
Theorems for model-checking

Avinash Malik
IBM Research

Ireland

David Gregg
School of computer science and statistics

Trinity College Dublin, Ireland

Abstract
In this paper we describe the theorems and other related material
when performing model-checking. These theorems form the ba-
sis for using model-checking as a tool for code optimization and
distribution of stream graphs onto heterogeneous multi-processor
architectures.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

General Terms term1, term2

Keywords keyword1, keyword2

1. Encoding the distribution and scheduling
problem into the Uppaal model-checker

We have used the Uppaal model-checker [1] as a representative ex-
ample amongst all the model checkers supporting Computational
Tree Logic (CTL) properties. Any other model checker with support
for verifying CTL properties would suffice. Each model checker
implements exploration techniques in different ways. Also, the in-
put language of each model checker differs. Moreover, the quantita-
tive performance (computation time and memory consumption) of
the model checking process itself would vary depending upon the
model checker used. Uppaal has been shown to provide promis-
ing results for timing analysis by Roop et al. and Behrmann et
al. 2005, 2009, and hence we use Uppaal. Comparing different
model checkers for partitioning and scheduling would make a good
case study, but is outside the scope of this paper.

1.1 Formalizing the problem statement
A Synchronous Data-Flow (SDF) application is a graph G(Vg, Eg),
where Vg are the vertices representing the filters and Eg ⊆ Vg ×
Vg are the edges representing the FIFO communication channels
between filters. An example SDF graph for a smart surveillance
system is shown in Figure 1b.

Let graph A(P,C) represent the heterogeneous execution ar-
chitecture, where P represents the processors available for filter
execution and C ⊆ P × P represents the communication link be-
tween processors. Thus, we define the makespan (schedule length)
for a single stable state iteration of G as in φ(G,A). Function
φ(G,A), from here on referred to as just M for sake of brevity,
denotes the makespan of G on A

[Copyright notice will appear here once ’preprint’ option is removed.]

Our objective is to find an allocation for every vertex Vgi ∈ Vg ,
where i ∈ {1..N} on some processor Pj ∈ P , where j ∈ {1..|P |}
to minimizeM.

Definition 1. Let ωgi represent the number of bytes produced for
every invocation of some filter Vgi ∈ Vg . Thus, for a single stable
state iteration of G, the number of bytes produced by filter Vgi is
ωgiqgi . Recall that qgi is the natural granularity of filter Vgi . Let
T represent some absolute time elapsed from the start of execution
of G on A. We define the throughput of Vgi as:

ζgi =
ωgiqgiN (Π)

T
∀i ∈ {1...N} (1)

whereN (Π) = T/Π gives the number of stable state iterations
of G in T . Finally, we define the throughput of the graph G as:
ζ =

∑N
i=1 ζgi

Lemma 1. The allocation solution that minimizes makespan also
provides the highest throughput.

Proof. As we can see from Equation (3), the throughput and
makespan are inversely proportional. Hence, minimizing makespan
(M) is equivalent to maximizing throughput (ζ).

1.2 Modeling communication and computation
The very first transformation that is carried out is the translation of
the communication channels Eg ∈ G into filters. Communication
costs play an important role in the makespan minimization prob-
lem. For the sake of uniformity we translate the FIFO channels into
filters. The translation of G into a precedence graph results in a new
graph P where the FIFO channels are made explicit.

Figure 2 gives the precedence graph P translated from the
SDF graph G in Figure 1b. P(V,E) is a directed graph, where
E ⊆ V × V are the precedence relations, VA ⊆ V are the
computation filters and VC ⊆ V are the communication filters.

As we can see, all FIFO edges are converted into filters. The
communication filters have their input and output data rates calcu-
lated by looking up the natural granularity of their respective source
filters. We know that the natural granularity for the computation fil-
ters in P is given by {2, 2, 4, 4, 4, 1}. Hence, for the communica-
tion filter C1, its input and output rates are 2×2, because its source
computation filter, Image capture, has a natural granularity of 2
and an output rate of 1 token per invocation, same for the others.

Lemma 2. The introduction of communication filters representing
the FIFO channels in P does not change the schedule and buffer
sizes calculated for the computation filters in P .

