
OO-Motivated Process Algebra:

A Calculus for CORBA-like Systems

Malcolm Tyrrell ∗

Andrew Butterfield
Alexis Donnelly

Dept. of Computer Science, Trinity College Dublin

October 20, 1999

Abstract

This paper is a proposal for a new two-tier calculus, designed to model
aspects of CORBA-like systems at the CORBA object level. The higher
object level known as Oompa abstracts away from the details of distri-
bution (e.g. location and mobility), whereas the lower level, known as
Loompa provides primitives for specifying these details. We present the
syntax, and operational semantics, as well as two examples, a local in-
vocation, and a remote one, to illustrate the features of the calculi. In
the paper we also seek to justify our design decisions, both as to the na-
ture of the calculi, and the need to develop same. A key strength of our
approach is to maintain a close match between the level of object abstrac-
tion in Oompa/Loompa, and that found in conventional OO programming
languages for CORBA systems.

1 Introduction

This paper is a proposal for a new two-tier calculus, designed to model aspects
of CORBA-like systems at the CORBA object level. The higher object level
known as Oompa abstracts away from the details of distribution (e.g. location
and mobility), whereas the lower level, known as Loompa provides primitives
for specifying these details. We present the syntax, and operational semantics,
as well as two examples, a local invocation, and a remote one, to illustrate
the features of the calculi. In the paper we also seek to justify our design
decisions, both as to the nature of the calculi, and the need to develop same.
A key strength of our approach is to maintain a close match between the level
of object abstraction in Oompa/Loompa, and that found in conventional OO
programming languages for CORBA systems. The work is being undertaken as
part of the Formal Aspects of CORBA Systems (FACS) project — sponsored
by Enterprise Ireland, Grant No. SC/97/631.
The structure of the rest of the paper is as follows: In §2 we introduce the
problem domain; In §3 we look at other work done in this field; In §4 we discuss
∗Supported by Enterprise Ireland Basic Research Grant No. SC/97/631

1



and motivate our choice of which aspects of CORBA we wish to consider; while
in §5 we introduce the syntax and semantics of our calculus and extend it in §7.
We then present some examples in §6,8 discuss future work in §9 and present a
summary and our conclusions in §10.

2 The Problem

The Object Management Group (OMG) developed the Common Object Re-
quest Broker Architecture (CORBA) [OMG98] to address various drawbacks in
the then existing distributed system technology: too low level; too language or
platform specific; and the presence of legacy applications. These issues prompted
industry leaders to consider next generation communication technologies that
would be versatile enough for large scale enterprise development. These tech-
nologies are now in widespread use and are being continually extended. Con-
sidering how complex they are, there is a vital need to understand them better
so as to identify problems, to suggest improvements and to test the consistency
of new extensions.
We will need sophisticated technological support to make them work, and we will
need theory with which to understand them. The technological support will take
the form of services which isolate the developers and users from the complexity.
The theoretical support will provide analysis of systems, reliability and bring
unseen issues to light. CORBA provides some of the required technology, but
little in the way of theory. The aim of this work is to examine aspects of CORBA
using a formal approach.
Formalisms and modeling languages bring some aspects of the system they are
modeling to the fore where they can be examined and discussed. Other aspects
are “abstracted away”. In order to decide what type of formalism to use to
model CORBA systems, we have to identify the features of the system that we
need to bring out.
Our objective is to be able to model CORBA systems at the CORBA-object
level, which means that programming and lower-level issues are less of a concern.
Our aim is to match the level of abstraction in the calculus described here to
that used in the CORBA object model.
In this report, we put forward a formal technique that can be used to analyse
CORBA systems at this object-level. Here are some examples of the kind of
issues we propose to model using our technique, were by “services” we mean
both CORBAservices and CORBAfacilities

• Can a service offer all of its claimed functionality in the presence of other
services?” This is an instance of feature interaction.

• Can a specific service be implemented independently of the ORB?

• Can services be re-used effectively in the implementation of other services?

