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%%
%% This is file `breakurl.sty',
%% generated with the docstrip utility.
%%
%% The original source files were:
%%
%% breakurl.dtx  (with options: `package')
%% 
%% This is a generated file.
%% 
%% Copyright (C) 2005 by Vilar Camara Neto.
%% 
%% This file may be distributed and/or modified under the
%% conditions of the LaTeX Project Public License, either
%% version 1.2 of this license or (at your option) any later
%% version.  The latest version of this license is in:
%% 
%%     http://www.latex-project.org/lppl.txt
%% 
%% and version 1.2 or later is part of all distributions of
%% LaTeX version 1999/12/01 or later.
%% 
%% Currently this work has the LPPL maintenance status "maintained".
%% 
%% The Current Maintainer of this work is Vilar Camara Neto.
%% 
%% This work consists of the files breakurl.dtx and
%% breakurl.ins and the derived file breakurl.sty.
%% 
\NeedsTeXFormat{LaTeX2e}[1999/12/01]
\ProvidesPackage{breakurl}
    [2009/01/24 v1.30 Breakable hyperref URLs]


\RequirePackage{xkeyval}
\RequirePackage{ifpdf}

\ifpdf
  % Dummy package options
  \DeclareOptionX{preserveurlmacro}{}
  \DeclareOptionX{hyphenbreaks}{}
  \DeclareOptionX{vertfit}{}
  \ProcessOptionsX\relax

  \PackageWarning{breakurl}{%
  You are using breakurl while processing via pdflatex.\MessageBreak
  \string\burl\space will be just a synonym of \string\url.\MessageBreak}
  \DeclareRobustCommand{\burl}{\url}
  \DeclareRobustCommand*{\burlalt}{\hyper@normalise\burl@alt}
  \def\burl@alt#1#2{\hyper@linkurl{\Hurl{#1}}{#2}}
  \expandafter\endinput
\fi

\@ifpackageloaded{hyperref}{}{%
  \PackageError{breakurl}{The breakurl depends on hyperref package}%
  {I can't do anything. Please type X <return>, edit the source file%
  \MessageBreak
  and add \string\usepackage\string{hyperref\string} before
  \string\usepackage\string{breakurl\string}.}
  \endinput
}

\newif\if@preserveurlmacro\@preserveurlmacrofalse
\newif\if@burl@fitstrut\@burl@fitstrutfalse
\newif\if@burl@fitglobal\@burl@fitglobalfalse

\newtoks\burl@toks

\let\burl@charlistbefore\empty
\let\burl@charlistafter\empty

\def\burl@addtocharlistbefore{\g@addto@macro\burl@charlistbefore}
\def\burl@addtocharlistafter{\g@addto@macro\burl@charlistafter}

\bgroup
  \catcode`\&=12\relax
  \hyper@normalise\burl@addtocharlistbefore{%}
  \hyper@normalise\burl@addtocharlistafter{:/.?#&_,;!}
\egroup

\def\burl@growmif#1#2{%
  \g@addto@macro\burl@mif{\def\burl@ttt{#1}\ifx\burl@ttt\@nextchar#2\else}%
}
\def\burl@growmfi{%
  \g@addto@macro\burl@mfi{\fi}%
}
\def\burl@defifstructure{%
  \let\burl@mif\empty
  \let\burl@mfi\empty
  \expandafter\@tfor\expandafter\@nextchar\expandafter:\expandafter=%
    \burl@charlistbefore\do{%
    \expandafter\burl@growmif\@nextchar\@burl@breakbeforetrue
    \burl@growmfi
  }%
  \expandafter\@tfor\expandafter\@nextchar\expandafter:\expandafter=%
    \burl@charlistafter\do{%
    \expandafter\burl@growmif\@nextchar\@burl@breakaftertrue
    \burl@growmfi
  }%
}

\AtEndOfPackage{\burl@defifstructure}

\def\burl@setvertfit#1{%
  \lowercase{\def\burl@temp{#1}}%
  \def\burl@opt{local}\ifx\burl@temp\burl@opt
    \@burl@fitstrutfalse\@burl@fitglobalfalse
  \else\def\burl@opt{strut}\ifx\burl@temp\burl@opt
    \@burl@fitstruttrue\@burl@fitglobalfalse
  \else\def\burl@opt{global}\ifx\burl@temp\burl@opt
    \@burl@fitstrutfalse\@burl@fitglobaltrue
  \else
    \PackageWarning{breakurl}{Unrecognized vertfit option `\burl@temp'.%
    \MessageBreak
    Adopting default `local'}
    \@burl@fitstrutfalse\@burl@fitglobalfalse
  \fi\fi\fi
}

\DeclareOptionX{preserveurlmacro}{\@preserveurlmacrotrue}
\DeclareOptionX{hyphenbreaks}{%
  \bgroup
    \catcode`\&=12\relax
    \hyper@normalise\burl@addtocharlistafter{-}%
  \egroup
}
\DeclareOptionX{vertfit}[local]{\burl@setvertfit{#1}}

\ProcessOptionsX\relax

\def\burl@hyper@linkurl#1#2{%
  \begingroup
    \hyper@chars
    \burl@condpdflink{#1}%
  \endgroup
}

\def\burl@condpdflink#1{%
  \literalps@out{
    /burl@bordercolor {\@urlbordercolor} def
    /burl@border {\@pdfborder} def
  }%
  \if@burl@fitstrut
    \sbox\pdf@box{#1\strut}%
  \else\if@burl@fitglobal
    \sbox\pdf@box{\burl@url}%
  \else
    \sbox\pdf@box{#1}%
  \fi\fi
  \dimen@\ht\pdf@box\dimen@ii\dp\pdf@box
  \sbox\pdf@box{#1}%
  \ifdim\dimen@ii=\z@
    \literalps@out{BU.SS}%
  \else
    \lower\dimen@ii\hbox{\literalps@out{BU.SS}}%
  \fi
  \ifHy@breaklinks\unhbox\else\box\fi\pdf@box
  \ifdim\dimen@=\z@
    \literalps@out{BU.SE}%
  \else
    \raise\dimen@\hbox{\literalps@out{BU.SE}}%
  \fi
  \pdf@addtoksx{H.B}%
}

\DeclareRobustCommand*{\burl}{%
  \leavevmode
  \begingroup
  \let\hyper@linkurl=\burl@hyper@linkurl
  \catcode`\&=12\relax
  \hyper@normalise\burl@
}

\DeclareRobustCommand*{\burlalt}{%
  \begingroup
  \let\hyper@linkurl=\burl@hyper@linkurl
  \catcode`\&=12\relax
  \hyper@normalise\burl@alt
}

\newif\if@burl@breakbefore
\newif\if@burl@breakafter
\newif\if@burl@prevbreakafter

\bgroup
\catcode`\&=12\relax
\gdef\burl@#1{%
  \def\burl@url{#1}%
  \def\burl@urltext{#1}%
  \burl@doit
}

\gdef\burl@alt#1{%
  \def\burl@url{#1}%
  \hyper@normalise\burl@@alt
}
\gdef\burl@@alt#1{%
  \def\burl@urltext{#1}%
  \burl@doit
}

\gdef\burl@doit{%
  \burl@toks{}%
  \let\burl@UrlRight\UrlRight
  \let\UrlRight\empty
  \@burl@prevbreakafterfalse
  \@ifundefined{@urlcolor}{\Hy@colorlink\@linkcolor}{\Hy@colorlink\@urlcolor}%
  \expandafter\@tfor\expandafter\@nextchar\expandafter:\expandafter=%
    \burl@urltext\do{%
    \if@burl@breakafter\@burl@prevbreakaftertrue
      \else\@burl@prevbreakafterfalse\fi
    \@burl@breakbeforefalse
    \@burl@breakafterfalse
    \expandafter\burl@mif\burl@mfi
    \if@burl@breakbefore
      % Breakable if the current char is in the `can break before' list
      \burl@flush\linebreak[0]%
    \else
      \if@burl@prevbreakafter
        \if@burl@breakafter\else
          % Breakable if the current char is not in any of the `can break'
          % lists, but the previous is in the `can break after' list.
          % This mechanism accounts for sequences of `break after' characters,
          % where a break is allowed only after the last one
          \burl@flush\linebreak[0]%
        \fi
      \fi
    \fi
    \expandafter\expandafter\expandafter\burl@toks
      \expandafter\expandafter\expandafter{%
      \expandafter\the\expandafter\burl@toks\@nextchar}%
  }%
  \let\UrlRight\burl@UrlRight
  \burl@flush
  \literalps@out{BU.E}%
  \Hy@endcolorlink
  \endgroup
}
\egroup

\def\the@burl@toks{\the\burl@toks}

\def\burl@flush{%
  \expandafter\def\expandafter\burl@toks@def\expandafter{\the\burl@toks}%
  \literalps@out{/BU.L (\burl@url) def}%
  \hyper@linkurl{\expandafter\Hurl\expandafter{\burl@toks@def}}{\burl@url}%
  \global\burl@toks{}%
  \let\UrlLeft\empty
}%

\if@preserveurlmacro\else\let\url\burl\let\urlalt\burlalt\fi

\AtBeginDvi{%
  \headerps@out{%
    /burl@stx null def
    /BU.S {
      /burl@stx null def
    } def
    /BU.SS {
      currentpoint
      /burl@lly exch def
      /burl@llx exch def
      burl@stx null ne {burl@endx burl@llx ne {BU.FL BU.S} if} if
      burl@stx null eq {
        burl@llx dup /burl@stx exch def /burl@endx exch def
        burl@lly dup /burl@boty exch def /burl@topy exch def
      } if
      burl@lly burl@boty gt {/burl@boty burl@lly def} if
    } def
    /BU.SE {
      currentpoint
      /burl@ury exch def
      dup /burl@urx exch def /burl@endx exch def
      burl@ury burl@topy lt {/burl@topy burl@ury def} if
    } def
    /BU.E {
      BU.FL
    } def
    /BU.FL {
      burl@stx null ne {BU.DF} if
    } def
    /BU.DF {
      BU.BB
      [ /H /I /Border [burl@border] /Color [burl@bordercolor]
      /Action << /Subtype /URI /URI BU.L >> /Subtype /Link BU.B /ANN pdfmark
      /burl@stx null def
    } def
    /BU.BB {
      burl@stx HyperBorder sub /burl@stx exch def
      burl@endx HyperBorder add /burl@endx exch def
      burl@boty HyperBorder add /burl@boty exch def
      burl@topy HyperBorder sub /burl@topy exch def
    } def
    /BU.B {
      /Rect[burl@stx burl@boty burl@endx burl@topy]
    } def
    /eop where {
      begin
      /@ldeopburl /eop load def
      /eop { SDict begin BU.FL end @ldeopburl } def
      end
    } {
      /eop { SDict begin BU.FL end } def
    } ifelse
  }%
}
\endinput
%%
%% End of file `breakurl.sty'.
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\NeedsTeXFormat{LaTeX2e}[1995/12/01]
\ProvidesClass{eptcs}[2009/5/12 v1.1]

\newif\ifdraft
\newif\ifsubmission
\newif\ifpreliminary
\newif\ifreplacement
\newif\ifcopyright
\newif\ifpublicdomain
\newif\ifcreativecommons
\newif\ifnoderivs
\newif\ifsharealike
\newif\ifnoncommercial
\draftfalse
\submissionfalse
\preliminaryfalse
\replacementfalse
\copyrightfalse
\publicdomainfalse
\creativecommonsfalse
\noderivsfalse
\sharealikefalse
\noncommercialfalse
\replacementfalse
\DeclareOption{draft}{\drafttrue}
\DeclareOption{submission}{\submissiontrue}
\DeclareOption{preliminary}{\preliminarytrue}
\DeclareOption{replacement}{\replacementtrue}
\DeclareOption{copyright}{\copyrighttrue}
\DeclareOption{publicdomain}{\publicdomaintrue}
\DeclareOption{creativecommons}{\creativecommonstrue}
\DeclareOption{noderivs}{\noderivstrue}
\DeclareOption{noncommercial}{\noncommercialtrue}
\DeclareOption{sharealike}{\sharealiketrue}
\ProcessOptions\relax

\LoadClass[letterpaper,11pt,twoside]{article}
\RequirePackage{hyperref}
\RequirePackage{mathptmx} % Pick Times Roman as a base font
\RequirePackage{lastpage} % Remembers page number of last page

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%   This format is suited for printing on A4 and US letter paper.    %%
%%   The left margin is 2.5cm on both A4 and US letter paper.         %%
%%   The right margin is 2.5cm on A4 paper                            %%
%%         which is 2.5cm + (21cm - 8.5in) = 3.09cm on letter paper.  %%
%%   When \topmargin would be 0, the real top margin would be         %%
%%   (72-25-12=35pt) + 1pt (unused portion of head) = .5in = 1.27cm.  %%
%%   Thus our top margin is 1.23cm on US letter paper                 %%
%%           which is 1.23cm + (29.7cm - 11in) = 2.99cm on A4 paper.  %%
%%   The bottom margin, on both kind of papers, is                    %%
%%           11in - 1in + 0.04cm - 623/72in = 3.46cm.                 %%
%%   On the first page the bottom margin contains various footers.    %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\textwidth              16cm             % A4 width is 21cm            %
\textheight             623.01pt         % 46 lines exactly = 21.98cm  %
\oddsidemargin          -0.04cm          % +1 inch = 2.5cm             %
\evensidemargin         -0.04cm          % +1 inch = 2.5cm             %
\topmargin              -0.04cm          % +1 inch = 2.5cm             %
\advance\topmargin-\headheight           % 12pt                        %
\advance\topmargin-\headsep              % 25pt                        %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%			Pagestyle and titlepage      		    %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\pagestyle{myheadings}
\def\titlerunning{Please {\tt $\backslash$def$\backslash$titlerunning}}
\def\authorrunning{Please {\tt $\backslash$def$\backslash$authorrunning}}

\def\@maketitle{%                       adapted from article.cls
  \newpage
\noindent
\raisebox{-22.8cm}[0pt][0pt]{\footnotesize
\begin{tabular}{@{}l}
\ifdraft
  \Large DRAFT\quad\today
\else\ifsubmission
  Submitted to Electronic Proceedings\\ in Theoretical
  Computer Science.
\else\ifpreliminary
  This is a preliminary version of a paper\\ that will appear in
  Electronic Proceedings\\ in Theoretical Computer Science.
\else\ifreplacement
  This is a revision of a paper with the same title,\\
  published in EPTCS \volume, \anno, pp.\ \firstpage--\pageref{LastPage}.
\else
  \event\\
  EPTCS \volume, \anno, pp.\ \firstpage--\pageref{LastPage}.
\fi\fi\fi\fi
\end{tabular}}
\hfill\vspace{-1em}
\raisebox{-22.8cm}[0pt][0pt]{\footnotesize
\begin{tabular}{l@{}}
\ifpublicdomain
  This work is \href{http://creativecommons.org/licenses/publicdomain/}
  {dedicated to the public domain}.
\else
  \ifcopyright
    \copyright~\authorrunning\\
  \fi
  \ifcreativecommons
    This work is licensed under the
    \ifnoncommercial
      \href{http://creativecommons.org}{Creative Commons}\\
      \ifnoderivs
	\href{http://creativecommons.org/licenses/by-nc-nd/3.0/}
	{Attribution-Noncommercial-No Derivative Works} License.
      \else\ifsharealike
	\href{http://creativecommons.org/licenses/by-nc-sa/3.0/}
	{Attribution-Noncommercial-Share Alike} License.
      \else
	\href{http://creativecommons.org/licenses/by-nc/3.0/}
	{Attribution-Noncommercial} License.
      \fi\fi
    \else
      \ifnoderivs
        \href{http://creativecommons.org}{Creative Commons}\\
	\href{http://creativecommons.org/licenses/by-nd/3.0/}
	{Attribution-No Derivative Works} License.
      \else\ifsharealike
        \href{http://creativecommons.org}{Creative Commons}\\
	\href{http://creativecommons.org/licenses/by-sa/3.0/}
	{Attribution-Share Alike} License.
      \else
        \\\href{http://creativecommons.org}{Creative Commons}
	\href{http://creativecommons.org/licenses/by/3.0/}
	{Attribution} License.
      \fi\fi
    \fi
  \fi
\fi
\end{tabular}}
  \null
  %\vskip 2em%				a bit of space removed (< 2em)
  \begin{center}%
  \let \footnote \thanks
    {\LARGE\bf \@title \par}%		\bf added
    \vskip 2em%				was: 1.5em
    {\large
      \lineskip .5em%
      \begin{tabular}[t]{c}%
        \@author
      \end{tabular}\par}%
    \vskip 1em%			       \date and extra space removed
  \end{center}%
  \par
  \markboth{\hfill\titlerunning}{\authorrunning\hfill}
  \vskip .5em}

\newcommand{\institute}[1]{\\{\scriptsize
   \begin{tabular}[t]{@{\footnotesize}c@{}}#1\end{tabular}}}
\newcommand{\email}[1]{\\{\footnotesize\tt #1}}

\renewenvironment{abstract}{\thispagestyle{empty}
                        \setcounter{page}{\firstpage}
                        \begin{list}{}%   header removed and noindent
			{\rightmargin\leftmargin
			\listparindent 1.5em
			\parsep 0pt plus 1pt}
			\small\item}{\end{list}
}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%			Less space in lists      		    %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\def\@listi{\leftmargin\leftmargini
            \parsep 2.5\p@ \@plus1.5\p@ \@minus\p@
            \topsep 5\p@   \@plus2\p@ \@minus5\p@
            \itemsep2.5\p@ \@plus1.5\p@ \@minus\p@}
\let\@listI\@listi
\@listi
\def\@listii {\leftmargin\leftmarginii
              \labelwidth\leftmarginii
              \advance\labelwidth-\labelsep
              \topsep    1\p@ \@plus\p@ \@minus\p@
              \parsep    1\p@   \@plus\p@  \@minus\p@
              \itemsep   \parsep}
\def\@listiii{\leftmargin\leftmarginiii
              \labelwidth\leftmarginiii
              \advance\labelwidth-\labelsep
              \topsep    \z@
              \parsep    \z@
              \itemsep   \topsep}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%       References small and with less space between items       %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\renewenvironment{thebibliography}[1]
     {\section*{\refname}\small%              small added
      \list{\@biblabel{\@arabic\c@enumiv}}%
           {\settowidth\labelwidth{\@biblabel{#1}}%
            \leftmargin\labelwidth
            \advance\leftmargin\labelsep
            \@openbib@code
            \usecounter{enumiv}%
            \let\p@enumiv\@empty
            \renewcommand\theenumiv{\@arabic\c@enumiv}}%
      \sloppy
      \clubpenalty4000
      \@clubpenalty \clubpenalty
      \widowpenalty4000%
      \sfcode`\.\@m
		\setlength{\parskip}{2pt}%    less space between items
		\setlength{\itemsep}{0pt}%    less space between items
     }
     {\def\@noitemerr
       {\@latex@warning{Empty `thebibliography' environment}}%
      \endlist}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%                  load eptcsdata when available                 %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\IfFileExists{eptcsdata.tex}{\input{eptcsdata}}{}
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\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{ccc-arrows}[2002/03/30 v1.0a ccc: Extensible Arrows]

