algebra and Kaput(2000) refers to 

algebra as the topic that almost everyone, it seems, loves to hate.   In relation to algebra he 

comments on how it has been taught and its disconnectedness from other mathematical knowledge 

and from the real experiences of the students. 

 
Skemp(1986) referred to algebra as generalised arithmetic and he claims that to understand algebra 

one must first understand arithmetic and to understand algebra without first understanding 

arithmetic is impossible.  This gap between arithmetic and algebraic concepts is very difficult to 

bridge.  It is essential that when skills are acquired that they are understood as the acquisition of 

skills and knowledge does not guarantee understanding which is essential for the critical and 

creative use of that skill (Gardner, 1993; Perkins, 1993).  Tall and Thomas (1991)explain how 

some of the difficulties arise for learners of algebra.  There is a conflict between natural language 

and the symbolism of algebra.  Firstly, reading is from left to right but in algebra following this 

may lead to wrong interpretation of an expression. Also students in arithmetic had an emphasis on 

arriving at an answer and that brought closure but in algebra they have difficulty understanding for 

example 3 +5x and they attempt to bring closure to such an expression by tidying up to one piece 

of notation, in this case 8x (Collis, 1972; Tall & Thomas, 1989).  Mc Gregor and Stacey (1997) 

suggest that success or failure in algebra may be due to the way the subject is introduced, the 

teaching materials, teaching styles and the learning environment. Initial difficulties if they are not 

discovered and corrected may persist for years and lead to an inability to make sense of algebra. 

Hart (2004) argues from evidence of the CSMS(Concept in Secondary Maths and Science) 

programme in the UK that achievement in the area of algebra is closely linked to the IQ scores of 

the individuals and he emphasises that the progression is at a different rate as children grow older 

thus making it very difficult to teach algebra at the same pace to a whole class. Shayer and 

Adey(2002) too are concerned about the number of students who do not reach the level of formal 

operations which would enable them to understand algebra.  Kaput(2000) claims the challenge is 

finding ways to make the power of algebra available to all students by creating a classroom 

environment which enables students to learn with understanding.  To infuse algebra throughout the 

mathematics curriculum and to alternate algebra and arithmetic all through school is his 

recommendation. 
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2.6 Mathematical Concepts 
The development of a concept is something which has occupied the minds of many researchers.  

Bruner’s (1967) theory is that concepts are developed through three modes of representation the 

enactive which allows the students to manipulate objects – manipulating, the iconic images are 

created from the building of shapes, diagrams, pictures or graphs –depicting, the symbolic when 

symbols are used in an abstract way – denoting. Mason et al.(2005) extended Bruner’s work to 

develop the spiral MGA which is to manipulate, get a sense of and articulate.  Tall and Thomas 

(1991) also identified with Bruner’s theory by labelling the stages as enactive, visual and symbolic.   

Individuals can mentally construct concepts, according to Skemp(1986) by: 

 
1. interaction with the real world 

2. interaction with other people 

3. internal reflection on concepts and the relationship between them.  

 
Later Tall and Thomas (1991) divided the interaction with the real world  into the manipulation of 

inanimate objects on one hand and cybernetic systems( computer software) on the other.   

A concept is an idea and for a concept to be formed it requires a number of experiences which 

have something in common and these experiences enable generalisation.  Kieran(1997) tells us that 

generalising takes place in very young children before they ever go to school.  When children 

count objects they become aware that the order in which they do this does not affect the result and 

then they have engaged in generalisation. Generalising is an essential element in the formation of 

mathematical concepts. According to Mason et al(2005) the power to generalise is the root of all 

algebra learning.  

 
A particular difficulty with algebra is the concept of a variable.  If during the introduction to 

algebra an object is assigned to an alphabetical symbol rather than a numerical value the result can 

be difficult to undo.  Crowley et al(1994) acknowledged this difficulty when they described the 

short term strategy, often adopted by teachers, of the fruit salad approach.  This arises when a 
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teacher may explain 3a + 2b as representing 3 apples and 2 bananas which works in addition but 

creates problems when 3ab has to be explained.  Crowley et al(1994) proceeded to develop a new 

idea of a procept which is a combination of process which enables students to do maths by 

following procedures, and a concept which enables students to think and manipulate mentally.  A 

procept represents the process and the concept.  This procept is common in algebra where two 

different symbol strings represent the process and the product of the process as in 2(x+3) = 2x+6.  

They emphasise that the mental manipulation of procepts gives the learner great power  (Crowley, 

Thomas, & Tall, 1994; Kramarski & Hirsch, 2003).  Skemp (1986)suggested that the computer 

created a suitable environment for building and testing mathematical concepts. 

 
 

2.7 Impact of ICT 
Pea(1985) believes that computing should not just allow learners do traditional tasks more 

effectively but it should change the tasks we do so that the software provides the students with 

tools for supporting and reorganising their thinking.  When computers were first introduced in 

schools they were usually said to carry out tasks which might have been traditionally done with 

pen and paper, or access to computers was as a reward for completing other tasks successfully 

(Pea, 1985).   Somekh(1991) and others would be supportive of this idea of pea’s and would be 

very critical of an approach where computers are used as an add on or bolt on instead of the 

computer as a cognitive tool to support cognition and meta cognitive processes. 