2



3 Related Work

Our work is similar to that of others [Wal95], [Fei99] using the π-calculus to
model various aspects of concurrent object-oriented systems. These models and
ours all exploit π-calculus’ seminal innovation of link-passing to model dynamic
topologies. Unlike the POOL model, [Wal95] we do not attempt to model an
entire concurrent object-oriented language. Our work differs from that on the
COM model [Fei99] in opting to model (or ignore at will) aspects of distribution
relevant for aspects of CORBA systems. In the latter work distribution aspects
are not relevant, though it is shown (as in our example) how client and service
objects may bind and interact. We believe our approach to dealing with or
ignoring aspects of distribution is unique and practical.
There are standard ways that object-like behaviour can be coded up in the
π-calculus using distinct channel names as references and setting up commu-
nication channels to send parameters through during an invocation. Notice,
however, that to model a method invocation there are several communications.
The interactional behaviour of a CORBA system would lead to an overwhelm-
ingly complex model using such a scheme.
A π-calculus semantics has been given for the concurrent configuration language
DARWIN [Eis93], which makes use of parallel composition and link passing to
effect binding. Agents representing service requester and provider are composed
with a special agent which transfers the name of one to the other. In our model,
agents representing invoking and invoked objects interact directly in the local
case. In the distributed case a proxy object is created on the invoking side which
sends an agent to the remote side to effect the invocation and then returns to
the original site. Using the location-based primitives of Loompax we thus model
a typical CORBA interaction.
The location-based primitives of Loompax are inspired by those of Hennessey’s
D-π [HR98] where the focus of work is type-safe distributed computation. We
use them to model distributed computations in CORBA systems, but as demon-
strated in the D-π work, we also hope to exploit typing information, a topic for
another paper. The SEAL calculus [Vit98], also based on the π-calculus, fea-
tures agent mobility and strong protection mechanisms. Its focus is also secure
distributed computations and the calculus features communication primitives
that may specify channels located in another seal. Restrictions on the commu-
nications which may take place are motivated by security considerations. We
take a more liberal approach since our concern is the modelling of CORBA
systems.
Another design notation, based on π-calculus, πoβλ [Jon93], focuses on the
development of concurrent, object-oriented programs and uses formal techniques
to reason about interference effects. The focus of our work has been to build
simple models of aspects of CORBA systems using the same calculus.
The Distributed Join Calculus [FGL+96] also extends π-calculus with explicit
locations and primitives for agent mobility. The motivation appears to be the
construction of models of representative mobile agent systems.
The Calculus of Actors [Agh86] is a higher-level formalism than the π-calculus
although they have similar power. Actors allow much closer modeling of objects
than π-calculus processes. An actor have a notion akin to object references,

3



and have state. Unfortunately the state is, in a certain sense, bound to the
“executing code”. This is unsuited to the kind of client server behaviour that
might exist in a CORBA system. Multiple clients may make calls upon one
object, and it is not realistic to force the server to deal with them sequentially.
The ambient calculus [Car98] is a calculus that uses code mobility rather than
communication as its method of interaction. It has a strongly defined notion
of locality. However, the kind of location in the ambient calculus is really an
abstract notion of an administrative domain rather than the kind we would
want. It’s hard to see how the ambient calculus could be put to use on our type
of problems. It might be, however, very useful for modeling a mobility service
at a high-level.
Another calculus that to consider is the object calculus [MA96]. This is a calculus
that best models single threaded local object-based object-oriented systems.
The single threading rules this out as a formalism for modeling CORBA systems.
It nevertheless talks very usefully about typing issues associated with object
systems.

4 Our View of CORBA

The definition of CORBA as found in the CORBA 2.2 standard [OMG98] is very
complex, as it defines an industrial-strength software development platform. In
order to make formal modelling feasible, we have chosen to simplify CORBA
considerably, in order to focus most attention on the areas of interest. In this
section we shall discuss briefly which aspects of CORBA have been retained,
and which have been dropped — with some justifying remarks.
The first key simplification adopted is to stop considering multiple language
systems. We introduce a single implementation language, Oompa, which was
designed very to be simple and to be close to the CORBA notion of object. It
is described in more detail §5.
In our simplified CORBA specification we use a reduced version of IDL, and
provide a language mapping from this IDL to Oompa interfaces. We maintain
IDL in some form as it is vital to so much of CORBA’s behaviour. However,
we reduce the number and type of datatypes that are available.
We also drop exceptions and context clauses from the notion of operation. The
main justification is to reduce the complexity of systems. When we really need
to model exceptions we can use an added return parameter with a standard set
of values or wrap return values in some form of ”Maybe” constructor.
However, we stress certain key features (albeit in a simplified form):

• Local Concurrency
The CORBA specifications imply parallel behaviour when they discuss
“server activation” policies, and many implementations use languages with
threading, so we see concurrency at the pure object level. We say local
concurrency to distinguish it from the inevitable concurrency that also
emerges once we discuss distribution issues.