\RequirePackage{amsmath}

\def\x@arrow{\DOTSB\Relbar}
\def\xlongequalsignfill@{\arrowfill@\x@arrow\Relbar\x@arrow}

\newcommand{\xlongequal}[2][]{%
	\ext@arrow 0099\xlongequalsignfill@{#1}{#2}}

\def\xLongleftrightarrowfill@{%
  \arrowfill@\Longleftarrow\Relbar\Longrightarrow}
\newcommand{\xLongleftrightarrow}[2][]{%
	\ext@arrow 0099\xLongleftrightarrowfill@{#1}{#2}}

\def\xlongleftrightarrowfill@{%
  \arrowfill@\longleftarrow\relbar\longrightarrow}
\newcommand{\xlongleftrightarrow}[2][]{%
	\ext@arrow 0099\xlongleftrightarrowfill@{#1}{#2}}

\def\xLeftrightarrowfill@{\arrowfill@\Leftarrow\Relbar\Rightarrow}
\newcommand{\xLeftrightarrow}[2][]{%
	\ext@arrow 0099\xLeftrightarrowfill@{#1}{#2}}

\def\xleftrightarrowfill@{\arrowfill@\leftarrow\relbar\rightarrow}
\newcommand{\xleftrightarrow}[2][]{%
	\ext@arrow 0099\xleftrightarrowfill@{#1}{#2}}

\def\xLongleftarrowfill@{\arrowfill@\Longleftarrow\Relbar\Relbar}
\newcommand{\xLongleftarrow}[2][]{%
	\ext@arrow 0099\xLongleftarrowfill@{#1}{#2}}

\def\xLongrightarrowfill@{\arrowfill@\Relbar\Relbar\Longrightarrow}
\newcommand{\xLongrightarrow}[2][]{%
	\ext@arrow 0099\xLongrightarrowfill@{#1}{#2}}

\def\xlongleftarrowfill@{\arrowfill@\longleftarrow\relbar\relbar}
\newcommand{\xlongleftarrow}[2][]{%
	\ext@arrow 0099\xlongleftarrowfill@{#1}{#2}}

\def\xlongrightarrowfill@{\arrowfill@\relbar\relbar\longrightarrow}
\newcommand{\xlongrightarrow}[2][]{%
	\ext@arrow 0099\xlongrightarrowfill@{#1}{#2}}

\endinput
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\relax 
\select@language{british}
\@writefile{toc}{\select@language{british}}
\@writefile{lof}{\select@language{british}}
\@writefile{lot}{\select@language{british}}
\citation{ccs}
\citation{ccs}
\citation{dhn}
\citation{abramsky}
\citation{dhn}
\citation{csp}
\citation{csp}
\citation{olderog}
\citation{rocco}
\citation{vardi}
\@writefile{toc}{\contentsline {chapter}{\numberline {1}Introduction}{1}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\citation{aceto}
\citation{dhn}
\@writefile{toc}{\contentsline {chapter}{\numberline {2}Background}{3}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {section}{\numberline {2.1}Modeling Concurrent Systems}{3}}
\newlabel{sec:background}{{2.1}{3}}
\@writefile{lot}{\contentsline {table}{\numberline {2.1}{\ignorespaces LTS for the vending machine: graphical representation}}{4}}
\newlabel{lts:vm}{{2.1}{4}}
\newlabel{ex:vm}{{2.1.2}{4}}
\@writefile{lot}{\contentsline {table}{\numberline {2.2}{\ignorespaces a very simple LTS}}{5}}
\newlabel{lts:ex2}{{2.2}{5}}
\@writefile{lot}{\contentsline {table}{\numberline {2.3}{\ignorespaces LTS with a non finite branching state}}{6}}
\newlabel{lts:nbf}{{2.3}{6}}
\@writefile{lot}{\contentsline {table}{\numberline {2.4}{\ignorespaces Another simple LTS}}{7}}
\newlabel{lts:ex3}{{2.4}{7}}
\newlabel{def:pcomp}{{2.1.6}{7}}
\citation{hml}
\@writefile{lot}{\contentsline {table}{\numberline {2.5}{\ignorespaces LTS for a customer of the vending machine}}{8}}
\newlabel{lts:cust}{{2.5}{8}}
\@writefile{lot}{\contentsline {table}{\numberline {2.6}{\ignorespaces composition between the vending machine and the customer}}{8}}
\newlabel{lts:comp}{{2.6}{8}}
\@writefile{toc}{\contentsline {section}{\numberline {2.2}Formalising Properties: Recursive HML}{8}}
\newlabel{sec:recursivehml}{{2.2}{8}}
\citation{becik}
\citation{csp}
\@writefile{lot}{\contentsline {table}{\numberline {2.7}{\ignorespaces Interpretation of \ensuremath  {\textit  {recHML}}\xspace  }}{10}}
\newlabel{tab:interpr}{{2.7}{10}}
\newlabel{prop:syntlemma}{{2.2.1}{11}}
\newlabel{prop:substlemma}{{i}{11}}
\newlabel{prop:envlemma}{{ii}{11}}
\newlabel{thm:becik}{{2.2.2}{12}}
\newlabel{prop:becik2}{{i}{12}}
\newlabel{thm:fixpointprop}{{2.2.3}{13}}
\newlabel{thm:minfixprop}{{i}{13}}
\newlabel{thm:fixprop}{{ii}{13}}
\citation{becik}
\citation{dhn}
\newlabel{cor:minsubst}{{2.2.4}{14}}
\newlabel{thm:tarski}{{2.2.5}{14}}
\@writefile{toc}{\contentsline {section}{\numberline {2.3}Testing Concurrent Systems}{14}}
\newlabel{sec:testing}{{2.3}{14}}
\@writefile{lot}{\contentsline {table}{\numberline {2.8}{\ignorespaces The tested LTS}}{15}}
\newlabel{lts:tested}{{2.8}{15}}
\@writefile{lot}{\contentsline {table}{\numberline {2.9}{\ignorespaces The test}}{15}}
\newlabel{lts:test2}{{2.9}{15}}
\citation{regulartrees}
\citation{boolos}
\newlabel{eq:tests}{{2.1}{16}}
\newlabel{prop:Tbf}{{2.3.1}{16}}
\newlabel{prop:branfin}{{i}{16}}
\citation{ioautomata}
\citation{courcelle}
\newlabel{lem:konig}{{2.3.2}{17}}
\newlabel{thm:bfexp}{{2.3.3}{17}}
\@writefile{toc}{\contentsline {chapter}{\numberline {3}Testing formulae}{19}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec:tf}{{3}{19}}
\newlabel{cond:1}{{ci}{21}}
\newlabel{cond:2}{{cii}{21}}
\newlabel{cond:3}{{ciii}{21}}
\newlabel{ex:c}{{c}{21}}
\newlabel{eq:mayhml}{{3.1}{21}}
\newlabel{eq:musthml}{{3.2}{22}}
\@writefile{toc}{\contentsline {section}{\numberline {3.1}The must case}{22}}
\newlabel{sec:must}{{3.1}{22}}
\newlabel{lem:divergence}{{3.1.1}{22}}
\newlabel{lem:div1}{{i}{22}}
\newlabel{lem:div2}{{ii}{22}}
\newlabel{lem:div3}{{iii}{22}}
\newlabel{eq:ttgrammar}{{3.3}{22}}
\newlabel{prop:cpo}{{3.1.2}{23}}
\newlabel{prop:dmndcontinuous}{{3.1.3}{23}}
\citation{finiteapprox}
\newlabel{def:mustapprox}{{3.1.2}{24}}
\newlabel{cor:continuity}{{3.1.4}{24}}
\newlabel{eq:tmusttt}{{3.4}{24}}
\newlabel{eq:tmustff}{{3.5}{24}}
\newlabel{eq:tmustacc}{{3.6}{24}}
\newlabel{eq:tmustX}{{3.7}{24}}
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LaTeX Font Info:    Overwriting symbol font `symbolsC' in version `bold'
(Font)                  U/txsyc/m/n --> U/txsyc/bx/n on input line 112.
LaTeX Font Info:    Redeclaring symbol font `largesymbols' on input line 119.
LaTeX Font Info:    Overwriting symbol font `largesymbols' in version `normal'
(Font)                  OMX/cmex/m/n --> OMX/txex/m/n on input line 119.
LaTeX Font Info:    Overwriting symbol font `largesymbols' in version `bold'
(Font)                  OMX/cmex/m/n --> OMX/txex/m/n on input line 119.
LaTeX Font Info:    Overwriting symbol font `largesymbols' in version `bold'
(Font)                  OMX/txex/m/n --> OMX/txex/bx/n on input line 120.
\symlargesymbolsA=\mathgroup11
LaTeX Font Info:    Overwriting symbol font `largesymbolsA' in version `bold'
(Font)                  U/txexa/m/n --> U/txexa/bx/n on input line 128.
LaTeX Info: Redefining \not on input line 1042.
LaTeX Info: Redefining \textsquare on input line 1062.
LaTeX Info: Redefining \openbox on input line 1063.
)
(/usr/share/texmf/tex/latex/pgf/basiclayer/pgf.sty
(/usr/share/texmf/tex/latex/pgf/utilities/pgfrcs.sty
(/usr/share/texmf/tex/generic/pgf/utilities/pgfutil-common.tex
\pgfutil@everybye=\toks31
)
(/usr/share/texmf/tex/generic/pgf/utilities/pgfutil-latex.def)
(/usr/share/texmf/tex/generic/pgf/utilities/pgfrcs.code.tex
Package: pgfrcs 2008/02/20 v2.00 (rcs-revision 1.21)
))
Package: pgf 2008/01/15 v2.00 (rcs-revision 1.12)

(/usr/share/texmf/tex/latex/pgf/basiclayer/pgfcore.sty
(/usr/share/texmf/tex/latex/pgf/systemlayer/pgfsys.sty
(/usr/share/texmf/tex/generic/pgf/systemlayer/pgfsys.code.tex
Package: pgfsys 2008/02/07 v2.00 (rcs-revision 1.31)

(/usr/share/texmf/tex/generic/pgf/utilities/pgfkeys.code.tex
\pgfkeys@pathtoks=\toks32
\pgfkeys@temptoks=\toks33
)
\pgf@x=\dimen124
\pgf@y=\dimen125
\pgf@xa=\dimen126
\pgf@ya=\dimen127
\pgf@xb=\dimen128
\pgf@yb=\dimen129
\pgf@xc=\dimen130
\pgf@yc=\dimen131
\c@pgf@counta=\count110
\c@pgf@countb=\count111
\c@pgf@countc=\count112
\c@pgf@countd=\count113

(/usr/share/texmf/tex/generic/pgf/systemlayer/pgf.cfg
File: pgf.cfg 2008/01/13  (rcs-revision 1.6)
)
Package pgfsys Info: Driver file for pgf: pgfsys-pdftex.def on input line 885.

(/usr/share/texmf/tex/generic/pgf/systemlayer/pgfsys-pdftex.def
File: pgfsys-pdftex.def 2007/12/20  (rcs-revision 1.20)

(/usr/share/texmf/tex/generic/pgf/systemlayer/pgfsys-common-pdf.def
File: pgfsys-common-pdf.def 2007/12/17  (rcs-revision 1.8)
)))
(/usr/share/texmf/tex/generic/pgf/systemlayer/pgfsyssoftpath.code.tex
File: pgfsyssoftpath.code.tex 2008/01/23  (rcs-revision 1.6)
\pgfsyssoftpath@smallbuffer@items=\count114
\pgfsyssoftpath@bigbuffer@items=\count115
)
(/usr/share/texmf/tex/generic/pgf/systemlayer/pgfsysprotocol.code.tex
File: pgfsysprotocol.code.tex 2006/10/16  (rcs-revision 1.4)
))
(/usr/share/texmf/tex/latex/xcolor/xcolor.sty
Package: xcolor 2007/01/21 v2.11 LaTeX color extensions (UK)

(/etc/texmf/tex/latex/config/color.cfg
File: color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive
)
Package xcolor Info: Driver file: pdftex.def on input line 225.
LaTeX Info: Redefining \color on input line 702.
Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1337.
Package xcolor Info: Model `hsb' substituted by `rgb' on input line 1341.
Package xcolor Info: Model `RGB' extended on input line 1353.
Package xcolor Info: Model `HTML' substituted by `rgb' on input line 1355.
Package xcolor Info: Model `Hsb' substituted by `hsb' on input line 1356.
Package xcolor Info: Model `tHsb' substituted by `hsb' on input line 1357.
Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1358.
Package xcolor Info: Model `Gray' substituted by `gray' on input line 1359.
Package xcolor Info: Model `wave' substituted by `hsb' on input line 1360.

(/usr/share/texmf/tex/latex/xcolor/svgnam.def
File: svgnam.def 2007/01/21 v2.11 Predefined colors according to SVG 1.1 (UK)
))
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcore.code.tex
Package: pgfcore 2008/01/15 v2.00 (rcs-revision 1.6)

(/usr/share/texmf/tex/generic/pgf/math/pgfmath.code.tex
(/usr/share/texmf/tex/generic/pgf/math/pgfmathcalc.code.tex
(/usr/share/texmf/tex/generic/pgf/math/pgfmathutil.code.tex
\pgfmath@box=\box31
)
(/usr/share/texmf/tex/generic/pgf/math/pgfmathparser.code.tex
\pgfmath@stack=\toks34
\c@pgfmath@parsecounta=\count116
\c@pgfmath@parsecountb=\count117
\c@pgfmath@parsecountc=\count118
\pgfmath@parsex=\dimen132
)
(/usr/share/texmf/tex/generic/pgf/math/pgfmathoperations.code.tex
(/usr/share/texmf/tex/generic/pgf/math/pgfmathtrig.code.tex)
(/usr/share/texmf/tex/generic/pgf/math/pgfmathrnd.code.tex))
(/usr/share/texmf/tex/generic/pgf/math/pgfmathbase.code.tex)))
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcorepoints.code.tex
File: pgfcorepoints.code.tex 2008/02/03  (rcs-revision 1.13)
\pgf@picminx=\dimen133
\pgf@picmaxx=\dimen134
\pgf@picminy=\dimen135
\pgf@picmaxy=\dimen136
\pgf@pathminx=\dimen137
\pgf@pathmaxx=\dimen138
\pgf@pathminy=\dimen139
\pgf@pathmaxy=\dimen140
\pgf@xx=\dimen141
\pgf@xy=\dimen142
\pgf@yx=\dimen143
\pgf@yy=\dimen144
\pgf@zx=\dimen145
\pgf@zy=\dimen146
)
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcorepathconstruct.code.tex
File: pgfcorepathconstruct.code.tex 2008/02/13  (rcs-revision 1.14)
\pgf@path@lastx=\dimen147
\pgf@path@lasty=\dimen148
)
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcorepathusage.code.tex
File: pgfcorepathusage.code.tex 2008/01/23  (rcs-revision 1.11)
\pgf@shorten@end@additional=\dimen149
\pgf@shorten@start@additional=\dimen150
)
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcorescopes.code.tex
File: pgfcorescopes.code.tex 2008/01/15  (rcs-revision 1.26)
\pgfpic=\box32
\pgf@hbox=\box33
\pgf@layerbox@main=\box34
\pgf@picture@serial@count=\count119
)
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcoregraphicstate.code.tex
File: pgfcoregraphicstate.code.tex 2007/12/12  (rcs-revision 1.8)
\pgflinewidth=\dimen151
)
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcoretransformations.code.tex
File: pgfcoretransformations.code.tex 2008/02/04  (rcs-revision 1.10)
\pgf@pt@x=\dimen152
\pgf@pt@y=\dimen153
\pgf@pt@temp=\dimen154
)
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcorequick.code.tex
File: pgfcorequick.code.tex 2006/10/11  (rcs-revision 1.2)
)
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcoreobjects.code.tex
File: pgfcoreobjects.code.tex 2006/10/11  (rcs-revision 1.2)
)
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcorepathprocessing.code.tex
File: pgfcorepathprocessing.code.tex 2008/01/23  (rcs-revision 1.7)
)
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcorearrows.code.tex
File: pgfcorearrows.code.tex 2007/06/07  (rcs-revision 1.8)
)
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcoreshade.code.tex
File: pgfcoreshade.code.tex 2007/12/10  (rcs-revision 1.9)
\pgf@max=\dimen155
\pgf@sys@shading@range@num=\count120
)
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcoreimage.code.tex
File: pgfcoreimage.code.tex 2008/01/15  (rcs-revision 1.1)
\pgfexternal@startupbox=\box35
)
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcorelayers.code.tex
File: pgfcorelayers.code.tex 2008/01/15  (rcs-revision 1.1)
)
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcoretransparency.code.tex
File: pgfcoretransparency.code.tex 2008/01/17  (rcs-revision 1.2)
)
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcorepatterns.code.tex
File: pgfcorepatterns.code.tex 2008/01/15  (rcs-revision 1.1)
)))
(/usr/share/texmf/tex/generic/pgf/modules/pgfmoduleshapes.code.tex
File: pgfmoduleshapes.code.tex 2008/02/13  (rcs-revision 1.4)
\pgfnodeparttextbox=\box36
\toks@savedmacro=\toks35
)
(/usr/share/texmf/tex/generic/pgf/modules/pgfmoduleplot.code.tex
File: pgfmoduleplot.code.tex 2008/01/15  (rcs-revision 1.1)
\pgf@plotwrite=\write3
)
(/usr/share/texmf/tex/latex/pgf/compatibility/pgfcomp-version-0-65.sty
Package: pgfcomp-version-0-65 2007/07/03 v2.00 (rcs-revision 1.7)
\pgf@nodesepstart=\dimen156
\pgf@nodesepend=\dimen157
)
(/usr/share/texmf/tex/latex/pgf/compatibility/pgfcomp-version-1-18.sty
Package: pgfcomp-version-1-18 2007/07/23 v2.00 (rcs-revision 1.1)
))
(/usr/share/texmf/tex/latex/pgf/frontendlayer/tikz.sty
(/usr/share/texmf/tex/latex/pgf/utilities/pgffor.sty
(/usr/share/texmf/tex/generic/pgf/utilities/pgffor.code.tex
Package: pgffor 2007/11/07 v2.00 (rcs-revision 1.8)
\pgffor@iter=\dimen158
\pgffor@skip=\dimen159
))
(/usr/share/texmf/tex/generic/pgf/frontendlayer/tikz/tikz.code.tex
Package: tikz 2008/02/13 v2.00 (rcs-revision 1.27)