Kaput (2000)states that the three aspects of electronic technology which impact on mathematics 

are: 

1. interactivity 

2. control by designers of the learning environment 

3. connectivity 

 
Thompson(1992) did a comparative study which supported this view and he comments on the 

difficulty that exists when using technology to inject meaning when students have already learned 

and automised procedures meaninglessly.  Clements(2000) advocates a problem centered approach 
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which is motivating for learners.  Students are encouraged to explore ideas engaging knowledge 

they already have, to make decisions and then receive feedback and this experience is removed 

from drill and practice.  It must be acknowledged that students may not always learn what the 

teacher intends and using techniques in the traditional methods learners may arrive at the correct 

answer but with little understanding.  Students are less likely to be able to hide their lack of 

understanding in the computer environment (Clements, 2000; Laborde, 1993). There are 

commercial computer applications available for use in schools and Lagrange when commenting on 

Computer Algebra Systems (CAS) states that they have great potential to contribute and improve 

student learning in maths because of the speed of calculation and capabilities of presentation of 

representations but they may be lacking he considers in enhancing student reflection  and 

understanding (Lagrange, 2005).  Oldknow and Taylor(2003, p. 58) state that ICT has great 

potential to make a significant contribution to the teaching and learning of mathematics in 

secondary maths.  They bring three key principles to our attention which should be applied before 

deciding to use ICT in teaching a subject or sections of a subject. 

1. Decisions about when, or when not, and how to use ICT in lessons should be based on 

whether the use of ICT supports good practice in teaching the subject.  If it does not, it 

should not be used. 

2. In planning and in teaching, decisions about when, when not, and how to use ICT in a 

particular lesson or sequence of lessons must be directly related to the teaching and 

learning objectives in hand. 

3. The use of ICT should either allow the teacher or the pupil to achieve something that could 

not be achieved without it; or allow the teacher to teach or the pupils to learn something 

more effectively and efficiently than they could otherwise; or both. 

Practical considerations play a significant part when considering when and how to include ICT in 

teaching a subject.  As a result of inclusion there is a diversity of learners in classrooms and 

teachers must challenge all students in their class regardless of their current level of performance.  

Using the computer in the class may enable the teacher to be differentiating instruction as part of 

her preparation (Thompson, 1992). A recent study in the UK MathsAlive which aimed to embed 

ICT in teaching and learning maths proved that the impact of ICT on both teachers and students 

was significant in the context of enjoyment and understanding of maths (Oldknow, 2005).  This 
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supports research on higher order thinking skills by Tall and Thomas (1991). Having taught and 

tested two groups of students, one experimental and the other a control group taught by traditional 

methods.  Their findings in the post test did not display significant variation between the two 

groups in performance on tasks but when tested some six months later the experimental group 

scored significantly better and displayed superiority in the higher order thinking skills. John and 

Sutherland(2005) emphasise  that there is nothing inherent in technology that generates learning 

but rather it is distributed between the technology, the learner, the context and the teacher (John & 

Sutherland, 2005)  When Rutheven and Hennessy et al.(2004) carried out their studies with both 

teachers and pupils in Britain the teachers ‘ comments were largely to do with computers as 

sources of motivation for students, their speed, fostering independence in students and supporting 

trialling and correction.  It was the pupils who while appreciating all of the benefits mentioned by 

the teachers emphasised the importance of a well planned task and the significance of the 

involvement of the teacher in the learning process.   

 

2.8 The Role of the Teacher 
 It is argued that integrating technology fully to create valuable learning experiences for students 

requires a change of pedagogy on the part of teachers.  Davis(1997) states that the quality of 

learning that students experience with computers depends on the opportunity provided for 

meaningful engagement and quality communication between teacher and student.  This supports 

learners in what Vygotsky calls the zone of proximal development which is the gap that exists for 

the student in making sense of a topic but this gap can be overcome by the intervention of the 

teacher(Davis et al., 1997).  Scrimshaw(1997) too speaks of the teacher as a stage manager of 

classroom activities where he directs the processes of learning rather than its product.  He also 

mentions scaffolding the learner where the teacher would have a very specific goal in mind for the 

lesson and would be able to concentrate on bringing the student, by intervention, to get a sense of 

achievement (Scrimshaw, 1997).   Listening only to a clear presentation of mathematical content 

from a teacher does not guarantee learning.    Interaction is necessary and if this is allowed with the 

teacher and the computer the construction of meaningful mathematical knowledge will be fostered 

(Laborde, 1993).  The common philosophy for teaching in the traditional system as described by 

Tall was the didactic triangle which consisted of the pupil, the text book and the teacher.  The 

maths to be communicated was in the head of the teacher and the method employed was largely 
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verbal apart from whatever diagrams or presentations placed on the board.  With the introduction 

of the computer he described the didactic tetrahedron where the teacher has the facility of software 

which provides a dynamic representation while still maintaining the teacher, student and textbook.   

In this scenario the speed of action may be under the control of the user but mediation and 

negotiation is essential.  Tall referred to this use of the computer as providing the Enhanced 

Socratic Mode of teaching  as computers provide more freedom for the teacher to work with 

individual students in order that students may have a better opportunity to learn what the teacher 

intended.   

Vygotsky’s (1978, p. 53)perspective of semiotic mediation distinguishes between the function of 

mediation of technical tools and psychological tools(or signs or tools of semiotic mediation)  

Through the complex process of internalization, a tool may become a psychological tool and it 

may function as a tool of semiotic mediation.  Marotti(2002; , 2001) further developed this theory 

and has looked at the teacher and the learner using the screen and the mathematics presented 

thereon as instruments of semiotic mediation.  While working in the mathematical domain using 

l’Algebrista and Cabri she emphasises the clarity that must exist when designing a piece of 

software for use in a classroom as a tool of semiotic mediation.  Firstly, there must be a clear 

mathematical notion as an objective and it must be possible to use this software as a tool of 

semiotic mediation which will enable meaning to emerge.  Therefore the artefact has a double 

function as a semiotic mediator: 

1. The learner uses the artefact for a certain activity and some meaning may emerge from that 

2. The teacher uses it, through dialogue with the learner, to assist in the drawing out and 

construction of meaning. 

In order to assess the usefulness of an artefact as such a tool Mariotti (2002) recommends that the 

dialectics between actions and constraints is crucial as to what is automatic, what is left to the user 

to control, what the environment controls and what is left without any control.  