• Distribution
A key function of CORBA systems is to provide a mechanism to allow

4



communication between different locations. This provision of this mecha-
nism is of prime concern to the modelling of CORBA systems, and is an
area we wish to discuss.

• State
In modeling a CORBA system we will certainly need to discuss state. A
CORBA system is more than just a sequence of object interactions, rather
it performs state changes. While there are many ways of encoding state in
various formal calculi that do not possess the explicit concept of a store,
such encodings cause a huge increase in the model complexity. We view
state as being an explicit part of the model where states and access to
sates can be clearly and readily identified.

• Method Invocations
We choose to model invocation directly rather than encode it up using
another scheme. Similar to the case with state, we avoid complexity and
gain the ability to easily identify method invocations.

• Classes
We also choose to include classes. The impact of this is on the type
system of our formalism, and the complexity brought in by having class
types and subtypes can be dealt with statically before we consider the
dynamic behaviour of our system. Classes allow us to follow a standard
design style and keep close to the CORBA object model.

5 The Oompa Calculus

Oompa stands for OO-Motivated Process Algebra. It is an adaptation of the
π-calculus which

• is typed,

• polyadic — so tuples can be sent and received,

• is object oriented.

This object orientation provides:

• classes that describe the attributes and methods of objects,

• a method invocation scheme,

• object state.

• interfaces, that list the method signatures.

An Oompa program (or agent expression), g, is executed (or reduced) in an
environment consisting of: C, the set of class definitions, which remains constant,
and ∆, the current object state and typing information, which can change during
the execution of an object. The current state of the system is the tuple consisting
of g and ∆, which we denote g {∆. Thus reduction statements take the form:

C →̀ g {∆ −→ g′ {∆′

5



The somewhat unusual “{” notation is handy when expressions become large,
and “→̀” indicates that the transition depends on the set of class definitions.
An agent expression is a set of agents running in parallel. This is written

g1 | g2 | . . . gn

An agent is executing code which is marked with the object from which it came.
Agents have the form:

o[p]

The details of how the store, ∆, is managed is beyond the scope of this paper.

5.1 Code

There is a clear distinction in Oompa between the code that resides in class
methods, and the behaviour of agents that it gives rise to. This contrasts with
the π-calculus where all the code in the system already exists in some agent.
The syntax reflects this: The fork primitive is an instruction to fork, rather
that a description of two parallel agents. The syntax is also ASCII based, as
Oompa is intended to be used as a simple programming language.
We give the set of primitive operations. The first five primitives are similar to
the usual π-calculus primitives for null behaviour, parallel behaviour, channel
creation, and send and receive on a channel. The remainder are object-based
primitives unique to Oompa. The complete behaviour of these primitives is
complicated, but their use is intuitive. Notice that the invocation and attribute
access and update primitives ape the syntax of the send and receive primitives.
This is intended to keep a consistent sense of directionality.
There are various other primitives we could have added to our Oompa system.
Good examples are primitives for nondeterministic choice, replication, or a con-
ditional structure. We choose to introduce Oompa in its simplest form, so these
have been left out of the discussion.

5.1.1 Syntax for code

p : : = nop do nothing
fork{p1|p2} fork
new c:T p1 create a new channel
c!〈v1, . . . vn〉 p1 send
c?(r1:T1, . . . rn:Tn) p1 receive
o.m!〈v1, . . . vn〉?(r1, . . . rm) p1 invoke a method
create o:T p1 create an object
a?(r) p1 access an attribute
a!〈v〉 p1 update an attribute

We will use the following notational conventions to simplify code expressions:

• We will write code of the form q nop as q.

• We will write fork{p1|p2| . . . |pn} for fork{p1|fork{p2|fork{. . . |pn}}}.