(/usr/share/texmf/tex/generic/pgf/libraries/pgflibraryplothandlers.code.tex
File: pgflibraryplothandlers.code.tex 2007/03/09 v2.00 (rcs-revision 1.9)
\pgf@plot@mark@count=\count121
\pgfplotmarksize=\dimen160
)
\tikz@lastx=\dimen161
\tikz@lasty=\dimen162
\tikz@lastxsaved=\dimen163
\tikz@lastysaved=\dimen164
\tikzleveldistance=\dimen165
\tikzsiblingdistance=\dimen166
\tikz@figbox=\box37
\tikz@tempbox=\box38
\tikztreelevel=\count122
\tikznumberofchildren=\count123
\tikznumberofcurrentchild=\count124
\tikz@fig@count=\count125

(/usr/share/texmf/tex/generic/pgf/modules/pgfmodulematrix.code.tex
File: pgfmodulematrix.code.tex 2008/01/15  (rcs-revision 1.1)
\pgfmatrixcurrentrow=\count126
\pgfmatrixcurrentcolumn=\count127
\pgf@matrix@numberofcolumns=\count128
)
\tikz@expandcount=\count129

(/usr/share/texmf/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarytopat
hs.code.tex
File: tikzlibrarytopaths.code.tex 2008/01/09 v2.00 (rcs-revision 1.1)
)))
(/usr/share/texmf/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryarrow
s.code.tex
File: tikzlibraryarrows.code.tex 2008/01/09 v2.00 (rcs-revision 1.1)

(/usr/share/texmf/tex/generic/pgf/libraries/pgflibraryarrows.code.tex
File: pgflibraryarrows.code.tex 2007/06/07 v2.00 (rcs-revision 1.7)
))
(/usr/share/texmf/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryshape
s.code.tex
File: tikzlibraryshapes.code.tex 2008/01/09 v2.00 (rcs-revision 1.1)

(/usr/share/texmf/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryshape
s.geometric.code.tex
File: tikzlibraryshapes.geometric.code.tex 2008/01/09 v2.00 (rcs-revision 1.1)

(/usr/share/texmf/tex/generic/pgf/libraries/pgflibraryshapes.geometric.code.tex
File: pgflibraryshapes.geometric.code.tex 2008/02/01 v2.00 (rcs-revision 1.22)
))
(/usr/share/texmf/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryshape
s.misc.code.tex
File: tikzlibraryshapes.misc.code.tex 2008/01/09 v2.00 (rcs-revision 1.1)

(/usr/share/texmf/tex/generic/pgf/libraries/pgflibraryshapes.misc.code.tex
File: pgflibraryshapes.misc.code.tex 2008/02/12 v2.00 (rcs-revision 1.10)
))
(/usr/share/texmf/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryshape
s.symbols.code.tex
File: tikzlibraryshapes.symbols.code.tex 2008/01/09 v2.00 (rcs-revision 1.1)

(/usr/share/texmf/tex/generic/pgf/libraries/pgflibraryshapes.symbols.code.tex
File: pgflibraryshapes.symbols.code.tex 2008/01/30 v2.00 (rcs-revision 1.13)
))
(/usr/share/texmf/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryshape
s.arrows.code.tex
File: tikzlibraryshapes.arrows.code.tex 2008/01/09 v2.00 (rcs-revision 1.1)

(/usr/share/texmf/tex/generic/pgf/libraries/pgflibraryshapes.arrows.code.tex
File: pgflibraryshapes.arrows.code.tex 2007/11/10 v2.00 (rcs-revision 1.3)
))
(/usr/share/texmf/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryshape
s.callouts.code.tex
(/usr/share/texmf/tex/generic/pgf/libraries/pgflibraryshapes.callouts.code.tex)
)
(/usr/share/texmf/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryshape
s.multipart.code.tex
File: tikzlibraryshapes.multipart.code.tex 2008/01/09 v2.00 (rcs-revision 1.1)

(/usr/share/texmf/tex/generic/pgf/libraries/pgflibraryshapes.multipart.code.tex
File: pgflibraryshapes.multipart.code.tex 2008/01/15 v2.00 (rcs-revision 1.7)
\pgfnodepartlowerbox=\box39
\pgfnodepartsecondbox=\box40
\pgfnodepartthirdbox=\box41
\pgfnodepartfourthbox=\box42
)))
(/usr/share/texmf/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryautom
ata.code.tex
File: tikzlibraryautomata.code.tex 2008/02/14 v2.00 (rcs-revision 1.2)
)
(/usr/share/texmf/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarypatte
rns.code.tex
File: tikzlibrarypatterns.code.tex 2008/01/15 v2.00 (rcs-revision 1.2)

(/usr/share/texmf/tex/generic/pgf/libraries/pgflibrarypatterns.code.tex
File: pgflibrarypatterns.code.tex 2008/01/15 v2.00 (rcs-revision 1.12)
))
\yellownotewidth=\skip54
\yellownoteheight=\skip55

(./fvttechrep.aux)
\openout1 = `fvttechrep.aux'.

LaTeX Font Info:    Checking defaults for OML/txmi/m/it on input line 141.
LaTeX Font Info:    Try loading font information for OML+txmi on input line 141
.
 (/usr/share/texmf-texlive/tex/latex/txfonts/omltxmi.fd
File: omltxmi.fd 2000/12/15 v3.1
)
LaTeX Font Info:    ... okay on input line 141.
LaTeX Font Info:    Checking defaults for T1/cmr/m/n on input line 141.
LaTeX Font Info:    ... okay on input line 141.
LaTeX Font Info:    Checking defaults for OT1/cmr/m/n on input line 141.
LaTeX Font Info:    ... okay on input line 141.
LaTeX Font Info:    Checking defaults for OMS/txsy/m/n on input line 141.
LaTeX Font Info:    Try loading font information for OMS+txsy on input line 141
.

(/usr/share/texmf-texlive/tex/latex/txfonts/omstxsy.fd
File: omstxsy.fd 2000/12/15 v3.1
)
LaTeX Font Info:    ... okay on input line 141.
LaTeX Font Info:    Checking defaults for OMX/txex/m/n on input line 141.
LaTeX Font Info:    Try loading font information for OMX+txex on input line 141
.

(/usr/share/texmf-texlive/tex/latex/txfonts/omxtxex.fd
File: omxtxex.fd 2000/12/15 v3.1
)
LaTeX Font Info:    ... okay on input line 141.
LaTeX Font Info:    Checking defaults for U/txexa/m/n on input line 141.
LaTeX Font Info:    Try loading font information for U+txexa on input line 141.


(/usr/share/texmf-texlive/tex/latex/txfonts/utxexa.fd
File: utxexa.fd 2000/12/15 v3.1
)
LaTeX Font Info:    ... okay on input line 141.
LaTeX Font Info:    Try loading font information for OT1+txr on input line 141.


(/usr/share/texmf-texlive/tex/latex/txfonts/ot1txr.fd
File: ot1txr.fd 2000/12/15 v3.1
)
(/usr/share/texmf/tex/context/base/supp-pdf.tex
[Loading MPS to PDF converter (version 2006.09.02).]
\scratchcounter=\count130
\scratchdimen=\dimen167
\scratchbox=\box43
\nofMPsegments=\count131
\nofMParguments=\count132
\everyMPshowfont=\toks36
\MPscratchCnt=\count133
\MPscratchDim=\dimen168
\MPnumerator=\count134
\everyMPtoPDFconversion=\toks37
)
LaTeX Font Info:    Try loading font information for OT1+ptm on input line 143.

 (/usr/share/texmf-texlive/tex/latex/psnfss/ot1ptm.fd
File: ot1ptm.fd 2001/06/04 font definitions for OT1/ptm.
)
LaTeX Font Info:    Try loading font information for U+txsya on input line 143.


(/usr/share/texmf-texlive/tex/latex/txfonts/utxsya.fd
File: utxsya.fd 2000/12/15 v3.1
)
LaTeX Font Info:    Try loading font information for U+txsyb on input line 143.


(/usr/share/texmf-texlive/tex/latex/txfonts/utxsyb.fd
File: utxsyb.fd 2000/12/15 v3.1
)
LaTeX Font Info:    Try loading font information for U+lasy on input line 143.

(/usr/share/texmf-texlive/tex/latex/base/ulasy.fd
File: ulasy.fd 1998/08/17 v2.2e LaTeX symbol font definitions
)
LaTeX Font Info:    Try loading font information for U+stmry on input line 143.


(/usr/share/texmf-texlive/tex/latex/stmaryrd/Ustmry.fd)
LaTeX Font Info:    Try loading font information for U+txmia on input line 143.


(/usr/share/texmf-texlive/tex/latex/txfonts/utxmia.fd
File: utxmia.fd 2000/12/15 v3.1
)
LaTeX Font Info:    Try loading font information for U+txsyc on input line 143.


(/usr/share/texmf-texlive/tex/latex/txfonts/utxsyc.fd
File: utxsyc.fd 2000/12/15 v3.1
)
<tcd-crest.pdf, id=4, 462.72874pt x 550.055pt>
File: tcd-crest.pdf Graphic file (type pdf)
 <use tcd-crest.pdf>
Overfull \hbox (192.80998pt too wide) in paragraph at lines 143--143
[][] 
 []

LaTeX Font Info:    Font shape `OT1/ptm/bx/n' in size <10> not available
(Font)              Font shape `OT1/ptm/b/n' tried instead on input line 143.

Underfull \hbox (badness 10000) in paragraph at lines 143--143

 []

[1

{/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map} <./tcd-crest.pdf>]
[1

]
Chapter 1.

Underfull \hbox (badness 10000) in paragraph at lines 157--171

 []


Underfull \hbox (badness 10000) in paragraph at lines 172--181

 []


Underfull \hbox (badness 10000) in paragraph at lines 182--197

 []


Underfull \hbox (badness 10000) in paragraph at lines 198--206

 []

[1

]
Underfull \hbox (badness 10000) in paragraph at lines 209--214

 []


Underfull \hbox (badness 10000) in paragraph at lines 249--259

 []

[2]
Chapter 2.

Underfull \hbox (badness 10000) in paragraph at lines 278--281

 []


Underfull \hbox (badness 10000) in paragraph at lines 282--298

 []


Underfull \hbox (badness 10000) in paragraph at lines 299--308

 []

LaTeX Font Info:    Try loading font information for OMS+txr on input line 312.

(/usr/share/texmf-texlive/tex/latex/txfonts/omstxr.fd
File: omstxr.fd 2000/12/15 v3.1
)
LaTeX Font Info:    Font shape `OMS/txr/m/n' in size <10> not available
(Font)              Font shape `OMS/txsy/m/n' tried instead on input line 312.
 [3

]
LaTeX Font Info:    Font shape `OMS/txr/m/it' in size <10> not available
(Font)              Font shape `OMS/txsy/m/n' tried instead on input line 325.

Overfull \hbox (23.04001pt too wide) in paragraph at lines 369--378
[]\OT1/txr/m/it/10 The set of states of the vend-ing ma-chine can then be de-fi
ned as $\OMS/txsy/m/n/10 f[]\OML/txmi/m/it/10 ; []; []; []\OMS/txsy/m/n/10 g$\O
T1/txr/m/it/10 ,
 []

[4]
Underfull \hbox (badness 10000) in paragraph at lines 387--396

 []

[5]
Underfull \hbox (badness 10000) in paragraph at lines 483--495

 []

[6]
Underfull \hbox (badness 10000) in paragraph at lines 530--535

 []


Underfull \hbox (badness 10000) in paragraph at lines 576--582

 []


Underfull \hbox (badness 10000) in paragraph at lines 583--588

 []

[7]
Underfull \hbox (badness 10000) in paragraph at lines 632--637

 []


Underfull \hbox (badness 10000) in paragraph at lines 658--670

 []

[8]
Underfull \hbox (badness 10000) in paragraph at lines 683--685

 []


Underfull \hbox (badness 10000) in paragraph at lines 686--698

 []


Underfull \hbox (badness 10000) in paragraph at lines 699--714

 []

[9]
Overfull \hbox (11.14282pt too wide) in alignment at lines 748--754
 [][][] []
 []


Underfull \hbox (badness 10000) in paragraph at lines 773--779

 []

[10]
Underfull \hbox (badness 10000) in paragraph at lines 788--791

 []

[11]
Overfull \hbox (5.24013pt too wide) in paragraph at lines 872--876
[]\OT1/txr/m/n/10 Intuitively, an in-ter-pre-ta-tion $\U/txsyc/m/n/10 ~ []\OT1/
txr/m/n/10 ([]\OML/txmi/m/it/10 ; []\OT1/txr/m/n/10 ) \U/txsyc/m/n/10 ^^?$\OT1/
txr/m/n/10 , where $[] = \OMS/txsy/m/n/10 h\OML/txmi/m/it/10 X[]; []  ; X[]\OMS
/txsy/m/n/10 i$ \OT1/txr/m/n/10 and $[] = \OMS/txsy/m/n/10 h\OML/txmi/m/it/10 ^
^^[]; []  ; ^^^[]\OMS/txsy/m/n/10 i$\OT1/txr/m/n/10 ,
 []


Overfull \hbox (2.29669pt too wide) in paragraph at lines 920--922
[]\OT1/txr/m/n/10 By straight-for-ward cal-cu-la-tions: we will show only the c
ase for $[][]([]\OML/txmi/m/it/10 ; []\OT1/txr/m/n/10 )$,
 []


Overfull \hbox (36.80508pt too wide) in alignment at lines 922--934
 [][][] []
 []

[12]
Overfull \hbox (26.1073pt too wide) in paragraph at lines 980--988
[]\OT1/txr/m/it/10 Given an en-vi-ron-ment $\OML/txmi/m/it/10 ^^Z$\OT1/txr/m/it
/10 , let $\OML/txmi/m/it/10 ^^Z[]$ \OT1/txr/m/it/10 be the en-vi-ron-ment sat-
is-fy-ing $\OML/txmi/m/it/10 ^^Z[]\OT1/txr/m/n/10 (\OML/txmi/m/it/10 X[]\OT1/tx
r/m/n/10 ) = \U/txsyc/m/n/10 ~ \OML/txmi/m/it/10 min[]\OT1/txr/m/n/10 ([]\OML/t
xmi/m/it/10 ; []\OT1/txr/m/n/10 ) \U/txsyc/m/n/10 ^^?\OML/txmi/m/it/10 ^^Z:$
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Abstract


Process behaviour is often defined either in terms of the tests they satisfy, or in terms
of the logical properties they enjoy. Here we compare these two approaches, using
extensional testing in the style of DeNicola, Hennessy, and a recursive version of the
property logic HML.
We first characterise subsets of the property logic which can be captured by tests. Then
we show that those subsets adequately represent the power of tests.







Chapter 1


Introduction


It is very natural to use properties to determine process behaviour; two processes are
deemed to be behaviourally equivalent, p ≈prop q unless there is a property enjoyed
by one and not the other. Indeed this is often used as a justification for the use of the
well-known bisimulation equivalence between processes, [Mil89]. As a property lan-
guage one can use the modal language commonly referred to as Hennessy Milner Logic
(HML), which describes the ability of processes to repeatedly interact with each other
by performing actions. Then, in an appropriate setting, it can be shown that two pro-
cesses are bisimulation equivalent unless there is some property φ such that p enjoys
φ and q does not, or conversely q enjoys φ and not p, [Mil89]; that is the bisimulation
equivalence coincides with ≈prop.


An alternative approach to process behaviour is based on tests, [DH84]. Intuitively two
processes are testing equivalent, p ≈test q, relative to a set of tests T if p and q pass
exactly the same set of tests from T . Much here depends of course on details, such
as the nature of tests, how they are applied and how they succeed. Indeed it has been
shown, [Abr87], that if one is sufficiently general with this detail then one can design
a scenario in which the property based view p ≈prop q coincides with the testing view
p ≈test q.


A much more restricted view of testing was proposed in [DH84], where observers have
very limited ability to manipulate the processes under test; informally processes are
conceived as completely independent entities which may or may not react to testing
requests; more importantly the application of a test to a process simply consists of a
run to completion of the process in a test harness. Because processes are in general
nondeterministic, formally this leads to two testing based equivalences, p ≈may q and
p ≈must q; the latter is determined by the set of tests a process guarantees to pass, writ-
ten p must satisfy t, while the former by those it is possible to pass, p may satisfy t.
The may equivalence provides a basis for the so-called trace theory of
processes [Hoa85] , while the must equivalence can be used to justify the various fail-
ures denotational models used in the theory of CSP, [Hoa85, Old87, DN83].


We take these two different approaches to process behaviour, properties versus tests,
for granted. Intuitively the first leads to a branching theory while the latter, in both
its variations, leads to a linear theory; see [NV07] for a modern discussion of this di-
chotomy. Instead the purpose of this paper is to understand more fully the difference
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in approach; we investigate the difference in power between the use of properties as
expressed in the modal language HML, and the use of tests.


The relationship between properties and tests was first investigated in [AI99] for a re-
cursive version of HML, which we will refer to as recHML, for a non-standard notion
of testing. Here we revisit this question but this time for the more standard notions of
may and must testing mentioned above.


To explain our results, at least intuitively, let us introduce some informal notation;
formal definitions will be given later in the paper. Suppose we have a property φ and a
test t such that


for every process p, p satisfies φ if and only if p may satisfy the test t.