Proof. The proof is by substitution on a closed form of the prece-
dence graph. See [4] for details.

short description of paper 1 2012/10/14

CPU1

CPU2 GPU2

GPU1

networked
networked

camA

(a) A smart embedded networked tracking system

1

1 2

2 1

1

1

1

4

41

2

41

Image
capture Splitter

TransF

DFT

FFT

Col

(b) The abstract stream model representing the tracking
algorithm

Figure 1: A motivating example

1
Image

capture

4

4
4

Col

C5

C6

C7

1

1

1

1
1 1

TransF

DFT

FFT
C2

C3

C4

C1
1

2

Splitter

2
2 4

4

4

2 2

4

4

4

4 4

4 4

4
4

Figure 2: Precedence graph the SDF graph in Figure 1b

U

U

U

U

SplitterGPU1

SplitterGPU1==1

Splitter’GPU1

Cost+=2

SplitterGPU1=0

C2GPU1=C3GPU1
=C4GPU1=1

SplitterCPU1=0
Cost+=2

SplitterCPU1

SplitterCPU1==1

Splitter’CPU1

C2CPU1=C3CPU1=C4CPU1=1

(a) Splitter filter allocation

U

U

U

U

C2CPU1GPU1

C2’CPU1GPU1

Cost+=X

FFTGPU1=1

C2CPU1=0

C2CPU1==1

C2CPU1CPU1

C2’CPU1CPU1

C2CPU1==1

Cost+=X

C2CPU1=0

FFTCPU1=1

(b) C2 filter allocation

Figure 3: Uppaal representation of computation and communica-
tion allocation

1.3 Encoding the filter allocation and distribution problem
into Uppaal automaton

Modeling computation filter allocation
Every computation filter in the set VA can be allocated to some

processor P ∈ A. Every such allocation is represented by an Up-
paal automaton. Figure 3a shows the Uppaal automata representing
allocation of filter Splitter on two of the four available proces-
sors in Figure 1a.

Every location in the automata is marked with a U, representing
urgency, i.e., any transition if enabled needs to be taken. The loca-
tion is named by joining the name of the filter and the processor and

is represented by the set: {Splitter, CPU1} for the first automa-
ton. The transition is guarded by the condition SplitterCPU1==1.
Upon transitioning, a global variable Cost is incremented by the
computation time of Splitter on CPU1, which in this case is 1*2,
where 1 is the computation cost and 2 is the natural granularity
of Splitter. Finally, the actions also disable the guard condition
and set the next (communication in this case) filter guards high for
further transitioning.

Modeling communication filter allocation
Every communication filter in set VC can be allocated to a

communication link C = (l,m)|l ∈ P , m ∈ P . Figure 3b,
shows the C2 filter allocation on the communication link joining
processors CPU1 to itself and to GPU1, respectively. The name of the
locations is represented by the set: {C2, CPU1, CPU1} for the first
automaton. The guard is C2CPU1 and the actions disable the guard
and set the next filter guard high. The next filter is FFT in this case.
Finally, the global variable Cost is updated by the communication
costs on these links.

Such basic automata are produced for all possible filter alloca-
tions. These automata only represent sequential execution of filters;
parallelism is not described yet and will be described in the next
section. For example, when run through Uppaal, with the instruc-
tions to find the path with the least Cost in the state space from the
starting state to the terminal state, it might choose the first automa-
ton in Figure 3a, which increments the cost by 2, this transition
in turn would enable C2. This time around the second automaton
might be chosen, which again increments the cost by X time units.
Since Cost always increments sequentially, no parallelism can pos-
sibly be described by these automata.

1.4 Modeling task and data-parallelism
Modeling task-parallelism

Task-parallelism is explicitly denoted in the SDF graph and
consequently in the precedence graph by split and join nodes.
The three filters FFT, DFT, and TransF denote task-parallel filters
that can possibly run in parallel provided there are no resource
constraints. Consider the basic automata representing FFT and DFT
allocation on processor CPU1 and GPU1. We know that their location

short description of paper 2 2012/10/14

U

U

U

U

U

U

U

chan1!

temp_trans=1

chan2?

temp_trans=0

TransFCPU2=0

chan1?

temp_trans==1
chan2!