6



5.2 Types

The details of the type system are beyond the scope of this paper. The basic
syntax for types is given here:

5.2.1 Syntax for types

T : : = P primitive types
chan〈T1, . . . Tn〉 channel type
I interface type
C class type

5.3 Interfaces and Classes

Classes in Oompa have several roles. They contain method code, define at-
tributes and their initial values, and describe class types.
Method definitions consist of a signature followed by their code. The signature
defines the format a call of this method must take. Method code can contain
two special syntactic entities, this and return. At method invocation time,
when the code is copied into an agent, this will be bound to the containing
object and return will be replaced by a newly created channel. This channel is
used to pass the return values to the calling agent.
Initial values for attributes are defined in the class. This gives rise to a class
initialisation function, from attribute names to initial values. For class C, this
function is denoted Cf . Attributes are all private in Oompa.

5.3.1 Syntax for interfaces and classes

s : : =
m?(r1:T1, . . . rn:Tn)

!〈d1:T ′1, . . . dm:T ′m〉
signature

Id : : =
interface I
{s1 . . . sn} interface definition

md : : = s{p} method definition

ad : : = a:T = 〈literal〉 attribute declaration

Cd : : =
class C
{ad1 . . . admmd1 . . .mdm} class definition

5.4 Agents

Agents are the active components of an Oompa system. Code only describes
behaviour; agents perform it. Agents are labelled with the object to which they
belong, i.e. the object whose method they are running. This label permits
access to the object’s attributes to those agents belonging to that object.

7



Agents are created through forking and invocation.

5.4.1 Syntax for agents

g : : = nil no behaviour
o[p] executing code p from object o
(g1 | g2) parallel execution

5.5 Structural equivalence

An agent expression does not depend on the order or composition of the agents
that make it up. Also, there is a nil agent which has no behaviour. As it has no
effect, and systems can contain them with no discernible effect. The following
structural equivalence rules summarise these points:

(g1 | g2) ≡ (g2 | g1)
((g1 | g2) | g3) ≡ (g1 | (g2 | g3))

o[nop] ≡ nil

(g1 | nil) ≡ g1

5.6 Reduction Semantics

Two of the rules involve the creation of an agent. 5.6.4, where an agent splits
in two, and 5.6.7, where a new agent is created to perform the method.
Most of these rules also have typing requirements, but we do not deal with the
type system in this paper.

5.6.1 Left Equivalence

g1 ≡ g2 C →̀ g1 {∆ −→ g′1 {∆′
C →̀ g2 {∆ −→ g′1 {∆′

5.6.2 Right Equivalence

g1 ≡ g2 C →̀ g′1 {∆′ −→ g1 {∆
C →̀ g′1 {∆′ −→ g2 {∆

5.6.3 Parallel

C →̀ g1 {∆ −→ g′1 {∆′
C →̀ g1 | g2 {∆ −→ g′1 | g2 {∆′

8



5.6.4 Fork

When the fork instruction is executed, the agent becomes two, both of which
belong to the same object as the original agent.

C →̀ o[fork{p1|p2}] {∆ −→ o[p1] | o[p2] {∆

5.6.5 New Channel

To avoid some of the scoping issues of the π-calculus, the system chooses an
completely unused name during channel and object creation. The channel name
is added to the store along with its type.

C →̀ o[new c:T p] {∆
−→
o[p{|c′/c|}]

{
∆
c′:T

When c′ is a new name.

5.6.6 Communication

Communication along a channel can occur between any two agents. This is
essentially the same as the usual π-calculus rule.

C →̀ o1[c!〈v1, . . . vn〉 p1] |
o2[c?(r1:T1, . . . rn:Tn) p2] {∆
−→
o1[p1] |
o2[p2{|v1/r1, . . . vn/rn|}] {∆

5.6.7 Method Invocation

When an agent invokes a method, m, of object o1, a new channel name, r, is
chosen. The calling agent is blocked behind a receive on this channel. The
code of the method, here p1, is copied from C and the input parameters are
substituted by their values. this is replaced by o1, return is replaced by the
new channel r.

C →̀ o[o1.m!〈v1, . . . vn〉?(s1, . . . sm) p] {∆
−→
o[r?(s1:T1, . . . sm:Tm) p] |
o1[p1{|v1/r1, . . . vn/rn, o1/this, r/return|}]

{
∆
r: chan〈T1, . . . Tm〉

When r is a new name.

5.6.8 Object Creation

Object creation involves the choosing a new name for the object. The new
object name is added to the store with its class and its assignment function is
set to the class initialisation function.

9



C →̀ o[create o1:C p] {∆
−→
o[p{|o′1/o1|}]

{
∆
o′1:C = Cf

When o′1 is a new name.