Then we say the formula φ may-represents the test t. We use similar notation with
respect to must testing. Our first result shows that the power of tests can be captured
by properties; for every test t:


(i) there is a formula φmay(t) which may-represents t; see Theorem 3.2.12,


(ii) there is a formula φmust(t) which must-represents t; see Theorem 3.1.13.


Properties, or at least those expressed in recHML, are more discriminating than tests,
and so one would not expect the converse to hold. But we can give simple descriptions
of subsets of recHML, called mayHML and mustHML respectively, with the following
properties:


(a) every φ ∈ mayHML may-represents some test tmay(φ); see Theorem 3.2.9


(b) every φ ∈ mustHML must-represents some test tmust(φ); see Theorem 3.1.10


Moreover because the formulae φmay(t), φmust(t) given in (i), (ii) above are in mayHML,
mustHML respectively, these sub-languages of recHML have a pleasing completeness
property. For example let φ be any formula from recHML which can be represented by
some must test t; that is p satisfies φ if and only if p must satisfy t. Then up to logical
equivalence the formula φ is guaranteed to be already in the sub-language mustHML;
that is there is a formula ψ ∈ mustHML which is logically equivalent to φ. The lan-
guage mayHML has a similar completeness property for may testing.


We now give a brief overview of the remainder of the paper. In Section 2.1 we recall
some basic definitions from concurrency theory. These are required to state our results
precisely. In Section 2.2 we present the modal logics that will be used to express
properties of concurrent systems. In Section 2.3 we develop two testing frameworks
testing frameworks, which are exactly those described in [DH84].
We then set up the formal definition of the question being addressed in the paper in
Section 3. In Section 3.1 we analyse such a question when dealing with the must
testing relation, while in Section 3.2 we deal with the may case.
Finally, we state our Conclusions in Section 4.
We assume the reader has no previous knowledge in the field; that is, basic definitions
are explained in detail, often providing illuminating examples.
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Chapter 2


Background


2.1 Modeling Concurrent Systems
The first step that has to be accomplished in order to reason formally about concurrent
systems is to provide a mathematical model which allows to give a formal description
of their behaviour.


At a descriptive level, we can think of systems as devices which can access different
states; for example, if we consider a personal computer the set of states it can access
coincides with the set of all its memory configurations. Further, concurrent systems
can usually interact with the environment that surrounds them, by performing some
kind of activity which can be detected by a component which is external to the system,
or by receiving inputs from such a component. In general we can assume there is a set
of actions that allows the system to interact with the external environment. We expect
that the execution of one of those actions will result in an evolution of the state of the
system. If we consider again the personal computer example, then the external envi-
ronment can be a user typing the name of a program to be executed on the keyboard;
when the enter key is pressed, the command will be sent to the computer. On the other
hand, the computer will receive the name of the program to be executed and will load
the instructions of such a program in its memory, thereby causing an evolution of the
system state.


Finally, it is also the case that the state of a system evolves even when there is no in-
teraction with the external environment; in other words, we must take into account the
possibility for unobservable activities to be performed by a system. In the computer ex-
ample above, once the program code has been loaded into the memory, instructions will
start to be executed. Each time an instruction is executed, the content of the computer’s
memory is updated. However, this activity is the result of an internal computation
which cannot be directly detected by any user which is interacting with the computer.


This discussion suggests that a possible mathematical description of a concurrent sys-
tem should include


• its set of states,


• the set of actions it can perform to interact with a component external to the
system,
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• a special action which denotes unobservable ability


• a description of the evolution of the system states when some action (either ob-
servable or unobservable) is performed.


The mathematical model used to represent such information takes the name of labeled
transition system (LTS).


Definition 2.1.1 (Labeled transition System). A LTS over a set of actions Act is a triple
L = 〈S , Actτ, −→〉 where:


• S is a countable set of states


• Actτ = Act ∪ {τ} is a countable set of actions, where τ does not occur in Act


• −→⊆ S × Actτ × S is a transition relation.


The special action τ denotes unobservable or internal activity.
We use a, b, · · · to range over the set of external actions Act, and α, β, · · · to range over
Actτ. The standard notation s


α
−→ s′ will be used in lieu of (s, α, s′) ∈−→. States of a


LTS L will also be referred to as (term) processes and ranged over by s, s′, p, q. �


First we look at an example of LTS which is standard in all concurrency theory.


wait


select


do coffee do tea


coin


coffee
tea


τ τ


Table 2.1: LTS for the vending machine: graphical representation


Example 2.1.2. Suppose we want to model a vending machine which can provide a
customer either coffee or tea. The vending machine is initially waiting for a customer
to insert a coin. When this event occurs, the vending machine enables two selection
buttons, respectively for coffee and tea, and waits for the customer to choose one of
them. Once the selection button has been pressed, the vending machine will start pro-
ducing the selected beverage; when this process has finished, the vending machine will
perform an unobservable action to return in the initial state.
The set of states of the vending machine can then be defined as {wait, select, do coffee, do tea},
while the set of external actions it can perform can be defined as
{coin, coffee, tea}.
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s0


s1


s2 s3


τ


a


b


a


Table 2.2: a very simple LTS


Finally, we can model the behaviour of the vending machine by building the transi-
tion relation for the above sets of states and actions. The relation −→ for the vending
machine is then given by


wait
coin
−→ select


select
coffee
−→ do coffee


select
tea
−→ do tea


do coffee
τ
−→ wait


do tea
τ
−→ wait


�


Often it is useful to give a graphical representation of a LTS; states are represented by
balls labeled with the name of the corresponding state. Whenever p


α
−→ q for some


state p, q and action α, we draw a directed arrow labeled with the name of the action α
from the ball representing p to the ball representing q. The graphical representation of
the LTS for the coffee vending machine illustrated in Example 2.1 is given in Table 2.1.


Let us recall some standard notation associated with LTSs. We write s
α
−→ if there exists


some s′ such that s
α
−→ s′, s −→ if there exists α ∈ Actτ such that s


α
−→, and s


α
−→/ ,


s −→/ for their respective negations. We use Succ(α, s) to denote the set {s′|s
α
−→ s′},


and Succ(s) for
⋃
α∈Actτ Succ(α, s). If Succ(s) is finite for every state s ∈ S the LTS is


said to be finite branching. Finally, a state s diverges, denoted s ⇑, if there is an infinite
path of internal moves


s
τ
−→ s1


τ
−→ · · ·


τ
−→ sn


τ
−→ sn+1


τ
−→ · · ·


while it converges, denoted s ⇓, otherwise.


Example 2.1.3. Consider the LTS depicted in Table 2.2. In this case we have s0
a
−→,


since s0
a
−→ s1. Moreover it holds s0


b
−→, as s0


b
−→ s2. It is also the case that s0−→


for there exists an action α (either a or b) such that s
α
−→. For state s0 we find that


Succ(a, s0) = {s1}, Succ(b, s0) = {s2}, and thereby Succ(s0) = {s1, s2}. Finally, notice
that it is possible to produce an infinite path rooted in s0 whose form is


s0
τ
−→ s0


τ
−→ · · ·


τ
−→ s0


τ
−→ · · ·
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s ...


s2


s1


sn


sn


...


α2


α1


αn


αn+1


Table 2.3: LTS with a non finite branching state


so that s0 ⇑.
If we repeat this procedure for state s2 we now find that it is also the case that s2


a
−→, as


s2
a
−→ s3; further we can compute Succ(a, s2) to find out that such a set is exactly {s3}.


However, for state s2 there exists no state s such that s2
b
−→ s. Indeed, Succ(b, s2) = ∅;


in this case we infer that s2
b
−→/ . Finally, since s2


a
−→ we obtain that s2−→. It is trivial


to notice that s2 ⇓, as it cannot perform any internal transition
τ
−→.


Finally, let us look at state s3. It is easy to notice that both for actions a and b we have


s
a
−→/ and s


b
−→/ . Therefore, since there is no action that such a state can perform, we


conclude that s3 −→/ . For such a state we have in fact Succ(s3) = ∅. Again, it is the
case that s3 ⇓. All the states in the LTS of Table 2.2 have a finite number of derivatives,
so that they are all finite branching. �


Example 2.1.4. Look at state s in picture 2.3. The set of successors of such a state
is {s1, s2, · · · , sn, sn+1, · · · }, which is countable. Therefore, we have that such a state is
not branching finite. �


When analysing the behaviour of a system by giving its description as a LTS, it is often
the case that we are interested in those activities which can be detected by the external
environment. This give rise to the standard notation for weak actions


α
=⇒. Intuitively


speaking, if a system performs an unobservable activity which causes it to evolve from
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a state s to a state s′, and then it performs another unobservable ability which makes
it evolve from s′ to s′′, then the result of these two activities can still be considered
as some activity that cannot be detected by the environment. Formally, we say that
s


τ
=⇒ s′′. This procedure applies to arbitrary long sequences of unobservable activities,


so that we say that s
τ


=⇒ s′ whenever it is the case that s
τ
−→∗ s′, where we recall that


τ
−→∗ is the reflexive transitive closure of


τ
−→.


Further, consider the case when a system performs an arbitrary sequence of unobserv-
able activities; then it performs another activity, represented in a LTS by action a,
which can be detected by the external environment, and finally it performs another ar-
bitrary sequence of unobservable activities. Again, this can be considered as an unique
activity of the system where the only visible action that has been performed is a. For-
mally, for a given LTS we say that s


a
=⇒ s′ if and only if there exist s1, s2 such that


s
τ


=⇒ s1
τ
−→ s2


τ
=⇒ s′.


s0 s1 s2 s3 s4
τ a τ τ


Table 2.4: Another simple LTS


Example 2.1.5. Look at the LTS depicted in Table 2.4. Since s0
τ
−→ s1, we have that


s0
τ


=⇒ s1. Analogously, we obtain that s2
τ


=⇒ s4, for s2
τ
−→ s3


τ
−→ s4. Finally, since


s1
τ


=⇒ s2
a
−→ s2


τ
=⇒ s4 we obtain s0


τ
=⇒ s4. A similar procedure shows that s0


τ
=⇒ s3


also. �


When s
α


=⇒ s′ we say that s′ is an α-derivative of s. The associated notation s
α


=⇒,
s =⇒, s


α
=⇒/ and s =⇒/ have the obvious definitions.


As we are dealing with systems which can communicate with the external environment,
it is often the case that we want to analyse the behaviour of a system when it is put
in composition with another one. If both of them are represented as LTSs, then we
expect to model their composition as a LTS as well. Formally we can define a parallel
composition operator as follows:


Definition 2.1.6 (Parallel composition). Let L1 = 〈S 1, Act1
τ , −→〉,


L2 = 〈S 2, Act2
τ , −→〉 be LTSs. The parallel composition of L1 and L2 is a LTS


L1|L2 = 〈S 1 × S 2, {τ},−→〉, where −→ is defined by the following SOS rules:


s
τ
−→ s′


s|t
τ
−→ s′|t


t
τ
−→ t′


s|t
τ
−→ s|t′


s
a
−→ s′ t


a
−→2 t′


s|t
τ
−→ s′|t′


s|t is used as a conventional notation for (s, t). �


The first two rules models the possibility for each component of a LTS to perform their
internal actions independently from the other one. This is needed, as internal activities
of a component cannot be detected by the other one. The third rule corresponds to a
synchronization between the two components upon performing the same action; such
a synchronization will result in an internal activity which cannot be detected by an ex-
ternal environment.
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Notice that the parallel composition operator we introduced does not allow any exter-
nal action for the composition of two LTSs. This is non standard with respect to other
definitions of parallel composition that can be found in Concurrency Theory literature;
however, this choice will allow a simple presentation of extensional testing, which is
covered in Section 2.3.


Example 2.1.7. Consider again the vending machine whose LTS is depicted in Table
2.1. Suppose a customer wants to interact with the vending machine to obtain a coffee.
The customer will then insert a coin into the vending machine, then he will press the
coffee button. The LTS that models a customer is straightforward and is depicted in
Table 2.5. We can then apply Definition 2.1.6 to obtain the LTS which models the inter-
action between the vending machine and the customer. The LTS for the new composed
system is given in Table 2.6; there w, s and c are used as abbreviations for states wait,
select and do coffee respectively. �


t0 t1 t2 ω
coin coffee


Table 2.5: LTS for a customer of the vending machine


w|t0 s|t1 c|t2 w|t2
τ τ τ


Table 2.6: composition between the vending machine and the customer


2.2 Formalising Properties: Recursive HML
The next topic we address concerns how to express properties of interest for an LTS.
To this end, we need to define both a formal language for the formulae which will be
used to express properties, and an interpretation function that defines the set of states
of a LTS that satisfies a given formula.


The Hennessy Milner Logic (HML) [HM85] has proven to be a very expressive prop-
erty language based on a minimal set of modalities to capture the actions a process can
perform, and what the effects of performing such actions are. Here we use a variant in
which the interpretation depends on the weak actions of a LTS.


Definition 2.2.1 (Syntax of recHML). Let Var be a countable set of variables. The
language recHML is defined as the set of closed formulae generated by the following
grammar:


φ ::= tt | ff | X | Acc(A) | 〈α〉φ | [α]φ |
| φ1 ∨ φ2 | φ1 ∧ φ2 | min(X, φ) | max(X, φ)


Here X is chosen from the countable set of variables Var. The operators min(X, φ),
max(X, φ) act as binders for variables and we have the standard notions of free and
bound variables, and associated binding sensitive substitution of formulae for vari-
ables. �
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Let us recall the informal meaning of recHML operators. A formula of the form 〈α〉φ
expresses the need for a process to have an α-derivative which satisfies formula φ, while
formula [α]φ expresses the need for all α-derivatives (if any) of a converging process
to satisfy formula φ.
Formula Acc(A) is defined when A is a finite subset of Act, and is satisfied exactly by
those converging processes for which each τ derivative has at least an a-derivative for
some a ∈ Act. The formulae min(X, φ) and max(X, φ) allow the description of recursive
properties, respectively being the least and largest solution of the equation X = φ over
the powerset domain of the state space.


Formally, given a LTS 〈S , Actτ,−→〉, we interpret each (closed) formula as a subset of
2S . The set 2s is a complete lattice and the semantics is determined by interpreting each
operator in the language as a monotonic operator over this complete lattice. The binary
operators ∨, ∧ are interpreted as set theoretic union and intersection respectively while
the unary operators are interpreted as follows:


〈·α·〉P = { s | s
α


=⇒ s′ for some s′ ∈ P }


[·α·]P = { s | s ⇓, and s
α


=⇒ s′ implies s′ ∈ P }


where P ranges over subsets of 2S .


Open formulae in recHML can be interpreted by specifying, for each variable X, the
set of states for which the atomic formula X is satisfied. Such a mapping from Var to
2S is called environment. Let Env be the set of environments, mappings ρ : Var→ 2S .
A formula φ of recHML will be interpreted as a function ~ φ � : Env→ 2S . We will use
the standard notation ρ[X 7→ P] to refer to the environment ρ′ such that ρ′(X) = P and
ρ′(Y) = ρ(Y) for all variables Y such that X , Y .
The definition of the interpretation ~ · � is given in Table 2.7.


The interpretation of a formula min(X, φ) in the environment ρ is defined as the smallest
pre fixpoint of a monotonic functional F ρ


φ : 2S → 2S such that
F
ρ
φ (P) = ~ φ �ρ[X 7→ P]. When dealing with closed formulae, Tarski’s fixed point The-


orem [Win93] ensures that such a set coincides with the least solution of the equation
X = φ, as described in our informal explanation of the meaning of recHML formulae.
A similar argument applies to formulae of the form max(X, φ), whose interpretation in
an environment ρ is defined as the greatest post fixpoint of the monotonic functional
considered above. We defer the proof of Tarski’s fixed point Theorem until the end
of the section, for it is first necessary to prove some simple properties enjoyed by lan-
guage recHML.


When referring to the interpretation of a closed formula φ ∈ recHML, we will omit the
environment application, and sometimes use the standard notation p |= φ for p ∈ ~ φ �.


Example 2.2.2. Consider a LTS with a single state p and a unique transition p
b
−→ p.


Let us analyse whether or not state s satisfies the properties min(X, [a] ff ∧ [b]X) and
max(X, [a] ff ∧ [b]X).
To do this, we apply directly the interpretation of recHML formulae given in Table 2.7.
For the first formula, consider the empty set ∅. It is simple to show that
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~ tt �ρ , S


~ ff �ρ , ∅


~ X �ρ , ρ(X)


~Acc(A) �ρ , {s|s ⇓, s
τ


=⇒ s′ implies ∃a ∈ A.s′
a


=⇒}


~ 〈α〉φ �ρ , 〈·α·〉(~ φ �ρ)
~ [α]φ �ρ , [·α·](~ φ �ρ)


~ φ1 ∨ φ2 �ρ , ~ φ1 �ρ ∪ ~ φ2 �ρ


~ φ1 ∧ φ2 �ρ , ~ φ1 �ρ ∩ ~ φ2 �ρ


~min(X, φ) �ρ ,
⋂
{P | ~ φ �ρ[X 7→ P] ⊆ P}


~max(X, φ) �ρ ,
⋃
{P | P ⊆ ~ φ �ρ[X 7→ P]}


Table 2.7: Interpretation of recHML


~ [a] ff ∧ [b]X �[X 7→ ∅] ⊆ ∅. The calculation is carried out below:


~ [a] ff ∧ [b]X �[X 7→ ∅] = ~ [a] ff �[X 7→ ∅] ∩ ~ [b]X �[X 7→ ∅]
= [·a·](~ ff �[X 7→ ∅]) ∩ [·b·]~ X �[X 7→ ∅]
= [·a·]∅ ∩ [·b·]∅


= {s ∈ S |s ⇓, s
a


=⇒/ } ∩ {s ∈ S |s ⇓, s
b


=⇒/ }


= {p} ∩ ∅ = ∅


Therefore ∅ ∈ {P | ~ φ �ρ[X 7→ P] ⊆ P}, or equivalently ~min(X, [a] ff ∧[b]X) � ⊆ ∅. As
∅ is the least element of the complete lattice {∅, {p}} we have that the inclusion above
is actually an equality. Thus p 6|= min(X, [a] ff ∧ [b]X).
Next consider formula max(X, [a] ff ∧ [b]X). In this case we show that {p} ⊆ ~ [a] ff ∧


[b]X �[X 7→ {p}], and therefore (being {p} the greatest element in the complete lattice
{∅, {p}}) we have that ~max(X, [a] ff ∧ [b]X) � = {p}, i.e. p |= max(X, [a] ff ∧ [b]X).
Again, the whole calculation is carried out below.