During the mediation process Schon(1988) argues that the teacher needs to be capable of dealing 

with the surprise which he terms as a reflection in action. This arises when a student may give a 

reply to a question which the teacher has not anticipated and therefore necessitates the teacher 

reflecting on the spot to make meaning for the learner.  For mediation to be worthwhile, whether it 

is semiotic or otherwise Clements(2000) presents this analogy students motor is always running, 
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our job as teachers is to build roads, place signs, direct traffic, teach good driving but not to drive 

the car. 

 

2.9 Summary 
This review of the literature has examined the difficulties which have existed in maths teaching 

and learning and it has informed the design of the artefact which will be used to examine the 

effectiveness of integrating technology into mathematics. 
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Chapter 3   Design of the Artefact 

3.1 Overview 
Bruner (1967) in his Theory of Instruction has outlined a structure and sequence of 3 stages of 

representation when dealing with a domain of knowledge.  He applied this himself in an 

experiment which he carried out in 1966 and in this study these stages of representation are to be 

replicated using technology.  The research question which the researcher wants to explore is:  

How does an ICT replication of Bruner’s Enactive, Iconic to Symbolic representations assist 

students’ understanding of mathematical concepts?  

Within that question further questions need to be addressed  

1. does the artefact help the learner moving between Bruner’s levels of representation    

2. does it provide insights into Marotti’s two-fold view of semiotic mediation which covers the 

role of the artefact and the role of the teacher. 

3.2 Bruners’ Model 
Bruner (1967) carried out a study on 4 eight year old children with an IQ of 120 – 130 in 1966.  

The topic which he introduced to the children was quadratic functions. They were given an hour of 

instruction each day, 4 times a week, for a period of 6 weeks.  Dienes blocks were used allowing 

the users to initially play with the blocks but then to build squares according to specific 

instructions.  They used three types of blocks – squares measuring  “x” by “x”,  squares measuring 

“1” by “1”, rectangular blocks measuring “x” by “1”. They were instructed to build squares with 

sides(x+1)(x+1), (x+2)(x+2) and in so doing to be able to calculate the amount of wood used.    

The theoretical framework which Bruner followed was his theory of instruction which is made up 

of 3 stages.  The Enactive Representation or manipulative stage which was the constructing of 

squares which would allow the children form mental images of the shapes constructed.  This was 

the Iconic Representation.  During the building of various stages notation was introduced and the 

children were guided to see commonality in the examples worked through and this enabled them to 

reach the third stage which is Symbolic Representation(Bruner, 1967). 
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3.3 The Artefact 
The artefact, being designed here is a simulation and adaptation of Bruner’s work using the 

computer as the medium (http://www.cs.tcd.ie/~mcaulim/Quadratics ). It was used as an 

introduction to the topic of quadratic functions for 12 – 13 year olds who are in 1st year in an Irish 

second level school.  It was essential in the replication to be true to Bruner’s original study and the 

table below displays the key elements of each model. 

 
Table 1 
Representations Bruner’s Model Artefact 
Enactive  Dienes Blocks used for physical 

manipulation. 
Shapes manipulated on screen 
by user through drop and drag. 

Iconic Squares and alternative shapes 
created from blocks according to 
specific instructions. 

Squares and shapes created on 
screen according to specific 
instructions. 

Symbolic The use of algebraic notation to 
represent the amount of wood 
used in the creation of the shape.  

The use of notation throughout 
to calculate the length of each 
side or the area of the shape 
created. 

  
This artefact is created within a website using “Macromedia Flash”.  It consists of 5 lessons. The 

first lesson begins with revision frames regarding the square and the rectangle which are the shapes 

to be used throughout the activities.  The approach is very much one of constructing knowledge 

based on past experience and the interfaces enable students to start exploring by creating a new 

square from the squares and rectangles provided.  Through this playful engagement students will 

reflect on what they are doing and then a question regarding the area of the square created will 

allow them to attempt answering.  Feedback is provided when answers are filled in boxes and if 

incorrect further attempts may be made following dialogue between teacher and student about 

what part of the answer is wrong.  Squares and rectangles are shapes that students are familiar with 

from childhood and most children will have played with these as blocks at that time.  Mason et 

al.(2005) would make the point that any manipulation of familiar objects inspires confidence in the 

student and they will be encouraged to interact with them.  The need to use notation was 

introduced throughout the lesson when writing down the total number of blocks used in the 

construction.  At the end of the first lesson the students are requested to attempt 3 questions based 

on what they have just completed which was solely dealing with (x+1)2 and (x+2)2.  Students 
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receive immediate feedback on each question which John and Sutherland(2005) tells us is vital to 

support the construction of knowledge.   

Lesson 2 commences with 2 screens of revision of work completed in Lesson 1 and then 

progresses to further activity based learning.  

 

 
Figure 3.3.1 
The student is again instructed to build up squares.  Godwin and Sutherland (2004)were a little 

sceptical about activities of this type as it could lead to random playing but the inclusion of 

questions to be answered on each screen creates a clear focus for the student. As the students work 

through the enactive stage and through the process of manipulation of objects they should have 

arrived at the iconic stage.  Images will have been formed from the four examples worked through 

in the two lessons.  While notation is constantly being used a summary in notation format is 
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presented in the middle of lesson 2. 

 

Figure 3.3.2 
 
It is expected here that the student will see some pattern emerging and discover for himself/herself 

the rule that is emerging.  Here students are looking for commonality and they may not be fully 

able to recognise the patterns but with the teacher’s guidance and intervention they will be able to 

establish the relationships which will enable them to generalise.  Questions are provided at the end 

of this lesson to allow the student to reflect further on the discoveries made and to test the 

knowledge acquired. 

In Lesson 3 the participants are requested to arrange the blocks differently to enable them to see 

that the expression can be written in a different way which is the variation and contrast that Bruner 

favours for clarity to be achieved.  