Cost+=

FFTCPU1

FFT’CPU1

FFTCPU1==1

FFTCPU1=0

DFTGPU1

DFT’GPU1

DFTGPU1==1

DFTGPU1=0

TransFCPU2

TransF’CPU2

TransFCPU2==1

myCost=myCost>=1?1:myCost

myCost>=4?4:myCost

myCost=2

Figure 4: A network of Uppaal automata representing parallel filter
execution

names can be identified by the sets: {FFT, CPU1}, {FFT, GPU1},
{DFT, CPU1}, and {DFT, GPU1}, respectively. We build network
of basic automata connected via rendezvous channels provided
the intersection of the set of location names results in a ∅ set.
Thus, {FFT, CPU1} ∩ {DFT, CPU1} = CPU1, means that these two
automata represent execution of two different filters on the same
processor (CPU1) and hence, cannot be run in parallel, whereas,
{FFT, CPU1}∩{DFT, GPU1} = ∅, represents two automata that can
be run in parallel.

Figure 4, shows an example network combining basic automata
representing allocation of FFT, DFT, and TransF, on CPU1, GPU1,
and CPU2, respectively. The first automaton (FFTCPU1) rendezvous
with the first transition of the second automaton (DFTGPU1) via
channel chan1. This rendezvous forces the two transitions to take
place together, in the process transferring the execution cost of FFT
on CPU1 (myCost=2, say). Upon completion of this rendezvous,
the actions set the guard for the second transition (temp trans)
high. This allows the second transition of the second automaton
to rendezvous with the third automaton via channel chan2. The
maximum of the received value, 2, and the execution cost of DFT
on GPU1 is transferred to the third automaton. The final automaton
in turn increments the global Cost variable by the maximum of
the received value (max(2,1)) and its own execution cost (4). Thus,
the execution cost of the three automata running in parallel is the
maximum of the three execution costs.

We generate more such networks exhibiting other possible com-
binations that might run in parallel. For example, a network com-
bining just two of the three automata in Figure 4. In such a case,
the overall execution cost would be calculated as the maximum of
the two automata in parallel and then incremented by the third filter
running in sequence after the parallel execution.

Modeling data-parallelism Exploitation of task-parallelism in
the precedence graph of Figure 2 is not enough. As we can see
from Figure 4, we are only ever able to utilize 3 of the 4 available
processors. Replication of stateless filters to utilize idle processor
resources is a well known technique amongst the compiler opti-
mization community. A naive way to replicate a stateless filter is to
replicate the filter P times. This makes sure that all processors are
utilized.

Figure 5a shows replication of the stateless FFT and DFT filters
four times, one for each processor. As we can see, this technique
allows utilization of all 4 processors (unlike just task-parallelism),
but leads to communication overheads and may result in more filter
copies than the number of available processors. For example, when
running the 4 FFT copies no other filters can be run. Thus, it is
essential to judiciously replicate stateless filters in order to obtain
good throughput.

Our model-checking approach provides an optimal solution to
this judicious stateless data-replication problem. Our approach is
a multi-step process: first off, we naively replicate all the stateless
filters, as shown in Figure 5a. Next, we build the basic automata
modeling the execution of these filters on the processor set P ∈ A,
as shown in Figure 5b. Finally, we build extra automata modeling
fusion of these stateless filters for each processor as shown in
Figure 5c.

In Figures 5b and 5c, we haven’t shown all the Uppaal automata
that are generated due to lack of space (the . . . in Figure 5, show
the other automata that would be generated). The important point
to note is that the algorithm (Algorithm 1) modeling fused state-
less filter execution is exhaustive. For example, we build automata
modeling execution of filters FFT1 and FFT2, together, then FFT1,
FFT2 and FFT3 and so on and so forth for all filters for each pro-
cessor. A total of

∑N
i=1 i extra automata are generated, where N

is the number of stateless filter copies (N = 4 in this case). These
automata are combined with the rest of the automata and passed
through Uppaal to find the path with the least Cost in the state
space.

ALGORITHM 1: Building fused replicated filter states
Input: Precedence graph P , Execution architecture graphA
Output: A set S of fused filter states
set S = ∅; int i = 0;
set SP = the set of all state-less split joins in P;
for each SP (i) do

set B = branches in SP (i);
if arity of B ≥ 2 then

for each bj of B do
for P ⊆ A do

int index = j;
state s = new state(V ∈ bindex, V ∈
bindex++|bindex ∈ B, bindex++ ∈ B);
S ∪ {s};
while index < arity of B do

int count=0;
state s = new state(V ∈ bcount|∀count ∈
{0, ..index}, bcount ∈ B);
S ∪ {s};index++;

end
end
j=j+1;

end
end
i = i +1;

end

A keen reader might have noticed that the increments in Cost
is different for automata in Figure 5b and 5c. Consider the first au-
tomata in Figure 5c, suppose that we fuse FFT1 and FFT2, while
leaving the other stateless filter copies untouched. This would be
equivalent to saying that instead of making 4 copies of the stateless
FFT filter we have made 3 copies, where the first one has a granu-
larity of 2, while the others only have a granularity of 1. Thus, the
fused filter automata represent different granularities and number
of copies of the stateless filters.