~ [a] ff ∧ [b]X �[X 7→ {p}] = [·a·]∅ ∩ [·b·]{p}


= {s ∈ S | s ⇓, s
a


=⇒/ } ∩ {s ∈ S | s ⇓,∀s′ : s
b


=⇒ s′. s′ ∈ {p} }


= {p} ∩ {p}


= {p}


�


Our version of HML is non-standard, as we have added a convergence requirement for
the interpretation of the box operator [α]. The intuition here is that, as in the failures
model of CSP [Hoa85], divergence represents underdefinedness. So if a process does
not converge all of its capabilities have not yet been determined; therefore one can not
quantify over all of its α derivatives, as the totality of this set has not yet been deter-
mined.
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Further, the operator Acc(·) is also non-standard. It has been introduced for the sake of
simplicity, as it will be useful later; in fact it does not add any expressive power to the
logic, since for each finite set A ⊆ Act the formula Acc(A) is logically equivalent to


[τ](
∨
a∈A


〈a〉 tt ).


As usual, we will write φ{ψ/X} to denote the formula φ where all the free occurrences
of the variable X are replaced with ψ. We will use the congruence symbol ≡ for syn-
tactic equivalence.


Next, we show some useful properties which relate syntactic substitution in recHML
formulae with environments. These lemmas are particularly useful when dealing with
recursive formula of the form min(X, φ) and max(X, φ).


Proposition 2.2.1.


(i) Let φ, ψ be formulae such that Y does not occur free in ψ, let ρ be an environment
and P ⊆ 2S . Then


~ φ �ρ[X 7→ ~ψ �ρ][Y 7→ P] = ~ φ �ρ[Y 7→ P][X 7→ ~ψ �ρ[Y 7→ P] ]


(ii) Let φ, ψ ∈ recHML, and ρ be an environment: then


~ φ{ψ/X} �ρ = ~ φ �ρ[X 7→ ~ψ �ρ].


Proof. Both proofs can be performed by induction on the structure of the formula φ.
For (i) three different sub cases should be handled when dealing with the case φ ≡ Z
(namely Z ≡ X; Z ≡ Y and Z . X,Z . Y).
For (ii) we will only outline the details for the case φ ≡ min(Y, φ1): in this case we need
to prove


~min(Y, φ1){ψ/X} �ρ = ~min(Y, φ1) �ρ[X 7→ ~ψ �ρ].


By α-renaming we can choose Y to be a fresh variable, that is Y . X and Y does not
appear free in ψ.
Since Y . X we have that min(Y, φ1){ψ/X} ≡ min(Y, φ1{ψ/X}). By inductive hypothesis
we have


~ φ1{ψ/X} �ρ = ~ φ1 �ρ[X 7→ ~ψ �ρ]


and, therefore,


~min(Y, φ1{ψ/X}) �ρ =
⋂
{P : ~ φ1{ψ/X} �ρ[Y 7→ P] ⊆ P}


IH
=
⋂
{P : ~ φ1 �ρ[Y 7→ P][X 7→ ~ψ �ρ[Y 7→ P]] ⊆ P}


(i)
=
⋂
{P : ~ φ1 �ρ[X 7→ ~ψ �ρ][Y 7→ P] ⊆ P}


= ~min(Y, φ1) �ρ[X 7→ ~ψ �ρ],


where i can be applied as Y does not appear free in ψ. �
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The language recHML can be extended conservatively by adding simultaneous fix-
points, leading to the language recHML+. Given a sequence of variables (X) of length
n > 0, and a sequence of formulae φ of the same length, we allow the formula
mini(X, φ) for 1 ≤ i ≤ n, where the only variables allowed to occur in each φi are
those in (X). This formula will be interpreted as the i-th projection of the simultaneous
fixpoint formula.


Definition 2.2.3 (Interpretation of simultaneous fixpoints). Let X and φ respectively be
sequences of variables and formulae of length n.


~min(X, φ) �ρ ,
⋂
{P | ~ φi �ρ[X 7→ P] ⊆ Pi ∀1 ≤ i ≤ n}


~mini(X, φ) �ρ , πi(~min(X, φ) �ρ)


where πi is the i-th projection operator, and intersection over vectors of sets is defined
to be the point wise intersection:


〈P1, · · · , Pn〉 ∩ 〈Q1, · · · ,Qn〉 = 〈P1 ∩ Q1, · · · , Pn ∩ Qn〉


�


Intuitively, an interpretation ~min(X, φ) �, where X = 〈X1, · · · , Xn〉 and φ = 〈φ1, · · · , φn〉,
is the least solution (over the set of vectors of length n over 2S ) of the equation system
whose form is


X1 = φ1


...


Xn = φn.


If the formula min(X, φ) is open, then its interpretation in environment ρ, ~min(X, φ) �ρ,
can be thought as the least solution of the system of equations above extended, for every
variable Y which appears free in the formula, with an equation of the form Y = ρ(Y).
The interpretation of a formula of the form mini(X, φ) in environment ρ is the i-th
projection of the vector obtained as the least solution of the system of equations above;
that is


~mini(X, φ) �ρ = πi( ~min(X, φ) �ρ ).


Let P = 〈P1, · · · , Pn〉 be the least solution for a system of equations as above. The
following theorem states that, for each index i, there exists an equation X = ψ such that
its least solution coincides with Pi.


Theorem 2.2.2 (Bekı́c).


(i) Let X = 〈X1, X2〉 and φ = 〈φ1, φ2〉. Then, for any environment ρ,


~min1(X, φ) �ρ = ~min(X1, φ1{min(X2, φ2)/X2}) �ρ
~min2(X, φ) �ρ = ~min(X2, φ2{min(X1, φ1)/X1}) �ρ


(ii) For each formula φ ∈ recHML+ there is a formula ψ ∈ recHML such that ~ φ � =


~ψ �.
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Proof. (i) By straightforward calculations: we will show only the case for min1(X, φ),
as the other one is obtained by symmetry:


~min(X1, φ1{min(X2, φ2)/X2}) �ρ =⋂
{P : ~ φ1{min(X2, φ2)/X2} �ρ[X 7→ P] ⊆ P} 2.2.1


=⋂
{P : ~ φ1 �ρ[X1 7→ P][X2 7→ ~min(X2, φ2) �ρ[X1 7→ P]] ⊆ P} =⋂


{P : ~ φ1 �ρ[X1 7→ P][X2 7→
⋂


Q : ~ φ2 �ρ[X1 7→ P][X2 7→ Q] ⊆ Q}] ⊆ P} =


π1(
⋂
{〈P,Q〉 : ~ φ2 �ρ[X1 7→ P][X2 7→ Q] ⊆ Q, ~ φ1 �ρ[X1 7→ P][X2 7→ Q] ⊆ P})


(ii) Let n ≥ 2, and let φ = mini(X, φ) be a (possibly open) simultaneous fixpoint
formula with X = 〈X1, · · · , Xn〉 and φ = 〈φ1, · · · , φn〉.
Without loss of generality, assume i < n, as if i = n it is possible to order the
vectors of variables and formulae in a consistent way.
Consider the formula


ψ = mini(〈X1, · · · , Xn−1〉, 〈φ1{min(φn, Xn)/Xn}, · · · , φn−1{min(φn, Xn)/Xn}〉),


which is a simultaneous fixpoint formula defined over a vector of variables of
length n−1. In the same style of i it is possible to show that, for any environment
ρ, it holds ~ φ �ρ = ~ψ �ρ. Further, it is straightforward to notice that the free
variables of φ are the same of ψ. We can therefore iterate this procedure until
obtaining a fixpoint formula of the form min(X, ϕ); if the original formula φ is
closed, and therefore included in recHML+, then min(X, ϕ) will also be closed, so
that it will belong to recHML.


�


The properties of these simultaneous least fixpoints which we will require are sum-
marised in the following theorem:


Theorem 2.2.3 (Fixpoint properties).


(i) Let (P) be a vector of sets from 2S satisfying ~ φi �ρ[X 7→ P] ⊆ Pi for every
1 ≤ i ≤ n. Then ~mini(X, φ) �ρ ⊆ Pi


(ii) Given an environment ρ, let ρmin be the environment satisfying ρmin(Xi) = ~mini(X, φ) �ρ.
Then ~mini(X, φ) �ρ = ~ φi �ρmin.


Proof.


(i) This follows from the definition of ~min(X, φ) �. Let P be a vector of sets from
2S such that
~ φi �ρ[X 7→ P] ⊆ Pi. Then


~min(X, φ) �ρ =
⋂
{Q | ~ φi �ρ[X 7→ Q] ⊆ Qi, 1 ≤ i ≤ n}


= P ∩
⋂
{Q | ~ φi �ρ[X 7→ Q] ⊆ Qi, 1 ≤ i ≤ n}


we have therefore that


~mini(X, φ) � = Pi ∩ πi(
⋂
{Q | ~ φi �ρ[X 7→ Q] ⊆ Qi, 1 ≤ i ≤ n}) ⊆ Qi
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(ii) Let 1 ≤ i ≤ n. By the definition of ~mini(X, φ) � it holds


~ φi �ρmin = ~ φi �ρ[X 7→ ~min(X, φ) �ρ]
⊆ ~mini(X, φ) �ρ


The inclusion shows that ~ φi �ρmin ⊆ ~mini(X, φ) �ρ. Moreover, since ~ φi �ρmin ⊆


ρmin, the converse inclusion follows from (i).


�


Theorem 2.2.3 and Proposition 2.2.1 lead to this useful Corollary which enables us to
reason about recursive properties using syntactic substitutions.


Corollary 2.2.4. Let φ ≡ min(X, ψ) be a formula in recHML. Then φ is logically
equivalent to ψ{min(X, ψ)/X}, that is ~ φ � = ~ψ{min(X, ψ)/X} �.


Proof. Given a closed formula φ ≡ min(X, ψ) and an arbitrary environment ρ, we have
~min(X, ψ) �ρ = ~ψ �ρ[X 7→ ~min(X, ψ) �] by an application of Theorem 2.2.3(ii).
Further, ~ψ �ρ[X 7→ ~min(X, ψ) �] = ~ψ{min(X, ψ)/X} � by Proposition 2.2.1(ii). �


We conclude this section by giving a proof of Tarski’s Fixpoint Theorem for recHML;
we consider only formulae of the form min(X, φ), since we will not deal with greatest
fixpoints in what follows. The proof can be easily extended to prove that, given a
vector of variables X of length n, and a vector of formulae of length ϕ of the same
length, then formula min(X, φ) is the least solution of the system of equations Xi = φi


for all 1 ≤ i ≤ n.


Theorem 2.2.5 ([Win93]). Let φ ≡ min(X, ψ) a formula in recHML. Then ~ φ � is the
least solution of the equation


X = ψ


Proof. Corollary 2.2.4 ensures that ~ φ � is a solution of the equation X = ψ. Moreover,
let P be a solution to such an equation; we have


~ψ �[X 7→ P] = P,


therefore P ∈ {P | ~ψ �[X 7→ P] ⊆ P}. Now it is trivial to notice ~min(X, ψ) � ⊆ P. �


2.3 Testing Concurrent Systems
Another way to analyse the behaviour of a process is given by testing. Testing a pro-
cess can be thought as an experiment in which another process, called a test, detects
the actions performed by such a process, reacting to them by allowing or forbidding
the execution of a subset of observables. After observing the behaviour of the pro-
cess, the test could decree that it satisfied some property for which it was designed for,
thus reporting the success of the experiment through the execution of a special actionω.


Formally speaking, a test is a state from a LTS T = 〈T, Actωτ ,−→〉, where Actωτ =


Actτ ∪ {ω} and ω is an action not contained in Actτ.
Given a LTS of processes L = 〈S , Actτ,−→〉, an experiment consists of a pair p | t
from the product LTS (L | T ). We refer to a maximal path of p | t


p | t
τ
−→ p1 | t1


τ
−→ . . . . . .


τ
−→ pk | tk


τ
−→ . . .
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as a computation; it may be finite or infinite. It is successful if there exists some n ≥ 0
such that tn


ω
−→. It is important to notice here that a computation is successful it contains


a configuration in which the test component can perform a ω action; however, it is not
required that such an action has to be actually executed.
As only τ-actions can be performed in a computation, as well as in a computation
prefixes, henceforth we will avoid to use the symbol τ in computations.
Computations and successful computations lead to the definition of two well known
testing relations, [DH84]:


Definition 2.3.1 (May Satisfy, Must Satisfy). Assuming a LTS of processes and a LTS
of tests, let s and t be a state and a test from such LTSs, respectively. We say


(a) s may satisfy t if there exists a successful computation for the experiment s | t.


(b) s must satisfy t if each computation of the experiment s|t is successful. �


Processes can now be compared in terms of the set of test that they may/must pass.
Before continuing our discussion about testing, let us illustrate the ideas behind testing
relations with some useful example.


s


s1


s2 s3 s4


b


b


c a


Table 2.8: The tested LTS


tt1 t2


t3


ω


τ


b c


a


τ


Table 2.9: The test


Example 2.3.2. Consider the process LTS in Table 2.8 and the test LTS in Table 2.9.
We can build the experiment s | t to analyse whether the statements


• s may satisfy t and


• s must satisfy t


hold. For the first one, we consider the computation


s | t � s2 | t1 � s2 | t � s3 | t2 � s3 | t � s4 | t3.


As t3
ω
−→ we can conclude that this computation is successful, and hence s may satisfy


t. On the other hand, we can consider the path


s | t � s1 | t1 � s1 | t.


Such a path is maximal, and therefore it is also a computation. As there is no config-
uration in such a computation for which the test component can perform an ω action,
we can conclude that it is not the case that s must satisfy t. �
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Later in the paper we will use a specific LTS of tests, whose states are all the closed
terms generated by the grammar


t ::= 0 | α.t | ω.0 | X | t1 + t2 | µX.t . (2.1)


Again in this language X is bound in µX.t, and the test t{t′/X} denotes the test t in
which each free occurrence of X is replaced by t′. The transition relation defined by
the following rules:1


α.t
α
−→ t


t1
α
−→ t′1


t1 + t2
α
−→ t′1


t2
α
−→ t′2


t1 + t2
α
−→ t′2


µX.t
τ
−→ t{(µX.t)/X}


The last rule states that a test of the form µX.t can always perform a τ-action before
evolving in the test t{µX.t/X}. Further, since the transition relation is the smallest rela-
tion defined by the inference rule above, it is also the case that this is the only action
that a recursive test can perform.
This treatment of recursive processes will allow us to prove properties of paths of re-
cursive tests and experiments by performing an induction on their length.
Further, the following properties hold for a test t in grammar (2.1):


Proposition 2.3.1. LetT = 〈T, Actτ,−→〉 be the LTS generated by a state t in grammar
(2.1): then


(i) T is finite branching.


(ii) T is finite state.


Proof. We prove the two statements separately.


(i) First, notice that every time a test t in grammar (2.1) performs a transition t
α
−→ t′,


then t′ is itself a closed term of such a grammar.


Further, each closed term of grammar 2.1 can be represented as∑
i∈I


ti


where I is finite and each ti is either in the form 0, α.t′ or µX.t′. Then for each i ∈ I
the number of outgoing transitions n(ti) of ti is at most one: we have therefore


n(t) ≤
∑
i∈I


n(ti) ≤ |I|


The above argument applies to all states of the generated LTS: hence T is finite
branching.


(ii) A standard proof of this Proposition can be obtained by converting each test into
a Nondeterministic Finite state Tree Automata [RS].


�


1The rules use an abuse of notation, by considering α as an action from Actτ ∪ ω rather than from Actτ.
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Henceforth we will always make the assumption that the LTS of tests we consider
is branching finite. Further, if also the LTS of processes is also assumed to contain
only branching finite states, then the induced LTS of experiments is branching finite
as well. It is also ensured that, given an experiment s | t in such a LTS and such that
s must satisfy t, then the maximal length of a successful computation is well defined.
To prove this result we will need the following Lemma, which is a variation of Konig’s
Lemma [BJ89] for directed graphs.


Lemma 2.3.2 (Konig’s Lemma for directed graphs). Let G be a directed graph whose
set of vertices is countable. Let a root of G be any node with no incoming edge. Also,
assume that G satisfies the following hypothesis:


• G has finitely many roots,


• each node of G has finite degree,


• each node in G is reachable from some root in G.


Then there is an infinite path in G starting from some root.


Proof. See [KLSV06], Lemma 2.3. �


Theorem 2.3.3. Let S ,T be finite branching LTSs of processes and tests respectively.
Let s, t be two states in such LTSs, respectively. Then if s must satisfy t the maximal
length of a successful computation |s, t| is well defined.


Proof. Let E = 〈E, {τ},→〉 be a finite branching LTS of experiments. For each e ∈ E
we define its Computation Tree Te as the smallest tree whose nodes are (not necessarily
all the) elements of E∗, and whose edges of a node e1 · · · en are defined as follows:
follows:


• if en has the form s | t, with t
ω
−→, then node e1 · · · en has no children,


• otherwise, for each en+1 such that en
τ
−→ en+1, there is an edge from e1 · · · en to


e1 · · · en · en+1.


Intuitively speaking, each path of Te rooted in represents a computation of the exper-
iment e. A more formal definition of Te can be given as a function of recursive type
T : N → T (see [Cou83] for details).


Suppose now s, t are chosen in finite branching LTSs of processes and tests, respec-
tively. Suppose also s must satisfy t. It is straightforward to prove that the LTS of
experiments generated by s | t is also finite branching. Since s must satisfy t, it is the
case that all leaves in Ts | t represent successful computations. In order to prove that the
maximal length of a successful computation |s, t| is well defined, we distinguish two
different cases:


(i) the number of nodes in Ts | t is finite. In this case each path between s | t and a
leaf in Ts | t has finite length, bounded by the number of nodes in the tree itself;
since every path is associated with a successful computation, it follows that |s, t|
is bounded by the number of nodes in Ts | t and therefore is well defined,


(ii) Ts | t has infinite nodes. Since the LTS generated by s | t is finite branching, we
have that the degree of each node in the computation tree above is finite. Thus,
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by an application of Lemma 2.3.2, we have that Ts | t contains an infinite path
starting from the unique root s | t of such a tree; such a path represents an infinite,
unsuccessful computation, contradicting the hypothesis s must satisfy t.