          
Figure 3.3.3         Figure 3.3.4 
A summary is presented here to emphasise the results achieved in each of the examples and is used 

to assist generalising at the symbolic representation stage.  
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Figure 3.3.5 

In this lesson the idea of “x” as a variable is introduced.  The students here are presented with a 

screen for testing many examples of positive and negative numbers and this is the way in which 

the concept of a couple is introduced with an “x” and “y” value.  The concept of relationship which 

is at the core of understanding a function is being built up. As this lesson progresses students are 

exposed to another way of representing these same functions – by graphs.  

 

       
Figure 3.3.6                Figure 3.3.7 
A graph is a representation or a relationship between “x” and “y” values and these screens should 

provide the learners with a clear notion of a parabola. 

Activities need to be related to real life situations.  It is essential that students can make sense and 

meaning in a real life context if they are to understand and it is with this in mind that Lesson 4 is 

created. 
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Figure 3.3.8 

The final lesson Lesson 5 moves away from squares into functions of the nature of (x+3)(x+2) or 

(2x+1)(x+3).  The students are provided with the procedures of the traditional method of solving 

quadratic functions. 

This artefact is not designed for independent learning and therefore the role of the teacher is 

significant.  In relation to students learning with graphic interfaces the teacher is present to assist 

students in abstracting the underlying concept.  The computer screens may be used as tools of 

semiotic mediation for learner and teacher to engage in dialogue which will contribute to making 

meaning for the learner(Mariotti & Cerulli, 2001).  Students have been led into difficulties when 

they do not construct their knowledge or get adequate time to reflect on what they have been 

learning.  In relation to algebra the students must not only be able to manipulate symbols, which is 

just a surface skill but be able to connect knowledge of concepts which is what is required in order 

to understand algebra(James.J Kaput, 2000). 

 
This artefact was tested with students to study their interactions with it and with the teacher in 

order to explore the benefit accruing to them in understanding quadratic functions. 
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Chapter 4   Implementation 

4.1 Overview 
The artefact has been designed and embedded in a Macromedia website for testing with a small 

group of students.  The purpose of this process is to examine if the artefact enables students to 

move between the three stages of representation in order to assist them in understanding 

mathematical concepts.  

4.2  Implementation 
The implementation of the artefact took place over a five week period from the 6th March 2007 up 

to 23rd April 2007 in Columba College , Killucan which is a small second level rural school. 

All classes are mixed ability groupings and 6 students were selected for testing.  The students were 

from the first year group and they were all 12/13years old.  Parental consent was sought in order 

for these students to participate in the research.  As the researcher is a school principal the 

selection of students was left to the maths teacher of the 1st year class.  

The sessions with the students were generally of 50 minutes duration and all students had two 

sessions to complete the activity and in some cases it was necessary to take a third session with a 

student to complete the process.  The sessions were all held on a one to one basis in the dedicated 

computer room of the school.  The participants were all capable of using the computer keyboard, 

the drop and drag facilities of the mouse and they displayed good manual dexterity during the 

implementation.   During the testing the teacher was present with the student for the entire testing 

period.   

4.3 Limitations of Implementation 
The students were only available when a teacher of another subject was willing to allow them to be 

absent from his/her class.  There were also restrictions with the use of the computer room which 

other class groups needed at times when it would have been suitable for research to be done.  On a 

few occasions the researcher had made arrangements to work with a student but due to a minor 

crisis the research had to be postponed. 

The result of these circumstances meant that some students were being tested for the last two 

classes of the day and in the case of 2 sessions with two different students the activity had to be 
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done immediately after school. The consequence of these circumstances was that students’ 

concentration and stamina were less than they might be if they could be tested earlier in the day. 

The implementation, with its limitations, has been completed and the data which has been 

collected throughout the testing process needs to be examined and evaluated. 
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Chapter 5   Methodology 

5.1 Overview 
Qualitative research  best suits the educational  context and Merriam(2002) states that qualitative 

researchers want to find out how individuals interact and experience their social world and the 

meaning it has for them.  Yin (2003, p. 13)writes that the case study is the most suitable strategy 

when “how” and “why” questions have to be answered and when “the focus is on a contemporary 

phenomenon within its real life context”. The strength of the case study as stated by Bassey 

(1999)is that it is “strong in reality” but difficult to organise.  Commenting on education research 

he states that “educational research is a critical enquiry aimed at informing educational judgements 

and decisions in order to improve educational action”.  Gall et al.(1996) tell us that in order to add 

validity to the research sufficient data must be collected if the researcher is to explore significant 

features of the case and to put forward interpretations for what is observed.  This process of 

triangulation may not always produce convergence and there may be inconsistencies and 

contradictions among the findings.  Cohen et al.(2000) state that case studies try to capture the 

close up reality of a particular situation and the thick description of participants experiences, 

thoughts and feelings of a particular experience.  Yin(2003) would argue that significance rather 

than frequency is the hallmark of case studies and frequency of occurrences is replaced with 

quality and intensity. He emphasises too that in planning research the researcher must have a very 

clear proposition to test. 

5.2 Research Questions 
In this study the question being researched is:  

How does a replication with ICT of Bruner’s enactive, iconic to symbolic representations assist 

learners’ understanding of mathematical concepts.   

The focus was on mathematics which the researcher taught to 12 to 15 year olds for some time.  

The area of focus was further refined to algebra. The artefact was designed to allow the participant 

interact with the computer for the duration of the study sessions.  The initial number of participants 

was 6 and one was eliminated on the basis that the period for which he was available for testing 

was not adequate.  
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5.3 Data Collection Instruments 
In carrying out a case study emphasis is on the collection of rich data and therefore the decision 

was taken to use a video camera and to record each complete session with each participant.  This 

involved the collection of 10 hours of video footage. At the end of the test the participants were 

requested to complete the online questionnaire. 

When the questionnaire was being designed the age group of the participants and the time when it 

would be administered was considered.  The questions were mainly to gather general information 

on the participants experience with computers, and applications previously used.  One question 

designed according to the Likert scale was provided for commenting on the experience of working 

on this site and finally one open ended question allowing the student to provide whatever comment 

he wished on his experience of learning quadratic functions with this site.  This questionnaire was 

administered immediately following the post test questions and in order to ensure accuracy in its 

completion with this age group it needed to be concise and capable of being completed in a short 

time.   