5.6.9 Attribute Access

This replaces occurrences of r in code p by the attribute value. Agents can only
access the state of the object to which they belong.

C →̀ o[a?(r) p] {∆ −→ o[p{|v/r|}] {∆

When ∆.o(a) = v.

5.6.10 Attribute Update

This simply updates the attribute assignment function of the object. Agents
can only update the state of the object to which they belong.

C →̀ o[a!〈v〉 p] {∆ −→ o[p] {∆′

When ∆′.o1(a1) =
{

∆.o1(a1) if o1 6= o, a1 6= a
v otherwise

6 Examples

6.1 An example — Updating a Cell

We present a simple example of Oompa — a simple cell and a client class that
makes use of it. The Cell class is coded as follows:

class Cell
{

Integer store = 0

get_contents?()!<value:Integer>
{

store?(current_value)
return!<current_value>

}

set_contents?(value:Integer)!<>
{

store!<value>
return!<>

}
}

10



It has a single attribute, store, which holds an integer. Attributes are pri-
vate in Oompa, so this value is only accessible through methods, in this case
get contents and set contents. The following code describes a simple client:

class Example
{

main?()!<>
{

create a:Cell
a.set_contents!<5>?()
this.check_value!<a>?<v>
return!<>

}

check_value?(theCell:Cell)!<val:Integer>
{

theCell.get_contents!<>?(curValue)
return!<curValue>

}
}

The example behaves as follows: The main method is invoked, and it creates a
new Cell object, a. It invokes the set contents method of the cell to change
the value its store to 5. It then invokes the class’s own check value method,
passing as the name of the Cell object as a parameter. This method requests the
value of the cells contents, and then returns. The main method then finishes.
We give the formal behaviour of the system as a series of Oompa reduction steps.
The state of the system is described by the set of classes, the set of agents and the
contents of the store, which holds typing information and attribute assignments.
Notationally, we omit the set of classes as this is constant.
The system starts by creating an object of the Example class, called root, and
invoking its main method. By rule 5.6.7, this involves

• choosing a new channel name for return values, in this case ret1 ,

• copying the method code from the Example class,

• applying the required substitutions,

• placing the resulting code in an agent labelled with the object to which it
belongs.

In this case the substitutions replace return by ret1 and this by root .
The type information of the new channel is added to the data store. Also, the
class of the object is added along with an assignment function which gives values
to its attributes (in this case none).

root [
create a: Cell
a.set contents!〈5 〉?()
root .check value!〈a〉?(v)
mainRet!〈〉]

{
mainRet : chan〈〉
root : Example = ∅

11



The only agent in the system begins with a create operation, so rule 5.6.8 must
apply. This chooses a new name for the object, substituting that name for the
occurrences in the agent body. The class of this object, along with its initial
assignment function, is added to the data store.

−→
root [

a1 .set contents!〈5 〉?()
root .check value!〈a1 〉?(v)
mainRet!〈〉]

 mainRet : chan〈〉
root : Example = ∅
a1 : Cell = [store 7→ 0]

Next is the invocation on the cell a1, so rule 5.6.7 applies. The return channel
ret1 is created and the method code is copied into an agent labelled with the
object name, a1. The value 5 is substituted throughout the agent for the input
parameter value and return is replaced by ret1 . The calling agent is blocked by
a receive on the ret1 channel, waiting for the method to return. ret1 ’s typing
is added to the store.

−→

root [
ret1 ?()
root .check value!〈a1 〉?(v)
mainRet!〈〉] |

a1 [
store!〈5〉
ret1 !〈〉]


mainRet : chan〈〉
root : Example = ∅
a1 : Cell = [store 7→ 0]
ret1 : chan〈〉

The main agent is blocked, so the only available action is the attribute update
performed by the Cell a1, using rule 5.6.10. The assignment function for the
object a1 now assigns 5 to the store attribute.

−→

root [
ret1 ?()
root .check value!〈a1 〉?(v)
mainRet!〈〉] |

a1 [
ret1 !〈〉]


mainRet : chan〈〉
root : Example = ∅
a1 : Cell = [store 7→ 5]
ret1 : chan〈〉

The two agents in the system synchronise on the ret1 channel, using rule 5.6.6.
This represents the finishing of the set contents method of a1. This method
returns no values, so no data is communicated. After this, the agent a1 [nop] is
tidied away using two applications of equivalence, rule 5.6.2.