State sharing
State sharing is an optimization technique, which essentially

removes duplicate copies of shared data. State sharing can be
achieved by fusing two or more filters within a single execution
thread. Such fusion results in pointer based communication be-
tween different filters rather than copying data from one filter to
the other, thereby reducing the communication overhead. We fuse
all filters allocated to the same processor into a single kernel thread
in order to avoid communication overheads.

short description of paper 3 2012/10/14

D
U

P
D

U
P

C1

C2

C4

F

J
O

IN
J

O
IN

C3

C52

C53

C54

C61

C62

C63

C64

C7

C51

N52

N53

N54

N62

N63

N64

N51

N61
4

4

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1
TransF

FFT1

FFT2

FFT3

FFT4

DFT1

DFT2

DFT3

DFT4

4
1

4

1

1
1
1

1

1
1
1

4

4

4

Image
capture

1

1

1
1

1

1
1

1
1

1
1

1

1

1 1

11

1 1

1
1

1 1

1 1

2
2

2

1
Splitter

2 2

2 2

2 2

2

2

(a) Naive replication of stateless FFT and DFT filters

U

U

U

U

FFT1CPU1=0

FFT1CPU1

FFT1’CPU1

FFT1CPU1==1

Cost+=1

C51CPU1=1

FFT4GPU2

FFT4’GPU2

FFT4GPU2=0

C54GPU2=1

FFT4GPU2==1
Cost+=1

(b) Basic automata modeling stateless FFT filter execution

U

U

U

U

U

U FFT3FFT5’GPU2

FFT4FFT5GPU2=0

C54GPU2=C53GPU2=1

Cost+=2

FFT3FFT4GPU2

FFT3FFT4GPU2==1

Cost+=2

FFT2FFT3FFT4CPU1=0

C52CPU1=C53CPU1=C54CPU1=1

FFT2FFT3FFT4’CPU1

FFT2FFT3FFT4CPU1

FFT2FFT3FFT4CPU1==1

FFT1FFT2CPU1

FFT1FFT2CPU1==1

Cost+=2

FFT1FFT2CPU1=0

C51CPU1=C52CPU1=1

FFT1FFT2’CPU1

(c) Extra automata representing fused stateless filters

Figure 5: Optimal exploitation of data-parallelism

S2. Theorems and proofs
S2.1 Definition and Semantics of precedence graph P
Definition 2. A transformation τ : G → P , translates a SDF
graph G into a precedence graph P . A precedence graph P(V,E),
where VA ⊆ V represent the computation filters and VC ⊆ V
represent the communication filters. The edges E ⊆ V × V repre-
sent the precedence relations (dependencies) between the vertices.
The input and output data rates of the communication filters (VC)
is equal to output rate * natural granularity of the source compu-
tation filter in set VA where VA ≺ VC . ≺ is the precedence op-
erator lifted to sets VA and VC , where every communication filter
has a unique immediate predecessor computation filter, i.e., VAi ≺
VCj and VAi ∈ VA, VCj ∈ VC ,∀i ∈ {1..N}, ∀j ∈ {1...M}.
Finally, VA = Vg .

Lemma 3. qA = qg . Where qA and qg give the repetition
vectors for the computation filters for sets VA ∈ P and Vg ∈ G,
respectively.

Proof. The above is obviously true for a two filter graph G trans-
formed intoP . Consider pairwise execution of filters for every edge
E ∈ P . Thus, every filter VAi ∈ VA executes at the natural gran-
ularity specified by qg . From the semantics of data-flow graphs,
for some filter VAi ∈ VA and VCj ∈ VC , we have the balance

equation:

qi × output− data− rate = qj ∗ input− data− rate

Thus, from the above equation and definition of P it follows
that every communication filter has a natural granularity of 1. By
substituting this result in the balance equation for the complete
graph P we can obtain qA ⊆ qP for a consistent single stable
state schedule of P and show that qA = qg . Note the qP gives the
repetition vector for the graph P .