The researcher followed up on that questionnaire by having unstructured interviews with each 

participant.  It is important with participants of this age that the researcher can probe as the 

students are not very forthcoming with lengthy descriptive answers.  Each interview lasted 

approximately 10minutes and they were taped and transcribed. 

5.4 Difficulties with Data Collection 
While it is essential to collect reliable data the researcher has to take cognisance of the ease with 

which the participant will be allowed to work on the tasks.  The research was carried out in a 

dedicated computer room.  The significant features which needed to be recorded were the 

participants’ interaction with the programme, the dialogue between the teacher and participant, the 

use of the screen as a means of semiotic mediation and the way the screen was used by both 

teacher and participant for that purpose.  While one video camera was considered to be the 

minimum requirement other considerations were: to have somebody present for the purpose of 

zooming in on the screen when appropriate, to set up a second camera in a stationery position, to 

have an independent observer in the room, or to download a programme called SnagIt which 

would capture screen movements.  The availability of personnel to operate a camera was a problem 

and even, if available, the interference to the continuity of the exercise with the participant would 
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be interrupted if the teacher were to attempt to indicate when to zoom.  The layout of the room did 

not accomodate the setting up of a second camera which would provide any better footage from 

that already provided by one.  The capture with Snag It programme which the researcher had on a 

laptop was attempted.  Again this needed to be set up at the beginning of a session but in so doing 

there were problems recording at the end because of the unavailability of suitable recording space 

in the memory of the laptop.  A couple of attempts were made at recording short snippets while 

participants were working but this was too intrusive and it was decided to abandon that source.   

5.5 Data Analysis 
As Bassey (1999)states the data which is collected in the course of doing a case study can be 

difficult to organise and this is particularly true in the case of video footage.  The tapes were used 

for the purpose of getting a general overview.  The primary data source was the video tapes and a 

coding and theming process was followed to cluster code words and to allow themes to 

emerge(Table 1).  Transcription of dialogue took place in order to provide thick description for the 

reader to get a sense of interaction of student with programme and with participant researcher. 

The themes that emerged were then connected with the data provided by the questionnaires and the 

data on the recorded interviews.  If new themes emerged from the interviews as against what was 

provided by the footage it was added to previously analysed data.  This process of triangulation 

was carried out in order to note where convergence was occurring and also to note any 

inconsistencies which emerged.  Because the researcher was present as a participant observer 

during the whole study it was possible that moods or other aspects could be noted which might not 

be collected by the other sources.  

Then the researcher examined what this analysis contributed to answering the research questions 

regarding the impact of graphic interfaces on the understanding of algebra.  
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Chapter 6   Findings and Discussion 

6.1 Overview 
The research question posed by this dissertation is:   

 How does an ICT replication of Bruner’s Enactive, Iconic to Symbolic representations assist 

students’ understanding of mathematical concepts? 

When Bruner(1967, p. 69) had completed his test, which was replicated in this artefact, he stated 

that he had succeeded well as “the children learned some elegant mathematics in a fairly short 

time”.  If the success of this study, which produced mainly qualitative data, was measured by 

student performance on tasks in the post test questions it could be said they had learned algebra, in 

a short time, which they could not have attempted before. (See Appendix A & B). 

 
The role of the artefact was: 

1. to help the learner move between Bruner’s levels of representation 

2. to act as a tool for semiotic mediation 

3. to provide insights into the role of the teacher in the process of semiotic mediation.  

 
Numbers 1 and 2 above are very closely linked as the participants while manipulating shapes to 

create images which they were using to write symbolic notation needed the intervention of the 

teacher to draw out meaning through dialogue.  Therefore these two aspects of the artefact will be 

linked together in looking at the evidence produced from the data analysed.   

 
The evidence indicated that the students were able to: 

1. write in symbolic notation the length of the side of the shape which corresponded with the 

factors of a quadratic function 

2. write in symbolic notation the area of the shape which corresponded with the quadratic 

function written as a x2+bx+c 

3. observe patterns and generalise from the tasks completed which enabled them to work with 

the symbolic notation solely in the final post test. 
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The analysing process has resulted in the emergence of themes(Table 1) which will now be used to 

assist with the answering of the research questions. 

6.2 Profiles and Attitudes 
The analysis of data has produced some information in relation to the profiles and attitudes of the 

participants which impacted on their approach to the artefact and their engagement and interaction 

with it.  All of the participants had access to a computer at home and used one in school two or 

three times a week.  It was very evident that all of the students were competent in using the mouse 

and the keyboard which contributed to smooth operations throughout the tests.  Generally the 

computer was used at home for entertainment or occasionally to get information on the internet for 

projects.  In school its use was largely confined to English and once only had they used it for maths 

which was for puzzles and games. Four out of 5 students liked maths but only two liked algebra. 

 

6.3 How does an ICT replication of Bruner’s Enactive, Iconic to 
Symbolic Representations assist students’ understanding of 
mathematical concepts? 

The answers that students gave to the open ended question in the questionnaire “Write in the box 

how you felt about this experience with quadratic equations” indicates that, from their perspective, 

learning and understanding was present. 

 
Michael:  “I feel like I have learned a lot from it”. 

Sheila:  “I found it helped me to understand algebra”. 

Kim:  “I thought it was very helpful in algebra”. 

Mary:  “I feel it helped me a lot to understand maths”. 

George:   “It was a good experience I learned a lot of stuff”. 

These comments suggest that they had learned something but the question still remains is there 

evidence that they understood the concepts. 
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6.4 Did the artefact: 

1. help the learner to move between Bruners’ levels of representation 

2. act as a tool of semiotic mediation. 
 