−→∗
root [

root .check value!〈a1 〉?(v)
mainRet!〈〉]


mainRet : chan〈〉
root : Example = ∅
a1 : Cell = [store 7→ 5]
ret1 : chan〈〉

Next, the invocation of the root object’s check value method occurs, using rule
5.6.7. This involves creating a new return channel, substituting occurrences of
the input parameter theCell by a1 in the cell and replacing return by ret2 .

12



−→

root [
ret2 ?(v : Interger)
mainRet!〈〉] |

root [
a1 .get contents!〈〉?(curV alue)
ret2 !〈curV alue〉]


mainRet : chan〈〉
root : Example = ∅
a1 : Cell = [store 7→ 5]
ret1 : chan〈〉
ret2 : chan〈Integer〉

The calling code is blocked by a receive on ret2 , so the next transition that
occurs is the invocation on a1 .

−→

root [
ret2 ?(v : Interger)
mainRet!〈〉] |

root [
ret3 ?(curValue: Integer)
ret2 !〈curV alue〉] |

a1 [
store?(current value)
ret3!〈current value〉]



mainRet : chan〈〉
root : Example = ∅
a1 : Cell = [store 7→ 5]
ret1 : chan〈〉
ret2 : chan〈Integer〉
ret3 : chan〈Integer〉

The rule that applies here is 5.6.9, which substitutes the occurrences of the given
name for the current value of that attribute. In this case the one occurrence of
current value is replaced by 5.

−→

root [
ret2 ?(v : Interger)
mainRet!〈〉] |

root [
ret3 ?(curValue: Integer)
ret2 !〈curV alue〉] |

a1 [
ret3!〈5〉]



mainRet : chan〈〉
root : Example = ∅
a1 : Cell = [store 7→ 5]
ret1 : chan〈〉
ret2 : chan〈Integer〉
ret3 : chan〈Integer〉

The 5.6.6 rule applies here, as the get contents method of the cell finishes up
and returns its value. Two applications of 5.6.2 are also used to tidy away the
empty agent.

−→∗

root [
ret2 ?(v : Interger)
mainRet!〈〉] |

root [
ret2 !〈5〉]



mainRet : chan〈〉
root : Example = ∅
a1 : Cell = [store 7→ 5]
ret1 : chan〈〉
ret2 : chan〈Integer〉
ret3 : chan〈Integer〉

This is similar to the previous step.

−→∗ root [
mainRet!〈〉]



mainRet : chan〈〉
root : Example = ∅
a1 : Cell = [store 7→ 5]
ret1 : chan〈〉
ret2 : chan〈Integer〉
ret3 : chan〈Integer〉

13



As no mechanism has been described to pick up the return value of the main
method, no rule applies, and we deem that the program has finished.

7 Loompa

Loompa stands for “located Oompa” and is an extension of Oompa which incor-
porates the idea of locality. An objects in Loompa reside at a specific location,
and never leaves. Agents can only run at the location where their object reside.
Loompa is actually a base calculus which provides no more interesting behaviour
than Oompa, as agents at different locations have no way of interacting. The
intention is to extend Loompa with different remote interaction primitives to
suit the modeling problem being dealt with. We will mention Loompax as an
extension which provides a form of code mobility.
Loompa systems are described by a number of parallel location expressions:

l1 | . . . ln

These location expressions take the form

locC [[g]]

Note that each location is marked with its set of classes. The set of classes at
different locations need not be the same.
The object state and typing information of the system is managed as a dictionary
recording the state at each location.

loc1
C1 = {∆1

...
locn

Cn = {∆n

We usually denote this dictionary Γ. The dynamic part of the system is ex-
pressed as a tuple

l {Γ
so a Loompa reduction is written:

l {Γ −→ l′ {Γ′

7.1 Semantics

These is the usual structural equivalence rules:

(l1 | l2) ≡ (l2 | l1)
((l1 | l2) | l3) ≡ (l1 | (l2 | l3))

locC [[nil]] ≡ NIL
(l1 | NIL) ≡ l1

locC [[g1 | g2]] ≡ locC [[g1]] | locC [[g2]]

14



and the usual reduction rules of left/right equivalence and parallel behaviour.