�
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Chapter 3


Testing formulae


Relative to a process LTS 〈S , Actτ,−→S 〉 and a test LTS 〈T, Actτ ∪ {ω},−→T 〉, we now
explore the relationship between tests from our default LTS of tests and formulae of
recHML. Specifically, given a test t, our goal is to infer a formula φ such that the set of
processes which may satisfy/must satisfy such test is completely characterised by the
interpretation ~ φ �. Moreover, we aim to establish exactly the subsets of recHML for
which each formula can be checked by some test, both in the may and must case.
For this purpose some definitions are necessary:


Definition 3.0.3. Let φ be a recHML formula and t a test. We say that:


• φ may-represents/must-represents the test t, if for all p ∈ S , p may satisfy
t/p must satisfy t if and only if p |= φ.


• φ is may-testable/must-testable whenever there exists a test which φ
may-represents/must-represents.


• t is may-representable/must-representable, if there exists some φ ∈ recHML
which may-represents/must-represents it respectively. �


First we present both formulae which are may-testable (must-testable) and formulae
which are not.


Example 3.0.4 (Testable formulae). In this example we will use tests defined from
grammar (2.1). All the examples are handled in an informal manner, as formal details
will be covered in a more general way in the remaining of the report.


(a) Formula min(X, 〈a〉 tt∨〈b〉X) is may-testable. A state satisfies such a formula if and


only if there exists a finite index n ≥ 0 such that s = s0
b


=⇒ s1
b


=⇒· · ·
b


=⇒ sn for some
s0, · · · sn with sn


a
=⇒. We can therefore consider the test t ≡ f ix(X = τ.a.ω.0+τ.b.X)


If a state s satisfies the above property, then it can synchronise (after a sequence
of internal actions performed both by the state itself and by the process) with the
test through a b-action; that is, the experiment s | t can evolve in s1 | t after
a finite sequence of internal actions. This procedure can be repeated until the
configuration sn | t is reached. In this case, sn can now synchronise with test t
(again after both of them performed some internal steps) through an a-action, thus
reaching a successful configuration.
On the other hand, consider now a state s which not satisfies such a property. That
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is, as long as it synchronises with the test through the execution of a b action in a
computation of the induced experiment, the resulting state component will never be
able to synchronise with the test through the execution of an a action; however this
is mandatory for the experiment to reach a successful configuration. Therefore, in
this case the experiment s | t has no successful computation, and therefore s does
not may satisfy t.


(b) Formula min(X, [a] ff ∧ [b]X) is must-testable. A process s satisfies this formula if


and only if whenever s = s0
b


=⇒ s1 · · ·
b


=⇒ sn for some n ≥ 0 and states s0 · · · sn


with sn
b


=⇒/ , it holds that


• si ⇓ for all i : 0 ≤ i ≤ n,


• si
a


=⇒/ for all i : 0 ≤ i ≤ n,


Consider the test t ≡ f ix(X = τ.(a.0 + τ.ω.0) + τ.(b.X + τ.ω.0)), and suppose s
satisfies the property above. Consider an arbitrary computation of s | t; in this
case either the test component will perform a series of τ actions, thus reaching
a successful computation, or a synchronisation with the test occurs through the
execution of a b actions, thus deriving s | t


τ
=⇒ s1 | t. This procedure can be


repeated until reaching configuration sn | t. As in this case we also have sn
b


=⇒/ ,
the only possibility is to make the test component of the experiment to perform
a series of internal actions, thus reaching a successful configuration. In other
words, each computation of s | t is doomed to reach a configuration where the test
component can perform a ω action, and therefore s must satisfy t. Conversely,
suppose s is a process which does not satisfy the property above. That is, either
one of the following occurs:


• there exists a finite index n ≥ 0 such that s = s0
b


=⇒ s1
b


=⇒ ·
b


=⇒ sn with sn ⇑,


• there exists a finite index n ≥ 0 such that s = s0
b


=⇒ s1
b


=⇒·
b


=⇒ sn with sn
a


=⇒,


• s has an infinite path s = s0
b


=⇒ s1
b


=⇒ · · · .


In the first case we can build an unsuccessful computation by letting the state com-
ponent of the experiment synchronise with the test through the execution of a b
action until configuration sn | t is reached. Then we can obtain an unsuccessful
infinite computation by making evolve only the state component of the experiment.
In the second case, we can build a computation where the process component syn-
chronise with the test through the execution of a b action until reaching configura-
tion sn | t, then, through a series of internal steps and a synchronisation through an
a action, we obtain a configuration in which the test component can no longer pro-
ceed. This computation is also unsuccessful. Finally, in the third case we can pro-
vide an infinite computation in which the state component of the experiment always
synchronise with the test component through the execution of a b action; even this
computation is not successful. It holds therefore that s does not must satisfy t. �


Example 3.0.5 (Negative results).


(a) φ = [a] ff is not may-testable.
Let s ∈ ~ [a] ff �; a new process p can be built starting from s by letting p


τ
−→ p,
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whenever s
α
−→ s′ then p


α
−→ s′.


Processes p and s may satisfy the same set of tests. However, p < ~ [a] ff �, as p ⇑.
Therefore
no test may-represents [a] ff .


(b) φ = 〈a〉 tt is not must-testable.
We show by contradiction that there exists no test t that must-represents φ. To this
end, we perform a case analysis on the structure of t.


• t
ω
−→: Consider the process 0 with no transitions. Then 0 must satisfy t,


whereas 0 < ~ φ �.


• t
ω
−→/ : Let s ∈ ~ φ � and consider the process p built up from s according


to the rules of the example above; we have p ∈ ~ φ �. On the other hand,
p must satisfy t is not true; indeed the experiment p | t leads to the unsuc-
cessful computation p | t � p | t � · · · .


Therefore there is no test t which must-represents φ.


(c) φ = 〈a〉 tt ∧ 〈b〉 tt is not may-testable.


Let s be the process whose only transitions are s
a
−→ 0, s


b
−→ 0. Let also p, p′


be the processes whose only transitions are p
a
−→ 0, p′


b
−→ 0. We have s ∈ ~ φ �,


whereas p, p′ < ~ φ �. We show that whenever s may satisfy a test t, then either
p may satisfy t or p′ may satisfy t. Thus there exists no test which is may-satisfied
by exactly those processes in ~ φ �, and therefore φ is not may-representable. First,
notice that if s may satisfy t, then at least one of the following holds:


(i) t
ω


=⇒,


(ii) t
a


=⇒ t′
ω


=⇒,


(iii) t
b


=⇒ t′
ω


=⇒.


If t
ω


=⇒, then trivially both p and p′ may satisfy t. On the other hand, if t
a


=⇒ t′
ω


=⇒,
then there exist t′′, tω such that t


τ
=⇒t′′


a
−→t′


τ
=⇒tω


ω
−→. We can build the computation


fragment for p | t such that


p | t � · · · � p | t′′ � 0 | t′ � · · · � 0 | tω


which is successful. Hence p may satisfy t. Finally, The case t
b


=⇒ t′
ω


=⇒ is similar.


(d) In an analogous way of (c) it can be shown that [a] ff ∨ [b] ff is not must-testable.
�


We now investigate precisely which formulae in recHML can be represented by tests.
To this end, we define two sub-languages, namely mayHML and mustHML.


Definition 3.0.6. (Representable formulae)


• The language mayHML is defined to be the set of closed formulae generated by
the following recHML grammar fragment:


φ ::= tt | ff | X | 〈α〉φ | φ1 ∨ φ2 | min(X, φ) (3.1)
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• The language mustHML is defined to be the set of closed formulae generated by
the following recHML grammar fragment:


φ ::= tt | ff | Acc(A) | X | [α]φ | φ1 ∧ φ2 | min(X, φ) (3.2)


�


Note that both sub-languages use the minimal fixpoint operator only; this is not sur-
prising, as informally at least testing is an inductive rather than a co-inductive property.
The modality [·] and the conjunction operator ∧ are not allowed in mayHML; the above
examples show in fact that there exist formulae of the form [α]φ which are not may-
testable, and that conjunction of two formulae is not always may-testable. The same
argument applies to the modality 〈·〉 and the disjunction operator ∨ in the must case,
which are therefore not included in mustHML.


We have now completed the set of definitions setting up our framework of properties
and tests. In the remainder of the paper we prove the results announced, informally, in
the Introduction.


3.1 The must case
We will now develop the mathematical basis needed to relate mustHML formulae and
the must testing relation; in this section we will assume that the LTS of processes is
branching finite.


First, we prove the following result:


Lemma 3.1.1. Let φ ∈ mustHML, and let p ∈ ~ φ �, where p ⇑: then ~ φ � is the entire
process space, i.e. ~ φ � = S .


Proof. Let p be a process such that p ⇑, let φ ∈ mustHML such that p ∈ ~ φ �. Then φ
cannot be Acc(A), ff , [α]φ nor a conjunction of formulae containing one of such terms.
We now show that φ cannot be a formula of the form min(X, ψ), where ψ contains either
free occurrences of the variable X or the operators Acc(A), [α]. To this end, we perform
a case analysis on the formula ψ:


(i) ψ contains an occurrence of the operator [α]. Here we can apply Corollary 2.2.4
to obtain a formula of the form [α]φ′ ∧ φ′′ which is logically equivalent to φ.
Thus, if p ⇑ then p < ~ φ �,


(ii) ψ contains the operator Acc(A). We can proceed as in Case (i),


(iii) ψ contains at least a free occurrence of variable X. If such an occurrence is
guarded by a [α] operator, then we can proceed as in Case i. Otherwise we can
obtain a formula of the form min(X, X ∧ψ′) which is equivalent to φ = min(X, ψ).
Again, this is done by a repeated application of Corollary 2.2.4. Now it is trivial
to notice that ∅ is a solution to the equation X = X ∧ψ, and therefore it is its least
solution. Hence ~ φ � = ∅, so that p < ~ φ �.


The only possible case left for p ⇑, p ∈ ~ φ � to hold is therefore given by φ being
generated by the Grammar below:


φ ::= tt | φ1 ∧ φ2 | min(X, φ). (3.3)


It is trivial now to show ~ φ � = S . �
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This Lemma has important consequences; it means formulae in mustHML either have
the trivial interpretation as the full set of states S , or they are only satisfied by conver-
gent states.


Definition 3.1.1. Let C be the collection of subsets of S determined by:


• S ∈ C,


• X ∈ C, s ∈ X implies s ⇓. �


Proposition 3.1.2. C ordered by set inclusion is a continuous partial order, cpo.


Proof. The empty set is obviously the least element in C. So it is sufficient to show
that if X0 ⊆ X1 ⊆ · · · is a chain of elements in C then


⋃
n Xn is also in C. �


We can now take advantage of the fact that mustHML actually has a continuous in-
terpretation in (C,⊆). The only non trivial case here is the continuity of the operator
[·α·]:


Proposition 3.1.3. Suppose the LTS of processes is finite-branching: If X0 ⊆ X1 ⊆ · · ·


is a chain of elements in C then⋃
n


[·α·]Xn = [·α·]
⋃


n


Xn.


Proof. It is trivial to show that⋃
n


[·α·]Xn ⊆ [·α·]
⋃


n


Xn.


Thus we only need to show that the opposite implication holds.
First, notice that it Xi = S for some i, then⋃


n


[·α·]Xn = {s : s ⇓} = [·α·]
⋃


n


Xn


Suppose then that Xi , S for all i ≥ 0. Then we have
⋃


n Xn , S . By definition the set
[·α·]
⋃


n Xn can be written as


{s : s ⇓,Succ(α, s) ⊆
⋃


n


Xn}.


We will prove that for each state s in such a set Succ(α, s) is finite, therefore there
exists an Xn such that Succ(α, s) ⊆ Xn. As a direct consequence, s ∈ [·α·]Xn, which is
included in


⋃
n[·α·]Xn.


Let s ∈ [·α·]
⋃


n Xn and let s′ be one of its α derivative. By definition we have s′ ∈⋃
n Xn. Thus there exists n ≥ 0 such that s′ ∈ Xn. Since Xn ∈ C, Xn , S , it holds


s′ ⇓. Since we are assuming that the LTS of processes is finite, as a consequence of
Konig’s lemma we obtain that if the set Succ(α, s) is infinite then the τ-computation
tree of either s or one of its α-derivative s′ has an infinite path. The former contradicts
the statement s ⇓, while the latter contradicts the property s′ ⇓ we just proved. Thus
Succ(α, s) is finite. �


This continuous interpretation of mustHML allows us to use chains of finite approxima-
tions for these formulae of mustHML. That is given φ ∈ mustHML and k ≥ 0, recursion
free formulae φk will be defined such that ~ φk � ⊆ ~ φ(k+1) � and


⋃
k≥0 = ~ φ �. We can


therefore reason inductively on approximations in order to prove properties of recursive
formulae.


23







Definition 3.1.2 (Formulae approximations). For each formula φ in mustHML define


φ0 , ff


φ(k+1) , φ if φ = tt , ff or Acc(A)
([α]φ)(k+1) , [α](φ)(k+1)


(φ1 ∧ φ2)(k+1) , φ(k+1)
1 ∧ φ(k+1)


2


(min(X, φ))(k+1) , (φ{min(X, φ)/X})k


�


It is obvious that for every φ ∈ mustHML, ~ φk � ⊆ ~ φ(k+1) � for every k ≥ 0; The
fact that the union of the approximations of φ converges to φ itself depends on the
continuity of the interpretation:


Proposition 3.1.4. ⋃
k≥0


~ φk � = ~ φ �


Proof. This is true in the initial continuous interpretation of the language, and therefore
also in our interpretation. For details see [CN78]. �


Having established these properties of the interpretation of formulae in mustHML, we
now show that they are all must-testable. The required tests are defined by induction
on the structure of the formulae.


Definition 3.1.3. For each (possibly open) formula φ in Grammar (3.2) define tmust(φ)
as follows:


tmust( tt ) = ω.0 (3.4)
tmust( ff ) = 0 (3.5)


tmust(Acc(A)) =
∑
a∈A


a.ω.0 (3.6)


tmust(X) = X (3.7)
tmust([τ]φ) = τ. tmust(φ) (3.8)
tmust([a]φ) = a. tmust(φ) +τ.ω.0 (3.9)


tmust(φ1 ∧ φ2) =



ω.0, if φ1 ∧ φ2 is closed and


logically equivalent to tt


τ. tmust(φ1) +τ. tmust(φ2), otherwise


(3.10)


tmust(min(X, φ)) =


tmust(φ), if φ is closed
µX. tmust(φ), otherwise


(3.11)


�


For each formula φ in mustHML, the test tmust(φ) is defined in a way such that the set
of processes which must satisfy tmust(φ) is exactly ~ φ �. Before supplying the details of
a formal proof of this statement, let us comment on the definition of tmust(φ).
Cases (3.4), (3.5) and (3.7) are straightforward. In the case of Acc(A), the test allows
only those action which are in A to be performed by a process, after which it reports
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success.
For the box operator, a distinction has to be made between [a]φ and [τ]φ. In the former
we have to take into account that a converging process which cannot perform a weak
a-action satisfies such a property; thus, synchronisation through the execution of a a-
action is allowed, but a possibility for the test to report success after the execution of
an internal action is given. In the case of [τ]φ no synchronization with any action is
required; however, since we are adding a convergence requirement to formula φ, we
have to avoid the possibility that the test tmust([τ]φ) can immediately perform a ω ac-
tion. This is done by requiring the test tmust([τ]φ) to perform only an internal action.
Finally, (3.10) and (3.11) are defined by distinguishing between two cases; this is be-
cause a formula of the form φ1∧φ2 or min(X, φ) can be logically equivalent to tt , whose
interpretation is the entire state space. However, the second clause in the definition of
tmust(φ) for such formulae require the test to perform a τ action before performing any
other activity, thus at most converging processes must satisfy such a test.


In order to give a formal proof that tmust(φ) does indeed capture the formula φ we need
to establish some preliminary properties. The first essentially says that that no formula
of the form min(X, φ), with φ not closed, will be interpreted in the whole state space.


Lemma 3.1.5. Let φ = min(X, ψ), with ψ not closed. Then ~ φ � , S .


Proof. By contradiction. Suppose ~min(X, ψ) � = S ; then min(X, ψ) is a term of the
grammar (3.3), as shown in the proof of Lemma 3.1.1. That is, formula ψ is necessarily
closed. �


Next we state some simple properties about recursive tests.


Lemma 3.1.6.


• p must satisfy µX.t implies p must satisfy µX.t{µX.t/X}.


• p ⇓, p must satisfy t[µX.t/X] implies p must satisfy µX.t.


Proof.


• Suppose p must satisfy µX.t. Then all computations with prefix


p | µX.t � p | t{µX.t/X}


are successful; hence p must satisfy t{µX.t/X}.


• Suppose p ⇓, p must satisfy t{µX.t/X}. Then for each computation of p | µX.t
with prefix


p | µX.t � · · · � p′ | µX.t � p′ | t{µX.t/X}


there exists a computation with prefix


p | t{µX.t/X} � · · · � p′ | t{µX.t/X}


which is successful. Hence p must satisfy µX.t.


�


Note that the premise p ⇓ is essential in the second part of this lemma, as µX.t cannot
perform aω action; therefore it can be must-satisfied only by processes which converge.
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Proposition 3.1.7. Suppose the LTS of processes is finitely branching. If p must satisfy
tmust(φ) then p ∈ ~ φ �.


Proof. Suppose p must satisfy tmust(φ); As both the LTS of processes (by assumption)
and the LTS of tests (Proposition 2.3.1) are finite branching, then the LTS generated by
p | t is finite branching as well. By Theorem 2.3.3 we have that maximal length of a
successful computation |p, tmust(φ) | is defined and finite. Thus it is possible to perform
an induction over |p, tmust(φ) | to prove that p ∈ ~ φk � for some k ≥ 0. The result will
then follow from Proposition 3.1.4.