At the outset the participants were not comfortable with the notion of constructing shapes and they 

would have preferred to get a list of procedures to follow.  This unease was evident from the 

fidgety way they acted when presented with the first screen which required manipulation and they 

needed to be reminded that they were required to build a square from the 4 blocks provided.  

Sheila verbalised her feelings “I don’t get what you do”.  This indicates how foreign this 

experience was to them but they settled down and proceeded to work on the shapes and showed 

great ease as they moved through the lessons.  

 In the two revision screens of Lesson 1 they were clear about getting area of a square and a 

rectangle by multiplying length by breadth.  In the context of the artefact, it was not possible to 

apply the formula to get area.  They presented with issues around the distinction between length 

and area. As a result of much teasing out of meaning they grasped that the surface area of the big 

square which was covered by the small ones, was the same as the area of all the small shapes 

added together.  When a construction was completed the participant was able to establish the area 

and fill in the symbolic notation in the box.  When answering the post lesson questions on Lesson 

1 all of the participants needed to go back to the previous screens and redo the constructions and 

then come forward and fill out the answers.  This highlights their dependence on the creation of the 

image to assist in the completion of the task and the assistance that they got from the 

manipulations and images. 

The students had a difficulty with what is referred to as the “obstacle of closure” which is 

considered to be a difficulty in the transition from arithmetic to algebra.  This is evident from a 

sample extract of the interaction with George in Lesson 1 and this same difficulty would have 

arisen for others too.  This issue of closure was overcome by the teasing out of the meaning using 

the screens using the constructions created by the participants.  
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Figure 6.4.1 

 
Teacher:  How are you going to get the area? 

Gary:   (1+x)(1+x) 

Teacher: Yes, in terms of what you have in front of you can you calculate it. 

(Long Pause) 

Gary:  2x 

Teacher:   What is the area of the green square. 

Gary:  x 

Teacher:  The length of it is x, what about the area? 

Gary:  1x no x2 

Teacher:  Right, what about the pink and blue strips? 

Gary:  1x 

Teacher:  1x each and how many have you? 

Gary:  2x 

Teacher:  And what about the red one? 

Gary:  1 

Teacher:  So now the area of the complete big square is? 

Gary:  4x2 

Teacher:  Now where did you get that from? 

Gary:  1,2,3,x 

Teacher:  Now show me where you are getting 1,2,3 

Gary: (pointing to blue, red, pink and green) like makes 1, that’s 1x and that’s 

1x so 3x 
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The dialogue continued and the desired result of writing area symbolically as the sum of the 

component parts was achieved. 

The evidence in this example clearly indicates that the screen provided the means by which the 

teacher and student could engage with it to make meaning. 

The students gradually were able to enter the notation in the box having completed the building of 

the square. But when they moved on to the post test questions and were asked, for example, “what 

is (x+2)(x+2)”  the answer was given as 4x2.   This indicates that the desire for closure was still 

evident when they moved from the image being present and it necessitated dialogue to eliminate 

the difficulty they had with this.  All but one student was successful in overcoming this obstacle of 

closure as they moved through the lessons. 

Before the summary was presented at the end of lesson 2 the participants had an opportunity to 

build and establish the length of side and the area of 4 different functions, 

(x+1)(x+1),(x+2)(x+2),(x+3)(x+3) and(x+4)(x+4).  In the summary they were still referred to as 

sides and area and the array of information was presented on one screen.  The artefact enabled the 

teacher and student to discuss this array  by relating each of the elements of the functions back to 

the types of shapes that were used to create that element – green square or blue and pink strips or 

red squares.   

 
Figure 6.4.2 

 
 In this example Kim tries to make the connections 

Teacher: Can you see anything in particular as you look at this (pointing to the 

left side of the screen) 

Kim:  Yeah, they go up 1,2,3,4. 
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Teacher: Now can you notice anything about any section of this (pointing to the 

right side) 

(Long Pause) 

Teacher: What about the middle ones, do you see any connection between them? 

Kim:    They are 2s -2,4,6,8, 

Teacher: What about these? 

 (pointing to the last number in each row on the right) 

Kim:   They (pause) 

Teacher:    Looking at them where could they have got the last one? 

Kim: Oh, its like 1 by 1is 1, 2 by 2 is 4, 3 by 3 is 9, (animatedly tapping them 

out on the desk) 

 
This example indicates that the student, and this was true for all the students, was not capable of 

inventing a rule to make a connection between the sides and the area but with the array available 

on the screen, the teacher and then the student could refer to certain sections and the student 

identified the patterns herself and she understood where they were coming from.   This kind of 

pattern observation was explored further with each student as they moved through lesson 3. 

In Lesson 3 the students were introduced to the term factors rather than sides of shapes and during 

this lesson they  got an understanding of the distributive law. 

When asked for example to build a shape to represent x(x+4)+4 and to get the area they were able 

to connect that the area x2 +4x+4 was the same as the result got when multiplying x +4 by x and 

adding on 4.  Then they used these same blocks to build a square and the area of the square was 

noted to be the same as before x2+4x+4.  
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Figure 6.4.3       Figure 6.4.4 
This and many other examples indicate that manipulation of graphics helped in understanding 

factors, distribution and the result. 

 In the summary of lesson 3 which now referred to factors, area and alternatives they had a clear 

understanding of what it related to and the relationship between each one.  They were requested to 

continue with the pattern by filling in the empty boxes which every student was capable of doing 

without assistance.  

The following extract provides evidence of how again the artefact enabled the learner and teacher 

to use an array of information, which has previously been worked through in Lesson 3, to relate 

back to images created and to make meaning of the patterns emerging. 
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Figure 6.4.5 

 
This is an extract from a session with Shelia who had become very successful at building the 

images and developing the appropriate notation from them. 

Teacher: (pointing to the middle row in area) where did we say the 2x, 4x,6x and 

8x came from? 

Shelia:  the pink and blue shapes. 

Teacher: What is the connection between the middle bit here and the factors? 

Shelia:  When you multiplied and added. 