l1 ≡ l2 l1 {Γ −→ l′1 {Γ′
l2 {Γ −→ l′1 {Γ′

l1 ≡ l2 l′1 {Γ −→ l1 {Γ′
l′1 {Γ −→ l2 {Γ′

l1 {Γ −→ l′1 {Γ′
l1 | l2 {Γ −→ l′1 | l2 {Γ′

7.2 Local Behaviour

Loompa’s key behaviour is “local behaviour”. Essentially, each location can
carry out its business as if it were an Oompa system. The basic form of the
local behaviour rule is:

C →̀ g {∆ −→ g′ {∆′

locC [[g]]
{

locC = {∆ −→ locC [[g′]]
{

locC = {∆′

However, there are side conditions for some of the Oompa reductions. The main
differences are

• Creation of new channels and new objects: To guarantees uniqueness of
names, the chosen named are marked with the location.

• Channel communication can only occur at the location where the channel
was created.

• Method invocation replaces the keyword here with the current location.

7.3 Loompax

We consider one main extension of Loompa here, Loompax. This adds a simple
code migration primitive called execute@. This takes a location and a piece of
code and starts the code running on the location in an agent labelled guest .

loc1
C1 [[o[execute@ loc2{p}]]] {Γ −→ loc2

C2 [[guest [p]]] {Γ

8 Distribution Example

We now demonstrate how Loompa can be used to exhibit distributed system
behaviour by giving an example of a mechanism for remote method invocation
in Loompax.
We consider two locations loc1 and loc2 . A server at loc2 has created a Cell
object named myImpl1 . The implementor has published the Cell’s interface and
made the name and location of the Cell object available. The client will use
this interface to make invocations on the remote object.

15



interface Cell_Interface
{

get_contents?()!<value:Integer>
set_contents?(value:Integer)!<>

}

We give an example client here:

class Client
{

main?()!<>
{

create a:Cell_Proxy
a.bind!<loc2,myImpl1>?()
this.check_value!<a>?(v)
return!<>

}

check_value?(theCell:Cell_Interface)!<val:Integer>
{

theCell.get_contents!<>?(curValue)
return!<curValue>

}
}

Notice the similarity between this and the Oompa example in 6.1. Instead of
creating a real Cell object, the main code creates a proxy for the remote class.
This proxy is bound to the remote Cell implementation with the bind call. The
check value method constitutes the client proper. The only change between
this and the local case is the use of the interface Cell Interface in place of the
class Cell. To the client, the remote invocation appears essentially the same as
the local case.
Also notice that the client is syntactically an Oompa class. Even though it will
run in a distributed Loompa system, the client implementor is isolated from the
details of distribution.
We give some details of the proxy class, illustrating how the execute@ primitive
of Loompax provides us with sufficient power to perform the remote invocation.
It is expected that the proxy class would be generated automatically from the
interface, in a system where remote method invocation is provided.

class Cell_Proxy
{

Location location = null
Cell_Interface name = null

get_contents?()!<value:Integer>
{

new result_chan:Integer
fork

16



{
location?(dest)
name?(target)
execute@ dest
{

target.get_contents!<>?(val)
execute@ here
{

result_chan!<val>
}

}
|

result_chan?(result)
return!<result>

}
}

set_contents?(value:Integer)!<>
...similar to get_contents.

bind?(dest:Location,target:Object)!<>
{

location!<dest>
name!<target>
return!<>

}
}

We now show, diagrammatically, how the system behaves. Assume that the
client has been instantiated as an object called root . It creates the proxy object,
a1 , and binds it to the remote object. In the diagram we see that the location
and name attributes refer to the location and name of the remote object. It
then invokes its own check value method, which makes an invocation on its
Cell Interface reference. This is actually an invocation on the proxy method
get contents as we see in the diagram.

main

a.get_contents
...

check_value

root

set_contents

get_contents

store

myImpl1

name

location

get_contents

set_contents

bind

a1
loc1 loc2

This proxy method get contents creates a channel, called ret , and forks. One
of the agents waits on the ret channel, while the other performs an execute@
operation which causes creates a guest agent at loc2 . This agent invokes the
real Cell’s get contents method.