S2.2 Formulating makespan Π

In this section we formulate the definition of makespan and prove
our claim about granularity.

Definition 3. Automaton is a tuple Q = (S, s0, g, L,A, T, ξ),
where S are the states, s0 ⊆ S is the starting state, g represents the
guards on the transition, L represents the set of names representing
filters and resources, A represents the actions during transition,
and T represents the transition function, and ξ associates names to
states.

Definition 4. Allocation of an execution filter VAi ∈ VA, forall some i ∈
{1..N} on a processor Pk ∈ P , for some k ∈ {1..H} is defined

short description of paper 4 2012/10/14

as:

alloc(VAi , Pk) = Q,where :
S is the set of states
L = {L(VAi) ∪ L(Pk)}

ξ : S → NAME, satisfying ξ(S) ⊆ L
s0 ⊆ S

T = (s, g/A, s′)
g : T → BOOLEXP, satisfying

g(T) =
∧E

t=1(lt), lt ∈ {L(VAi)× L(Pk)} → {0, 1}
A : T → EXP, satisfying

A(T) = {lp = 1|lp ∈ {L(Vr)× L(Pk),∀p ∈ {1..M},
VAi ≺ Vr, ∀r ∈ {1..N}}

∪{lt = 0|lt ∈ {L(VAi)× L(Pk)}, ∀t ∈ {1..E}
∪{COST (Q) = COST (VAi , Pk) ∗ qAi}

Every allocation of an computation filter to some processor in
the architecture results in an automaton Q. Where the transition
guard is the conjunction of cross product of names of Boolean
literals, representing that the filter is ready for execution and the
processor is free for allocation, respectively. L is the function that
produces a set of fresh names representing the Boolean literals. For
a filter (e.g., VAi) the arity of this set is equal to the arity of set F ⊆
E,E ∈P , where F ⊆ Vo×VAi ,where ∀o ∈ {1..R}, where Vo ≺
VAi . Informally, the arity is equal to the the number of immediate
predecessors of VAi . For an empty set, possible in the case of the
source filter in the precedence graph, L randomly assigns a single
name representing the start of execution. The arity of the set L(Pk)
is always 1, which is a unique name representing the availability
of processor resource Pk. Upon successful evaluation of the guard
condition, the transition is taken, and the action consists of updating
the Boolean literals for all immediate successor filters, setting the
current filter execution Boolean literal to 0 and, finally, setting
the execution cost of this transition. COST (VAi , Pk) and qAi

represent the cost of single invocation of filter VAi on processor
Pk and the natural granularity of this filter, respectively.

Definition 5. Allocation of a communication filter VCj ∈ VC ,
for some j ∈ {1..M} on a communication link Cl

m ∈ C, for
some (l,m) ∈ {1..H} is defined as:

alloc(VCj , C
l
m) = Q,where

S is the set of states
L = {L(VCj) ∪ L(Pl) ∪ L(Pm)}

ξ : S → NAME, satisfying ξ(S) ⊆ L
g : T → BOOLEXP, satisfying

g(T) =
∧E

t=1(lt), lt ∈ {L(VCj)× L(Pl)} → {0, 1}
A : T → EXP, satisfying

A(T) = {lp = 1, lp ∈ {L(Vk)× L(Pm)}|∀p ∈ {1..M},
VCj ≺ Vk,∀k ∈ {1..N}}

∪{lt = 0, lt ∈ {L(VCj)× L(Pl)}|∀t ∈ {1..E}
∪{COST (Q) = COST (VCj , C

l
m) ∗ qCj}

The definition of allocation of communication filter on a com-
munication link connecting two processors is similar to that of com-
putation filter. Except, L(VCj),L(Pl) and L(Pm), represent the
readiness of execution of the communication filter, and the avail-
ability of source and target processors of the communication link
Cl

m, respectively.