Teacher:  Where did the 4, 9,16 come from? 

Shelia:  The red squares 

Teacher:   What is the connection between the factors and the 4, 9 and 16? 

Shelia:  When you multiplied them. 

Teacher:  What part of them? 

Shelia:  The 4 by 4 and the 3 by 3 

Teacher:   (moving to the right column) What do brackets mean? 

Shelia:  Multiply 

Teacher:  So if you have x outside the bracket what do you do 

Shelia:  x by x is x2 and x by 4 is 4x 

Teacher:   + 4 
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It was evident from this extract that Shelia was immediately referring back to the images and also 

had a clear awareness of how each column had evolved.    

There was further reinforcement of this relationship when the dynamic screen in lesson 3 enabled 

the student to input values for “x” and thus get a “y” value which was exactly the same across the 

rows. Again this and many other examples indicate that the students clearly understood where the 

patterns were emerging from and they were establishing a rule for themselves which they could 

implement in the solving of problems.  

Evidence during lesson 5, which required building rectangles, suggested that students were now 

fully at ease building shapes.  The students were building to specific instructions and as they built 

they detected very quickly if their construction was not exactly to instructions and they self 

corrected.  In earlier lessons they would have built shapes and it was only when completed, or 

when the teacher intervened, that they would realise they were not correct.  The following extract 

from a session with Michael in Lesson 5 indicates that he was in the process of building 

(x+2)(x+4) according to 4a (Figure 6.4.6) when he began to shake his head and started to undo it 

and began with 4b (Figure 6.4.6). 

 

      

Figure 6.4.6     Figure 6.4.7 
Teacher:  What was wrong there, what dawned on you? 

Michael:  It was 2x 

Teacher: What have you got on the left side now? (referring to Fig4b  which is 

the beginning of the corrected version) 

Michael:   x+2 

Teacher:   What are you trying to get on the other side x+4 
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Michael then continued to build very quickly and to correctly fill in the area in symbolic notation.  

The evidence produced by this and other extracts  clearly indicates the merits of the artefact as a 

tool of semiotic mediation for making sense and meaning and clearly the student could not easily 

hide his lack of understanding.  The student who was in control of the mouse used it to click on the 

screen when counting or referring to some element on it while the teacher was able to use the 

artefact to point to various parts during the dialogue.  The artefact enabled the teacher to negotiate 

meaning with the student and enabled the student to grasp the abstract properties of algebra. 

 

6.5 Insights into the teacher’s perspective on the Role of the Teacher 
in Semiotic Mediation 

Using the artefact as a teaching tool was a new experience for the teacher as was working solely 

with one student.   The teacher was familiar with every aspect of the artefact which she had created 

but while reflecting on the experience it was the recognition of the variation in the students’ zone 

of proximal development that was difficult.  Using the screen as a tool for semiotic mediation was 

easier because the blackboard would be constantly in use in the classroom for reference. When 

students were building or filling in boxes and errors were evident to the teacher there was a strong 

temptation to intervene too soon rather than allowing the student time to reflect. When the student 

presented with a difficulty in relation to establishing the length of a side of a shape, the calculation 

of the area or in the use of symbolic notation intervention techniques such as the teacher adopting a 

socratic mode of questioning were more easily utilised. When the student remained looking at the 

screen sometimes motionless and speechless the temptation to interfere was strong and had to be 

consciously set aside.   Reflection in action was necessary in order to achieve what the teacher 

intended when an unexpected construction arose. The variety of different ways which blocks could 

be arranged in a square sometimes needed quick reaction from the teacher in order to direct the 

student to the desired method of describing length. While reflecting on a session just completed or 

when reviewing video coverage missed opportunities for meaning making were clearly evident.   

From the extracts provided already the evidence is very clear that the role of the teacher is 

paramount in drawing out the meaning and abstracting the underlying concepts.  
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The positive outcomes relate to four out of the five students. One student approached the whole 

experiment with less enthusiasm than the others and a major focus on remembering.  He had an 

anxiety about the result rather than the process and his understanding was limited though he still 

stated that “he learned a lot of stuff”. 

6.6 Discussions 
 
The findings presented some outcomes which were to be expected from the review of the 

literature.   The artefact provided:   a means to manipulate and disassemble shapes very quickly, 

consistentcy in screen presentation, easy and speedy movement between screens and the 

presentation of arrays of information which enabled the teacher and student to work very 

efficiently which justifies the use of the artefact as a teaching tool. Oldknow and Taylor 

(2003)advocate the use of ICT when it allows the teacher and students to work effectively and 

efficiently which was supported in this instance.  

The students displayed that they were capable of observing the emergence of patterns and 

generalising from them which is clearly referred to in the literature as being the root of all algebra 

learning(Kieran, 1997; Mason, Graham, & Johnson-Wilder, 2005)  

Learning something by manipulation and conjecture, as this artefact demanded, was very foreign 

to students.  They were not comfortable with the experience initially and they would have 

preferred if they had been given a mechanical set of procedures to follow which would provide an 

answer.  They came with a focus on remembering, which would relate to their conditioning in 

maths classes, and they did not appreciate the challenge of this exploratory method.  They did not 

treat the exercise as playful perhaps because there was constant contact with the teacher.  If the 

researcher had more time available for testing it would have been interesting to allow the students 

explore  playfully on their own followed by engagement and mediation with the teacher.  

Clements(2000) favoured enabling students to have this playful experience to encourage them to 

become mathematicians as distinct from learning how to do maths. 

Bruner was concerned with the students’ predisposition to learning and therefore in designing a 

task he emphasised the importance of structure and sequence.  The importance of this was that the 

student needed to be in a position to assimilate the new information into their previously acquired 

knowledge.  Vygotsky (1978)would refer to this as the zone of proximal development where the 
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student is ready to be brought to the next stage of understanding by the material presented and by 

social interaction.    In this study these concepts proved to be significant.  There was an assumption 

that the students had a clear concept of area but they had knowledge only of how to calculate it by 

using a formula. This evidence further supports the theory that a teacher should never assume that 

topics covered on a curriculum are actually learned or understood.  Students do not always learn 

what the teacher intended (Laborde, 1993). 