17



main

check_value

root

set_contents

get_contents

store

myImpl1

myImpl1.get_contents
...

guest

name

location

set_contents

bind

ret?(result)

execute@ loc2

get_contents

a1
loc1 loc2

The Cell returns the value 5 to the guest agent which performs an execute@
operation to return it to loc1 . This agent sends the value 5 to the agent waiting
on channel ret .

main

check_value

root

set_contents

get_contents

store

myImpl1

ret!<5>

guest

execute@ loc1

guest

name

location

set_contents

bind

ret?(result)

get_contents

a1
loc1 loc2

5

5

This agent then performs the return of the proxies get contents method,
which returns the value 5 to the client.

main

check_value

root

set_contents

get_contents

store

myImpl1
name

location

set_contents

bind

get_contents

a1
loc2

5

loc1

To the client, unaware of the distributed behaviour, this seems like a local
communication.

9 Future Work

We are currently exploring the modelling of further object scenarios using
Oompa/ Loompa to provide further feedback on the practicality of our ap-
proach. Some of these will involve exploiting the location aspects of Loompa in

18



client-server settings of frequent practical interest. Another fruitful area might
be simple distributed algorithms which lend themselves to an object-oriented
implementations in which location must be modelled.
We hope to explore the use of typing information associated with objects in
the fashion of Hennessey’s D-π [HR98]. The focus of our interest however, is
in providing additional support for (type-safe) component-wise construction of
software systems. CORBA currently provides little semantic support in this
area through IDL. The thrust of the D-π work has been to provide run-time
security through type checking. It may be possible to exploit or adapt existing
work on typed extensions to the π-calculus for our purposes [PS96], [Wal95],
[PT98]. The use of the subtype relation to capture notions of substitutability
may be useful in structuring systems based on components [PS96].

10 Conclusions

In this paper we present and motivate our approach to modelling relevant as-
pects of CORBA systems based on the π-calculus. We demonstrate how the
Oompa notation can be used as a shorthand notation to bridge the “impedance
gap” between a programming language level notation and that of the π-calculus.
We illustrate the transition rules for our notation, based essentially on the com-
munication primitives of π-calculus. We deal with the physical aspects of distri-
bution using the execute@ primitive of the related Loompa notation. Although
it is still at an early stage, we believe our approach may offer some benefits
in potentially bringing “rigour without pain” to the practice of constructing
distributed object-based systems.

References

[Agh86] Gul Agha. Actors, a Model of Concurrent Computation in Distributed
Systems. MIT press, 1986.

[Car98] A Cardelli, L & Gordon. Mobile ambients. In Foundations of Soft-
ware Science and Computational Structures, LNCF, pages 140–155.
Springer Verlag, 1998.

[Eis93] R Eisenbach, S & Patterson. π-calculus semantics for concurrent
configuration language darwin. In Proceedings of the Hawaii Inter-
national Conference on System Sciences, 1993.

[Fei99] Loe Feijs. Modelling microsoft com using the π-calculus. In J. Wing,
J. Woodcock, and J. Davies, editors, Formal Methods 99, LNCS,
pages 1343–1363. Springer-Verlag, 1999.

[FGL+96] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc
Maranget, and Didier Rémy. A calculus of mobile agents. In 7th In-
ternational Conference on Concurrency Theory (CONCUR’96), vol-
ume 1119 of Lecture Notes in Computer Science, pages 406–421, Pisa,
Italy, August 26-29 1996. Springer.

19



[HR98] Matthew Hennessy and James Riely. Type-safe execution of mobile
agents in anonymous networks. Technical report, University of Sus-
sex, May 1998.

[Jon93] C. B. Jones. A π-calculus semantics for an object-based design no-
tation. In E Best, editor, Proceedings of CONCUR’93, LNCS, pages
158–172. Springer-Verlag, 1993.

[MA96] Luca Cardelli Martin Abadi. A Theory of Objects. Springer-Verlag,
1996.

[OMG98] OMG. CORBA 2.2 Specification, February 1998.

[PS96] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mo-
bile processes. Mathematical Structures in Computer Science, pages
409–453, October 1996.

[PT98] Benjamin C. Pierce and David N. Turner. Pict: A programming lan-
guage based on the pi-calculus. CSCI Technical Report 476, Indiana
University, March 1998.

[Vit98] G Vitek, J & Castagna. Towards a calculus of secure mobile compu-
tations. In Proceedings of IEEE Workshop on Internet Programming
Languages 1998. IEEE, 1998.

[Wal95] David Walker. Objects in the pi-calculus. Information and Compu-
tation, 1995.

20