• If |p, tmust(φ) | = 0 then tmust(φ)
ω
−→, and hence for each p ∈ S p must satisfy


tmust(φ). Further, by the definition of tmust(φ) we have that φ is logically equiva-
lent to tt , hence p ∈ ~ φ �.


• If |p, tmust(φ) | = n+1 then the validity of the Theorem follows from an application
of an inner induction on φ. We show only the most interesting case, which is
φ = min(X, ψ). There are two possible cases.


(a) If X is not free in ψ then the result follows by the inner induction, as
min(X, ψ) is logically equivalent to ψ, and tmust(min(X, ψ)) ≡ tmust(ψ) by
definition.


(b) If X is free in ψ then, by Lemma 3.1.6 p must satisfy tmust(ψ){µX. tmust(ψ) /X},
which is syntactically equal to tmust(ψ{min(X, ψ)/X}).
Since |p, tmust(ψ{min(X, ψ)/X}) | < |p, tmust(φ) |, by inductive hypothesis we
have
p ∈ ~ψ{min(X, ψ)/X}k � for some k, hence p ∈ ~ φ(k+1) �.


�


To prove the converse of Proposition 3.1.7 we use the following concept:


Definition 3.1.4 (Satisfaction Relation). Let R ⊆ S × mustHML and for any φ let
(R φ) = {s | s R φ} Then R is a satisfaction relation if it satisfies


(R tt ) = S


(R ff ) = ∅


(R Acc(A)) = { s | s ⇓, s
τ


=⇒ s′ implies S (s′) ∩ A , ∅ }


(R [α]φ) ⊆ [·α·](R φ)
(R φ1 ∧ φ2) ⊆ (R φ1) ∩ (R φ2)


(R φ{min(X, φ)/X}) ⊆ (R min(X, φ))


�


Satisfaction relations are defined to agree with the interpretation ~ · �. Indeed, all im-
plications required for satisfaction relations are satisfied by |=. Further, as ~min(X, φ) �
is defined to be the least solution to the recursive equation X = φ, we expect it to be the
smallest satisfaction relation.


Proposition 3.1.8. The relation |= is a satisfaction relation. Further, it is the smallest
satisfaction relation.
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Proof. The definition of ~ · � ensures that |= is a satisfaction relation; we have:


(|= tt ) = S


(|= ff ) = ∅


(|= Acc(A)) = {{ s | s ⇓, s
τ


=⇒ s′ implies S (s′) ∩ A , ∅ }


(|= [α]φ) = [·α·](|= φ)
(|= φ{min(X, φ)/X}) = (|= min(X, φ))


where the last equality follows from Corollary 2.2.4.
It remains to show that |= is in fact the smallest satisfaction relation.
Let R be a satisfaction relation, and suppose that p ∈ ~ φ �: we show that p R φ.
By Proposition 3.1.4 there exists k ≥ 0 such that p ∈ ~ φk �. We proceed by induction
on k.
The case k = 0 is vacuous. Assume the result holds for a generic k; we will perform an
inner induction on the structure of φ. Again, only the most interesting details are given.
Suppose φ = min(X, ψ): then min(X, ψ)(k+1) = (ψ{φ/X})k, and by inductive hypothesis
p R ψ{φ/X} follows, and so p R φ by the definition of satisfaction relation.
Finally, if φ has the form [α]ψ or φ1∧φ2, it is not possible to use the inductive hypothe-
sis directly. This is because ([α]φ)(k+1) = [α](φ)(k+1), (φ1 ∧ φ2)(k+1) = φ1(k + 1)∧ φ(k+1)


2 .
We define therefore the height of a formula h(φ) as


h( tt ) = 0
h( ff ) = 0


h(Acc(A)) = 0
h(min(X, ψ)) = 0


h([α]ψ) = h(ψ) + 1
h(φ1 ∧ φ2) = max(h(φ1), h(φ2)) + 1


and we perform another induction of h(φ). The case h(φ) = 0 has already been handled.
Suppose then h(φ) = n + 1; then either φ = [α]ψ or φ = φ1 ∧ φ2. We will consider only
the first case.Here h(ψ) = n, so that by inductive hypothesis we have p′ |= ψ implies
p′ R ψ.
If p |= [α]ψ then p ⇓; further, whenever p


α
=⇒ p′, we have p′ |= ψ and therefore p′ R ψ.


Thus p ∈ [·α·](Rφ). �


This Proposition can be exploited to prove properties for couples (p, φ) such that p |= φ,
for φ ∈ mustHML.
Let π be a property over S × mustHML, and suppose the relation R = {(s, φ) | π(s, φ)}
is a satisfaction relation. We obtain, by Proposition 3.1.8, that p |= φ implies π(p, φ).
Next we consider the relation Rmust such that p Rmust φ whenever p must satisfy
tmust(φ), and show that it is a satisfaction relation.


Proposition 3.1.9. The relation Rmust is a satisfaction relation.


Proof. We proceed by induction on formula φ. Again, we only check the most inter-
esting case.
Suppose φ = min(X, ψ). We have to show p must satisfy tmust(ψ{φ/X}) implies p must satisfy
tmust(φ).
We distinguish two cases:
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(a) X does not appear free in ψ. then tmust(φ) = tmust(ψ), and ψ{φ/X} = ψ. This case is
trivial.


(b) X does appear free in φ: in this case tmust(φ) = µX. tmust(ψ), and tmust(ψ{φ/X}) has
the form tmust(ψ){µX. tmust(ψ) /X}.
By Lemma 3.1.5 ~ φ � , S ; therefore Lemma 3.1.1 ensures that p ⇓, and hence by
Lemma 3.1.6 it follows p must satisfy tmust(φ).


�


Combining all these results we now obtain our result on the testability of mustHML.


Theorem 3.1.10. Suppose the LTS of processes is finite-branching. Then for every
φ ∈ mustHML, there exists a test tmust(φ) such that φ must-represents the test tmust(φ).


Proof. We have to show that for any process p, p must satisfy tmust(φ) if and only if
p ∈ ~ φ �. One direction follows from Proposition 3.1.7. Conversely suppose p ∈ ~ φ �.
By Proposition 3.1.8 it follows that for all satisfaction relations R it holds p R φ; hence,
by Proposition 3.1.9, p Rmust φ, or equivalently p must satisfy tmust(φ). �


We now turn our attention to the second result, namely that every test t is must-
representable by some formula in mustHML. Let us for the moment assume a branching
finite LTS of tests in which the state space T is finite.


Definition 3.1.5. Assume we have a test-indexed set of variables {Xt}. For each test
t ∈ T define ϕt as below:


ϕt , tt if t
ω
−→ (3.12)


ϕt , ff if t −→/ (3.13)


ϕt , (
∧


a,t′:t
a
−→t′


[a]Xt′ ) ∧ Acc({a|t
a
−→}) if t


ω
−→/ , t


τ
−→/ , t −→ (3.14)


ϕt , (
∧


t′:t
τ
−→t′


[τ]Xt′ ) ∧ (
∧


a,t′:t
a
−→t′


[a]Xt′ ) if t
ω
−→/ , t


τ
−→ (3.15)


Take φt to be the extended formula mint(XT , ϕT ), using the simultaneous least fixed
points introduced in Section 2.2.


Notice that we have a finite set of variables {Xt} and that the conjunctions in Definition
3.1.5 are finite, as the LTS of tests is finite state and finite branching. These two condi-
tions are needed therefore for φt to be well defined.


Formula φt captures the properties required by a process to must satisfy test t. The first
two clauses of the definition are straightforward. If t cannot make an internal action
or cannot report a success, but can perform a visible action a to evolve in t′, then a
process should be able to perform a


a
=⇒ transition and evolve in a process p′ such that


p′ must satisfy t′. The requirement Acc({a | t
a
−→}) is needed because a synchronisa-


tion between the process p and the test t is required for p must satisfy t to be true.
In the last clause, the test t is able to perform at least a τ-action. In this case there is
no need for a synchronisation between a process and the test, so there is no term of the
form Acc({a | t


a
−→}) in the definition of φt. However, it is possible that a process p


will never synchronise with such test, instead t will perform a transition t
τ
−→ t′ after
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p has executed an arbitrary number of internal actions. Thus, we require that for each
transition p


τ
=⇒ p′, p′ must satisfy t′.


We now supply the formal details which lead to state that formula φt characterises the
test t. Our immediate aim is to show that the two environments, defined by


ρmin(Xt) , ~ φt �


ρmust(Xt) , {p | p must satisfy t}


are identical. This is achieved in the following two propositions.


Proposition 3.1.11. For all t ∈ T it holds that ρmin(Xt) ⊆ ρmust(Xt).


Proof. We just need to show that ~ϕt �ρmust ⊆ ρmust(Xt): then we can apply the minimal
fixpoint property, Theorem 2.2.3 (i), to conclude


ρmin(Xt) = ~mint(XT , φT ) � ⊆ ρmust(XT ).


The proof is carried out by performing a case analysis on t. We will only consider Case
(3.14), as cases (3.12) and (3.13) are trivial and Case (3.15) is handled similarly.
Assume p ∈ ~ϕt �ρmust. We have


(a) p ⇓,


(b) whenever p
τ


=⇒ p′ there exists an action a ∈ Act such that t
a
−→ and p′


a
=⇒,


(c) whenever p
a


=⇒ p′ and t
a
−→ t′, p′ ∈ ρmust(Xt′ ), i.e. p′ must satisfy t′.


Conditions (a) and (b) are met since p ∈ ~Acc({a | t
a
−→) � and t


a
−→ for some a ∈ Act,


while (c) is true because of p ∈ ~
∧


a,t′: t
a
−→t′


[a]Xt′ �.


To prove that p ∈ ρmust(Xt) we have to show that every computation of p | t is suc-
cessful. To this end, consider an arbitrary computation of p | t; condition (b) ensures
that such a computation cannot have the finite form


p | t � p1 | t � · · · pk | t � pk+1 | t � · · · � pn | t (3.16)


For such a computation we have that pn
τ


=⇒ p′, and there exists p′′ with p′
a
−→ p′′ for


some action a and test t′ such that t
a
−→ t′. Therefore we have a computation prefix of


the form
p | t � p1 | t � · · · pn | t � · · · � p′ | t � p′′ | t′,


hence the maximality of computation (3.16) does not hold.


Further, condition (a) ensures that a computation of p | t cannot have the form


p | t � p1 | t � · · · � pk | t � pk+1 | t � · · ·


Therefore all computations of p | t have the form


p | t � p1 | t � · · · � pn | t � p′ | t′


with p′ must satisfy t′ by condition (c); then for each computation of p | t there exist
p′′, t′′ such that


p | t � · · · � p′ | t′ � · · · � p′′ | t′′,


and t′′
ω
−→. Hence, every computation from p | t is successful. �
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Proposition 3.1.12. Assume the LTS of processes is branching finite. For every t ∈ T,
ρmust(Xt) ⊆ ρmin(Xt).


Proof. We have to show p must satisfy t implies p ∈ ~ φt �.
Suppose p must satisfy t; since we are assuming that the set T , as well as the set
S , contains only finite branching tests (processes), That is, the maximal length of a
successful computation fragment |p, t| is defined and finite by Theorem 2.3.3.
Recall that φt = mint(XT , ϕT ). We proceed by induction on k = |p, t| to show that
p must satisfy t implies p ∈ ~ϕt �ρmin; then the result p ∈ ~ φt � is obtained by applying
the Fixpoint Property 2.2.3(ii).


• k = 0: In this case, t
ω
−→, and hence for all p ∈ S we have p must satisfy t.


Moreover, ϕt = tt , and hence for all p ∈ S p ∈ ~ φt �ρmin,


• k > 0. There are several cases to consider, according to the structure of the test t:


1. t
ω
−→/ , t


τ
−→/ , t −→: we first show that p ∈ ~Acc({a|t


a
−→) �ρmin.


Since p must satisfy t, we have p ⇓. Consider a computation fragment of
the form


p | t � · · · � pn | t


As p ⇓, we require that all computations rooted in pn | t will eventually
contain a term of the form pk | t′, where t′ , t. Further, as t


τ
−→/ , such


a test should follow from a synchronisation between pk−1 and t. We have
that then that, whenever p


τ
=⇒ pn, there exists an action a such that t


a
−→ t′


and pn a
=⇒ pk, which combined with the constraint p ⇓ is equivalent to


p ∈ ~Acc({a|t
a
−→) �.


We also have to show that p ∈ ~ [a]Xt′ �ρmin. Let p
a
−→p′. Then p must satisfy


t implies p′ must satisfy t′. Moreover, we have |p′, t′| < k. By inductive
hypothesis, we have that p′ ∈ ~ φt′ �, that is p′ ∈ ρmin(Xt′ ). Then the result
p ∈ ~ [a]Xt′ �ρmin holds.


2. t
ω
−→/ , t


τ
−→: A similar analysis as in the case above can be carried out.


�


Combining these two propositions we get our second result. Let us say that a test t
from a LTS of tests T = 〈T, Actωτ ,→〉 is finitary if the derived LTS consisting of all
states in T accessible from t is finite state and finite branching.


Theorem 3.1.13. Assuming the LTS of processes is finite branching, every finitary test
t is must-representable.


Proof. Consider any test t. We can apply Definition 3.1.5 to the finite LTS of tests
reachable from t to obtain a formula φt which must-represents test t. Notice that this for-
mula is not contained in recHML, as it uses simultaneous least fixpoints. However, by
Theorem 2.2.2 there exists a formula φmust(t) ∈ recHML such that ~ φt � = ~ φmust(t) �,
thus t is must-representable. Further, since each operator used in Definition 3.1.5 to
define ϕt belongs to mustHML, it is assured that φmust(t) ∈ mustHML. �


As a Corollary we are able to show that mustHML is actually the largest language (up
to logical equivalences) of must-testable formulae.
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Corollary 3.1.14. Suppose φ is a formula in recHML which is must-testable. Then
there exists some ψ in mustHML which is logically equivalent to it.


Proof. Suppose φ is must-testable. By Theorem 3.1.10 there exists a finite test t =


tmust(φ) which must-represents φ. Further, by theorem 3.1.13 there exists a formula
ψ = φmust(t) ∈ mustHML which must-tests for t. Therefore


p ∈ ~ φ �⇔ p must satisfy tmust(φ)⇔ p ∈ ~ψ �


�


3.2 The may case
We now turn to the characterisation of the may satisfy testing relation in terms of
recHML formulae.
Notice that the nature of the may satisfy testing relation is different from that of the
must satisfy one; here an experiment composed of a process s and a state t is required
to have only one successful computation to ensure that s may satisfy t holds. As a
consequence, when considering the may satisfy testing relation, we will not need to
reason about all the computations generated by an experiment; in other words, it will
be no longer necessary to reason on the maximal length of a successful computation,
therefore the assumption that the LTS of processes to be tested contains only finitely
branching states can be dropped. However, we still need to assume that the LTS of
tests to be considered is finitely branching; informally speaking this is because a test is
may-represented by a disjunction of formulae, one for each of its branches. Therefore,
as we do not allow infinite disjunction in our version of recHML, we need to focus only
to LTS of finitely branching tests.


First we will prove that each formula in mayHML may-represents some test t in gram-
mar (2.1); then we show that if the LTS generated by a test t is finitely branching and
finite state, then there exists a formula φ which may-represents t. In this case we do not
require for the LTS of processes to be branching finite.


To prove that the power of tests defined in grammar 2.1 can be captured (with respect
to the may satisfy testing relation) by the language mayHML, we define the concept of
weak satisfaction relation; this is obtained as the dual version of the weak satisfaction
relation relation defined in [AI99].


Definition 3.2.1. Let R ⊆ S × mayHML. Then R is a weak satisfaction relation if, and
only if, it satisfies the following implications:


(R tt ) = S


(R ff ) = ∅


(R 〈α〉φ) ⊇ 〈·α·〉(R φ)
(R φ1 ∨ φ2) ⊇ 〈·τ·〉[(R φ1) ∪ (R φ2)]


(R min(X, φ)) ⊇ 〈·τ·〉(R φ{min(X, φ)/X})


�


Informally speaking, given a weak satisfaction relation R, it is possible to determine
whether s ∈ (R φ) for some s ∈ S , φ ∈ mayHML by looking at the set of the τ-
derivatives of s, rather than at the single state itself.
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The satisfaction relation |=, when restricted to mayHML, is a weak satisfaction relation.
This is because for any φ ∈ mayHML we have ~ φ � = ~ 〈τ〉φ �.


Lemma 3.2.1. Let p ∈ S , φ ∈ mayHML. Then p |= φ if and only if there exists
p′ : p


τ
=⇒ p′ and p′ |= φ.


Proof. For the only if implication notice that for all p ∈ S it holds p
τ


=⇒ p.
For the only if implication, notice that the semantics of mayHML is defined on weak
actions, and that ~ 〈α〉φ � = ~ 〈τ〉〈α〉φ �. �


Proposition 3.2.2. The relation |= is a weak satisfaction relation.


Proof. By Lemma 3.2.1 and the definition of ~ · � we have the following implications:


(|= tt ) = S


(|= ff ) = ∅


(|= 〈α〉φ) = 〈·α·〉(|= φ)
(|= φ1 ∨ φ2) = (|= φ1)∪ |= (φ2)


= 〈·τ·〉[(|= φ1) ∪ (|= φ2)
(|= min(X, φ)) = (|= φ{min(X, φ)/X})


= 〈·τ·〉(|= φ{min(X, φ)/X})


Corollary 2.2.4 has been applied in the case of a least fixed point formula. �


Further, we have that |= is the smallest weak satisfaction relation. To prove this state-
ment we will use the same techniques used in Section 3.1; that is, first we will show that
mayHML has a continuous interpretation in the complete lattice (2S ,⊆). The only non
trivial case here consists in proving the continuity of the 〈·τ·〉 operator; this is a direct
consequence of the following results, which states that such an operator is distributive
over countable sets chosen in 2S .


Proposition 3.2.3. Let Pi, i ∈ I be a countable set of elements in 2S . Then


〈·α·〉
⋃
i∈I


Pi =
⋃
i∈I


〈·α·〉Pi


Proof. It is trivial to show that⋃
i∈I


〈·α·〉Pi ⊆ 〈·α·〉
⋃
i∈I


Pi.