This study took place over a short period of time and the findings which have emerged have 

proved its value, as a replication of Bruner’s model, in allowing students to use their higher order 

thinking skills by moving from enactive to iconic to symbolic stages of representation.  

Engagement and interaction between student and teacher, enabled by the artefact, created the 

environment for moving from concrete to abstract.   

It would be expected that this experience would have a long term value for these students. Tall and 

Thomas (1991)tell us from their study that those who learned with the computer had higher order 

thinking skills and the evidence was still apparent in six months after the post test. 

This experience was difficult for the teacher in that it was a move away from the traditional role of 

presenting examples of procedures to be adopted, and encouraging practice on similar examples 

and correcting practiced material.  In this case the researcher was reasonably comfortable with a 

Socratic mode of questioning as it would be a style that she would adopt to some extent in the 

course of teaching in the classroom.  

The evidence, supported by the examples given and many others, indicated that the students 

learned algebra and understood the mathematical concepts.  The artefact helped to deliver these 

results but the evidence is very clear that the role of the teacher was paramount in making meaning 

for the students and in helping them to abstract using the artefact. A recommendation to infuse 

algebra throughout the mathematics curriculum and to alternate algebra and arithmetic all through 

school is a worthwhile recommendation given by Kaput (2000).  
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Chapter 7   Conclusions 
 
It has been established from the findings that the participants learned and understood algebra.   

 
The artefact enabled this learning to occur with the assistance of the teacher.  While learning by 

exploratory means was challenging for the students initially they eased into as they went through 

the lessons.  They overcame the obstacle of closure , they understood the source of symbolic 

notation as applied to quadratic functions, they observed the emergence of patterns and found 

commonality in the examples which enabled them to invent rules.  At the end of the experiment 

they were capable of working solely in symbolic notation.   

The teacher found her role in the experiment challenging to get a balance between intervention as 

opposed to interference and mediation as opposed to instruction. 

While inferences may be drawn from a small sample such as this Yin (1989) emphasises that in 

these circumstances it is not possible to generalise. 

7.1 Future Research 
This experiment would need to be repeated with several groups and ideally with a class group.  In 

schools the reality is that teachers must teach the class as an all-inclusive unit.  Research could be 

done by using the artefact with a class group who have access to an interactive whiteboard which 

could be used as a tool of semiotic mediation with discussion and collaboration leading to sense 

making. 

During this study the students got an opportunity to learn algebra.  The teacher was motivated to 

reflect on her practice now and into the future.  The true test of understanding will be a long term 

issue for those students and the expectation would be that they would understand when they 

attempt algebra in the classroom.  
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Appendix A  Coding and Theming of Questionnaires 
 

Themes Codes 
Uses of the computer Myself, Games, Internet, Puzzles, English Projects 

Perceptions of user Hard, Little bit hard, Just Different, Challenge, Easy, Got used to it, 
How to do it, Remembering 

Iconic recollection Green Square –x2 , pink and blue squares – 1x, Red Squares – 1 
Responses of Students Helpful, Seemed Easier, Understand More, Understand Maths, 

Understand Algebra, Learned Alot 
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Appendix B  Post Lesson Questions 
 
Lesson 1  

1. What is the answer to (x+2)(x+2) ? 
2. What is the answer to(x+1)(x+1) ? 
3. What are the factors of x2 + 4x + 4? 

 
Lesson 2  
What is:   

1. (x+1)(x+1) 
2. (x+2)(x+2) 
3. (x+3)(x+3) 
4. (x+4)(x+4) 
5. (x+7)(x+7) 
6. (x+10)(x+10) 
7. (x+12)(x+12) 

 
Lesson 5  
What is:  

1. (x+2)(x+2) 
2. (x+3)(x+2) 
3. (x+3)2   
4. (x+6)2  
5. (x+7)(x+2) 
6. (2x+1)(x+6) 
7. (2x+3)(x+4) 
8. (x+5)(x+2) 
9. (3x+2)(2x+2) 
10. (2x+5)(3x+4)    
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Appendix C  Questionnaire 
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Appendix D  Results from Questionnaires 
 
Questions 

Question 1 How many questions did you get correct? 
LA Lesson 1 
LB Lesson 2 
LC Lesson 3 
Question 2 Do you use a computer at home? 
Question 3 How often do you use a computer at school? 
Question 4 Why do you use a computer? 
Question 5 Have you used a maths website? 
Question 6 Do you like maths? 
Question 7 Do you like algebra? 
Question 8 Did you find this website useful? 

Comments 
Write in the box how you felt about this experience with quadratic 
equations 
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Results 

ID 
N0. Question 

1 
Question 

2 
Question 

3 
Question 

4 
Question  

5 
Question 

6 
Question 

 7 
Question 

8 

  L
A 

L
B 

L
C 

              

1 3 7 4 Yes 2/3 Play 
games Regularly Yes Yes Strongly 

Agree 

3 2 7 8 No 2/3 Play 
games Occasionally Yes Yes Agree 

4 1 7 8 Yes 2/3 Other Occasionally Yes No Agree 

5 1 5 6 Yes 2/3 
Internet 
for 
projects 

Occasionally No No Strongly 
Agree 

6 1 6 6 Yes Never Other Occasionally Yes No Agree 

 

Comments 

ID N0. Comments 
1 I feel like I have learned a lot from it 
3 I found it helped me to understand algebra 
4 I thought it was very helpful in algebra 
5 I feel it helped me a lot to understand maths 
6 It was a good experience,I learned a lot of stuff 
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Appendix E  Contents of accompanying DVD 
 

The DVD contains: 

Transcripts of students’ recorded interviews 

Video Clips of interactions with students 