Definition 6. Let Q1 and Q2 be two automata and Π be the
makespan. The resultant transition system, of the asynchronous
composition of Q1 and Q2 with mutually exclusive access to re-

source, which gives the resultantM is defined as:

Q1//Q2 = {S1 � S2, (s01, s02), g1 ∪ g2, A1 ∪A2, T}

T =

{(s1, s2), g1/A1 ∪ {Π+ = COST (Q1)}, (s′1, s2)}
∪{(s1, s2), g2/A2 ∪ {Π+ = COST (Q2)}, (s1, s

′
2)}

∪{(s1, s2), (g1 ∧ g2), (A1, A2)∪
{Π+ = max (COST (Q1), COST (Q2))}, (s′1, s′2)

| {(L1) ∩ (L2) = ∅}}
Definition 6 is the classical asynchronous product with the re-

striction of mutually exclusive access to shared resources (e.g., pro-
cessor and communication links), shown by the last transition con-
dition. Now we can finally formulate the definition of Π.

Definition 7. Given a SDF graph G, an architecture descriptionA
and the literal M from Equation (6). We can define the makespan
function φ as:

alloc(VAi , Pk)//alloc(VCj , C
l
m) : Π→ R+ (2)

where,
VAi ∈ VA, VCj ∈ VC , VA ∈ P, VC ∈ P and τ : G → P

∀i ∈ {1..N} and ∀j ∈ {1..O}
and R+ ∈ R+

Thus, function //, is the asynchronous composition (as defined
in Equation (2) all computation and communication filters in P
allocated to different processors and communication links in A,
which transforms updatesM into the final makespan, a real num-
ber, by applying max-plus algebraic identities. τ is the transforma-
tion function that transforms G into P from Definition 2.

S2.3 Granularity based optimizations
First we prove that, for a two filter graph P , with a single compu-
tation filter VAi ∈ VA, i = {1} and a single communication filter
VCj ∈ VC , j = {1}, provided the communication cost between
processors remains constant for a range of bytes sent across these
nodes, increasing granularity, by positive integer multipleG, of the
computation filter (VAi) increases the graph throughput (ζAi), as
long as the number of bytes transferred remains within this range.

Lemma 4. ζAiG ≥ ζAi for qAiG = qAi ∗G and COST (VCj) =
K for I ≤ ωAi ∗ qAiG ≤ T for some VAi ≺ VCj , where K, I, T
are constants in set R+.

Proof.

ζgi =
ωgiqgiN (Π)

T
∀i ∈ {1...N} (3)

From Equation (3) and Lemma 3 we have:

ζAi = ωAi ∗ qAi/Π
from Equation (2) we get:

ζAi = ωAi ∗ qAi/(alloc(VAi , Pk)//alloc(VCj , C
l
m) : Π→ R+)

for a single computation filter VAi and communication filter VCj

and from Definitions 4 and 5 we get:

ζAi = ωAi∗qAi/(COST (VAi , Pk)∗qAi+COST (VCj , C
l
m)∗qCj)

for some G ∈ N∗ we have:

ζAiG = ωAi∗qAi∗G/(COST (VAi , Pk)∗qAi∗G+COST (VCj , C
l
m)∗qCj)

substituting the constant K in the equation ζAiG/ζAi gives:

ζAiG/ζAi =
(COST (VAi , Pk) ∗ qAi +K ∗ qCj) ∗G
COST (VAi , Pk) ∗ qAi ∗G+K ∗ qCj

finally, because COST (VAi , Pk) ∈ R+, G ∈ N∗, K ∈ R+, and
from Lemma 3 qCj = 1, we can say that:

ζAiG/ζAi ≥ 1

short description of paper 5 2012/10/14

Before proceeding to extend the above proof for the complete
SDF graph. We will prove some preliminary results on max-plus
algebraical identities.

Lemma 5. Let a⊕ b = max(a, b), a ∈ R+, b ∈ R+. Given some
multiplicand G ∈ N∗ we prove that G(a⊕ b) = Ga⊕Gb.

Proof.

let a⊕ b = a
thus, G(a⊕ b) = Ga and Ga⊕Gb = Ga

hence,G(a⊕ b) = (Ga⊕Gb)
(4)

Lemma 6. Let a ⊗ b = a + b, a ∈ R+, b ∈ R+. Given some
multiplicand G ∈ N∗ we prove that G(a⊗ b) = Ga+Gb.

Proof.
G(a⊗ b) = Ga+Gb
Ga⊗Gb = Ga+Gb

hence,G(a⊗ b) = Ga⊗Gb
(5)

Now we extend the Lemma 4 for a two filter graph P to a
general R filter graph G in Theorem 1.

Theorem 1. Let {K1 . . . ,KN} represent the communication costs
for the set VC ∈ P and {ωA1 ∗qA1G . . . , ωAi ∗qAiG} represent the
number of bytes produced by computation filters in the set VA ∈ P
and VA ≺ VC . Then ζG ≥ ζ for some SDF graph G, provided
G ∈ N∗.

Proof. From Lemma 4 it follows:

ζAiG/ζAi =
(alloc(VAi

,Pk)//alloc(VCj
,Cl

m):Π→R+)∗G

allocG(VAi
,Pk)//allocG(VCj

,Cl
m):Π→R+

VAi ∈ VA, VCj ∈ VC , VA ∈ P
∀i ∈ {1..N},∀j ∈ {1..M}

Pk ∈ P, P ∈ A, Cl
m ∈ C,C ∈ A

∀k ∈ {1..H},∀(l,m) ∈ {1..H}.

(6)

From Equations (6) and (2) we know that the alloc function trans-
forms a literal M into a real number using max-plus algebraical
identities. From Equations (4) and (5) we can trivially prove:

G((a⊕ b)⊗ c) = (Ga⊕Gb)⊗Gc (7)

Let allocG(VCj , C
l
m) be defined by Definition 5, where qCjG =

qCj ∗G. From Equations (6) and (7) it follows:

ζAiG/ζAi =
(alloc(VAi

,Pk)//alloc(VCj
,Cl

m):Π→R+)∗G

(alloc(VAi
,Pk)//alloc(VCj

,Cl
m):Π→R+)∗G (8)

Thus, ζAiG = ζAi . But,

allocG(VCj , C
l
m) : Π→ R+ =

Kj ≤ COST (VCj , C
l
m) ∗ qCj ∗G

for G ∈ N∗, R+ ∈ R+,Kj ∈ R+, and qCj = 1

hence,

ζAiG ≥ ζAi

Finally, from Lemma 3 and ζ =
∑N

i=1 ζgi , the theorem follows.

S2.4 Compilation flow for CP (critical-path)/Declustering
heuristics and including the modified StreamIt
judicious data-replication heuristic – continued from
experimental section

Figure 6 gives the optimization flow that we have implemented in
our heuristic techniques. We introduce a modified version of the
StreamIt judicious data/task parallelism heuristic as described by
Gordon et al. 2006 in declustering and critical path scheduling. This
heuristic is applied before applying the declustering and critical
path scheduling algorithms.

References
[1] T. Amnell, G. Behrmann, J. Bengtsson, P. R. D’Argenio,

A. David, A. Fehnker, T. Hune, B. Jeannet, K. G. Larsen,
M. O. Möller, P. Pettersson, C. Weise, and W. Yi. Model-
ing and verification of parallel processes. chapter UPPAAL:
now, next, and future, pages 99–124. Springer-Verlag New York,
Inc., New York, NY, USA, 2001. ISBN 3-540-42787-2. URL
http://portal.acm.org/citation.cfm?id=766794.766799.

[2] G. Behrmann, M. Hendriks, and A. Mader. A.: Production scheduling
by reachability analysis - a case study. In In: Workshop on Parallel
and Distributed Real-Time Systems (WPDRTS), published by IEEE
Computer. Society Press, 2005.

[3] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-
grained task, data, and pipeline parallelism in stream programs.
SIGOPS Oper. Syst. Rev., 40:151–162, October 2006. ISSN 0163-
5980. doi: http://doi.acm.org/10.1145/1168917.1168877. URL
http://doi.acm.org/10.1145/1168917.1168877.

[4] A. Malik and D. Gregg. Theorems for model-checking. Technical
report, Department of Computer Science and Statistics, Trinity College
Dublin, 2012.

[5] P. S. Roop, S. Andalam, R. Hanxleden, S. Yuan, and C. Traulsen.
Tight WCRT analysis of synchronous C programs. Technical Report
0912, Christian-Albrechts-Universitat Kiel, Department of Computer
Science, May 2009.

short description of paper 6 2012/10/14

using average exec/comm costs

Modified StreamIt heuristic

using average exec/comm costs

Basic CP clustering

using average exec/comm costs

Composing basic clusters

using average exec/comm costs

Declustering

Stream graph .dot file

Code generation

Load balacing

using exact exec/comm costs

Declustering

CP

Figure 6: Flow of heuristic optimization techniques

short description of paper 7 2012/10/14