For the opposite inclusion, suppose s ∈ 〈·α·〉
⋃


i∈I Pi; then there exists s′ such that
s


α
=⇒ s′, s′ ∈


⋃
i∈I Pi. That is, s′ ∈ P j for some j ∈ I; since s


α
=⇒ s′, by definition


s ∈ 〈·α·〉P j, and therefore s ∈
⋃


i∈I〈·α·〉Pi. �


Given a formula φ ∈ mayHML, it is possible to define a chain of recursion free formu-
lae φ0, φ1, · · · which converge to φ itself. This definition is similar in style to that of
Definition 3.1.2.


Definition 3.2.2 (Formulae approximations). For each formula φ in mayHML define
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φ0 , ff


tt (k+1) , tt


ff (k+1) , ff


(〈α〉φ)(k+1) , 〈α〉(φ)(k+1)


(φ1 ∨ φ2)(k+1) , φ(k+1)
1 ∨ φ(k+1)


2


(min(X, φ))(k+1) , (φ{min(X, φ)/X})k


�


Proposition 3.2.4. ⋃
k≥0


~ φk � = ~ φ �


�


Chains of approximations of formulae in mayHML can be exploited to show that |= is
indeed the smallest weak satisfaction relation.


Proposition 3.2.5. Let R be a weak satisfaction relation. Then, for any s ∈ S and
φ ∈ mayHML, s |= φ implies s R φ.


Proof. The proof is similar in style to that of Proposition 3.1.8. If s |= φ then by Corol-
lary 3.2.4 we have that s |= φk for some k ≥ 0. By performing an induction on k, we
show that s R φ. For k = 0 the statement is vacuous; assume then that the statement
is true for a generic k, and consider the formula φk+1; we will only check the case
φ = min(X, ψ).
If s |= (min(X, ψ))k+1 then by Definition s |= (ψ{min(X, ψ)/X})k. By Lemma 3.2.1 s |=
〈τ〉(ψ{min(X, ψ)/X})k, which is equivalent to s |= 〈(〉τψ{min(X, ψ)/X})k. Now, by induc-
tive hypothesis s R 〈(〉τψ{min(X, ψ)/X}), or equivalently s


τ
=⇒s′ with s′ R (τψ{min(X, ψ)/X});


then by Definition 3.2.1 we have s R min(X, ψ). �


We are now ready to show that each formula of mayHML may-represents some test t.
For each formula φ in Grammar (3.1), the test tmay(φ) is defined as below:


tmay( tt ) = ω.0
tmay( ff ) = 0
tmay(X) = X


tmay(φ1 ∨ φ2) = τ. tmay(φ1) +τ. tmay(φ2)
tmay(〈α〉φ) = α. tmay(φ)


tmay(min(X, φ)) = µX. tmay(φ)


We will need the following property for tests:


Proposition 3.2.6. Let φ, ψ be two formulae in Grammar (3.1), and suppose ψ is a
closed formula. Then


tmay(φ){tmay(ψ) /X} = tmay(φ{ψ/X})
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Proof. By induction on the structure of φ. �


Proposition 3.2.7. The relation Rmay = { (s, φ) | s may satisfy tmay(φ)} is a weak
satisfaction relation.


Proof. We prove that Rmay satisfies the constraints of Definition 3.2.1.


• tmay( tt ) = ω.0. It is trivial to check that each process in S may satisfy such a
test.


• tmay( ff ) = 0. Again, it is straightforward to show that for no process p ∈ S we
have p may satisfy tmay( ff ).


• Suppose p
a


=⇒ p′, and p′ Rmay φ. Then, we have the computation prefix


p | α. tmay(φ) � · · · � p′′ | α. tmay(φ) � p′ | tmay(φ) 1.


Since p′ may satisfy tmay(φ) by the definition of Rmay , the experiment p | tmay(〈a〉φ)
has a successful computation, hence p Rmay 〈α〉φ.


• Suppose p
τ


=⇒ p′, and p′ Rmay φ1. Given an arbitrary formula φ2, consider the
experiment
p | τ. tmay(φ1) +τ. tmay(φ2), which has the computation fragment


p | τ. tmay(φ1) +τ. tmay(φ2) � p | tmay(φ1) � · · · � p′ | tmay(φ1)


As p′ may satisfy tmay(φ1), we have p may satisfy tmay(φ1 ∨ φ2).


• Suppose p
τ


=⇒ p′, with p′ Rmay ψ{min(X, ψ)/X}; we have tmay(min(X, ψ)) =


µX. tmay(ψ). In this case we have the computation


p | µX. tmay(ψ) � · · · � p′ | µX. tmay(ψ) � p′ | tmay(ψ){µX.ψ/X},


where tmay(ψ){µX.ψ/X} = tmay(ψ{min(X, ψ)/X}) by Proposition 3.2.6, and hence
p Rmay min(X, ψ).


�


Proposition 3.2.8. Let p ∈ S and let φ ∈ mayHML. If p may satisfy tmay(φ) then
p |= φ.


Proof. Assume p may satisfy tmay(φ). We proceed by induction on the minimal length
of a successful prefix of a computation, denoted |p, tmay(φ) | with an abuse of notation,
to show that p |= φ.


• |p, tmay(φ) | = 0. Then we may infer tmay(φ)
ω
−→ hence φ ≡ tt . In this case, for


each p ∈ S it holds. p may satisfy tmay(φ), and ∀p ∈ S .p |= tt .


• |p, tmay(φ) | = k + 1. Assume the statement holds for k, and consider the prefix


p| tmay(φ) � p′|t′


of a minimal successful computation.
We distinguish several cases:


1where p′′ = p′ in the case α = τ
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(a) p
τ
−→ p′, t′ ≡ tmay(φ). Then by inductive hypothesis p′ |= φ, and by Lemma


3.2.1 we have p |= φ.


(b) p = p′, tmay(φ)
τ
−→t′: in this case there are tree possibilities.


– φ = min(X, ψ) for some ψ. Hence t′ ≡ tmay(ψ){tmay(φ) /X}, which is
t′ ≡ tmay(ψ{φ/X}). Again, by induction we have p |= ψ{φ/X}, and
hence p |= φ.


– φ = φ1 ∨ φ2. Without loss of generality we may infer t′ ≡ tmay(φ1). By
Inductive hypothesis we have p |= φ1, hence p |= φ1 ∨ φ2.


– φ = 〈τ〉ψ for some ψ. In this case we have t′ = tmay(ψ); by the inductive
hypothesis it holds p |= ψ. Therefore, by Lemma 3.2.1 p |= 〈τ〉ψ.


(c) p
a
−→ p′, tmay(φ)


a
−→t′. In this case we have φ = 〈α〉ψ, and hence t′ ≡


tmay(ψ). Then, by using the inductive hypothesis again, we have p |= 〈a〉φ.


�


Theorem 3.2.9. Let φ ∈ mayHML, p ∈ S . Then p |= φ if and only if p may satisfy
tmay(φ).


Proof. Analogous to the proof of Theorem 3.1.10 �


Next, we show that if the LTS of tests generated by a test is finite state, then each test t
is may-represented by a mayHML formula φmay(t).
First, assume to have a test indexed set of test variables {Xt}. Then, for each test t define
the formula φt as


ϕt = tt if t
ω
−→


ϕt = ff if t −→/


ϕt =
∨


α,t′:t
α
−→t′


〈α〉Xt′ if t
ω
−→/ , t−→


and take φmay(t) to be the recHML+ formula mint(XT , ϕT ).
Next we define the following environments:


ρmin(Xt) = ~ φmay(t) �
ρmay(Xt) = {p | p may satisfy t}


In the same style as Section 3.1, we will prove that the two environments above coin-
cide.


Proposition 3.2.10. For each test t, ρmin(Xt) ⊆ ρmay(Xt).


Proof. Suppose the LTS generated by a test t is finite state and finite branching. We
just need to show that ~ϕt �ρmust ⊆ ρmust(Xt): then we can apply the minimal fixpoint
property, Theorem 2.2.3 (i), to conclude


ρmin(Xt) = ~mint(XT , φT ) � ⊆ ρmust(XT ).


The proof is carried out by performing a case analysis on t.


• t
ω
−→. In this case we have ρmay(Xt) = S , so the statement trivially holds.
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• t −→/ . W have φt = ff , hence ~ φt �ρmay = ∅. Again, the statement is trivial.


• t
ω
−→/ , t−→. Suppose p ∈ ~ φ �ρmay. We have that there exists at least one


action α such that t
α
−→ t′; thus there exists a process p′ such that p


α
=⇒ p′


and p′ may satisfy t′ (in the case α = τ choose p′ = p). Hence we have the
computation fragment


p | t � · · · � p′′ | t � p′ | t′,


so that p may satisfy t.


�


Proposition 3.2.11. For each test t, ρmay(Xt) ⊆ ρmin(Xt).


Proof. Again, assume the LTS generated by a test t is finite state. Let p be a process
such that p may satisfy t. We proceed by induction on the minimal length of a success-
ful computation prefix |p, t| to show that p may satisfy t implies p ∈ ~ϕt �ρmin; then the
result p ∈ ~ φt � is obtained by applying the Fixpoint Property 2.2.3(ii).


• |p, t| = 0. In this case we have t
ω
−→. By definition, φt = tt , so that we have


~ φt �ρmin = S . This case is trivial.


• |p, t| > 0. Let
p | t � p′ | t′ � · · · � pn | tn


be a successful computation prefix of length |p, t|. We distinguish several cases
according to the structure of the computation. Since p′ may satisfy t′ and |p′, t′| <
|p, t|, in each case we have p′ ∈ ~ϕt′ �ρmin by inductive hypothesis.


– p = p′, t
τ
−→ t′; we have p ∈ ~ Xt �ρmin = ~ 〈τ〉φt′ �ρmin. Then p ∈


~
∨
α,t′:t


α
−→t′
〈τ〉Xt′ �ρmin.


– p
τ
−→ p′, t = t′; we have p′ ∈ ~ Xt �ρmin, and therefore p ∈ ~ Xt �ρmin by


Lemma 3.2.1.


– p
a
−→ p′, t


a
−→ t′; in this case p ∈ ~ 〈a〉Xt′ �ρmin, and hence p ∈ ~ φt �ρmin.


�


Propositions 3.2.10 and 3.2.11 can be combined to obtain the following result:


Theorem 3.2.12. Every finitary test t is may-representable. �


Corollary 3.2.13. Suppose φ is a formula in recHML which is may-testable. Then
there exists some ψ in mayHML which is logically equivalent to it.


Proof. Suppose φ is may-testable. By theorem 3.2.9 there exists a finite test t =


tmay(φ) which may-represents φ. Further, by Theorem 3.2.12 there exists a formula
ψ = φmay(t) ∈ mayHML which may-tests for t. Therefore


p ∈ ~ φ �⇔ p may satisfy tmay(φ)⇔ p ∈ ~ψ �


�
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Chapter 4


Conclusions


We have investigated the relationship between properties of processes as expressed in a
recursive version of Hennessy-Milner logic, recHML, and extensional tests as defined
in [DH84]. In particular we have shown that both may and must tests can be captured in
the logic, and we have isolated logically complete sub-languages of recHML which can
be captured by may testing and must testing. One consequence of these results is that
the may and must testing preorders of [DH84] are determined by the logical properties
in these sub-languages mayHML and mustHML respectively.


However these results come at the price of modifying the satisfaction relation; to satisfy
a box formula a process is required to converge. One consequence of this change is that
the language recHML no longer characterises the standard notion of weak bisimulation
equivalence, as this equivalence is insensitive to divergence. But there are variations
on bisimulation equivalence which do take divergence into account; see for example
[Wal88, HP80].


The research reported here was initiated after reading [AI99]; there a notion of testing
was used which is different from both may and must testing. They define s passes the
test t whenever no computation from s | t can perform the success action ω, and give a
sub-language which characterises this form of testing. It is easy to check that s passes
t if and only if, in our terminology, s may t is not true. So their notion of testing is dual
to may testing, and therefore, not surprisingly, our results on may testing are simply
dual versions of theirs.


We have concentrated on properties associated with essentially two behavioural theo-
ries, weak bisimulation equivalence and testing. However there are a large number of
other behavioural theories; see [Gla93] for an extensive survey, including their charac-
terisation in terms of observational properties.
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\begin{abstract}
Process behaviour is often defined either in terms of the tests they 
satisfy, or in terms of the logical properties they enjoy. Here we compare these
two approaches, using \emph{extensional testing} in the style of
DeNicola, Hennessy, and a recursive version of the property logic HML.

We first characterise subsets of the property logic which can be captured by tests. 
Then we show that those subsets adequately represent the power of tests.
\end{abstract}
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\chapter{Introduction}
It is very natural to use properties to determine process behaviour;
two processes are deemed to be behaviourally equivalent, $p
\approxprop q$ unless there is a property enjoyed by one and not the
other. Indeed this is often used as a justification for the use of the
well-known \emph{bisimulation equivalence} between processes,
\cite{ccs}. As a property language one can use the modal language
commonly referred to as \textit{Hennessy Milner Logic} (HML), 
which describes the ability of processes to repeatedly interact 
with each other by performing actions.  
Then, in an appropriate setting, it can be shown that two processes are
\emph{bisimulation equivalent}  unless there is some
property $\phi$ such that $p$ enjoys $\phi$ and $q$ does not, or
conversely $q$ enjoys $\phi$ and not $p$, \cite{ccs}; that is the
\emph{bisimulation equivalence} coincides with  $\approxprop$.\\

An alternative approach to process behaviour is based on tests,
\cite{dhn}.  Intuitively two processes are \emph{testing equivalent},
$p \approxtest q$, relative to a set of tests $T$ if $p$ and $q$ pass
exactly the same set of tests from $T$. Much here depends of course on
details, such as the nature of tests, how they are applied and how
they succeed. Indeed it has been shown, \cite{abramsky}, that if one
is sufficiently general with this detail then one can design a
scenario in which the property based view $p \approxprop q$ coincides
with the testing view $p \approxtest q$.\\

A much more restricted view of testing was proposed in \cite{dhn},
where observers have very limited ability to manipulate the processes
under test; informally processes are conceived as completely
independent entities which may or may not react to testing requests;
more importantly the application of a test to a process simply
consists of a run to completion of the process in a \emph{test
  harness}. Because processes are in general nondeterministic,
formally this leads to two testing based equivalences, $ p \approxmay
q$ and $p \approxmust q$; the latter is determined by the set of tests
a process guarantees to pass, written $p \mustsatisfy t$,
while the former by those it is possible to
pass, $p \maysatisfy t$.  The \emph{may} equivalence provides a basis for the so-called
trace theory of\\ processes \cite{csp} , while the \emph{must} equivalence
can be used to justify the various \emph{failures} denotational models
used in the theory of CSP, \cite{csp,olderog,rocco}.\\

We take these two different approaches to
process behaviour, properties versus tests, for granted. Intuitively the first leads to a
branching theory while the latter, in both its variations, leads to a
linear theory; see \cite{vardi} for a modern discussion of this
dichotomy.  Instead the purpose of this paper is to understand more
fully the difference in approach; we investigate the difference in power
between the use of properties as expressed in the modal language HML,
and the use of tests.\\

%A priori properties, at least those expressed in HML, and tests are orthogonal. 
%But
The relationship between properties and tests was first
investigated in \cite{aceto} for a recursive version of HML, which we will 
refer to as \rechml, for a non-standard notion of testing. Here we revisit 
this question but this time for the more standard notions of \emph{may}
and \emph{must} testing mentioned above.\\

To explain our results, at least intuitively, let us introduce some
informal notation; formal definitions will be given later in the paper.
Suppose we have a property $\phi$ and a test $t$ such that
\begin{quote}
  for every process $p$,\;\; $p$ satisfies $\phi$ if and only if $p$ \maysatisfy\ 
  the test $t$.
\end{quote}
Then we say the formula $\phi$ \emph{may}-represents the test $t$.
We use similar notation with respect to \emph{must} testing. 
Our first result shows that
the power of tests can be captured by properties; for every test $t$:
\begin{enumerate}[(i)]
\item 
there is a formula $\phimay{t}$ which \emph{may}-represents $t$; see Theorem~\ref{thm:maytest},
%$p \maysatisfy t$ if and only if  $p$ satisfies the formula 
%$\phimay{T}$

\item 
there is a formula $\phimust{t}$ which \emph{must}-represents $t$; see Theorem~\ref{thm:musttest}.
% $p \mustsatisfy t$ if and only if  $p$ satisfies the formula 
% $\phimust{t}$
\end{enumerate}

Properties, or at least those expressed in \rechml, are more
discriminating than tests, and so one would not expect the converse to hold.
But we can give simple descriptions of subsets of \rechml, called 
\mayhml and \musthml respectively, with the following properties:
\begin{enumerate}[(a)]
\item every $\phi \in \mayhml$ \emph{may}-represents some   test $\Tmay{\phi}$; see Theorem~\ref{thm:mayhml}

\item every $\phi \in \musthml$ \emph{must}-represents  some  test $\Tmust{\phi}$; see Theorem~\ref{thm:musthml}

\end{enumerate}

Moreover because the formulae $\phimay{t},$\;$\phimust{t}$ given in (i),
(ii) above are in \mayhml,\\ \musthml respectively, these sub-languages
of \rechml have a pleasing completeness property. For example let
$\phi$ be any formula from \rechml which can be represented by some
\emph{must} test $t$; that is $p$ satisfies $\phi$ if and only if $p
\mustsatisfy t$. Then up to logical equivalence the formula $\phi$ is
guaranteed to be already in the sub-language \musthml; that is there is
a formula $\psi \in \musthml$ which is logically equivalent to
$\phi$. The language \mayhml has a similar completeness property for
\emph{may} testing.\\

We now give a brief overview of the remainder of the paper.
In Section \ref{sec:background} we recall some basic definitions from 
concurrency theory. These are required to state our results precisely.
In Section \ref{sec:recursivehml} we present the modal logics that 
will be used to express properties of concurrent systems.
In Section \ref{sec:testing} we develop two testing frameworks testing 
frameworks, which are exactly those described in \cite{dhn}.\\
We then set up the formal definition of the question being addressed in 
the paper in Section \ref{sec:tf}. In Section \ref{sec:must} we analyse such a 
question when dealing with the must testing relation, while in Section \ref{sec:may} 
we deal with the may case.\\
Finally, we state our Conclusions in Section \ref{sec:end}.\\
We assume the reader has no previous knowledge in the field; that is, 
basic definitions are explained in detail, often providing illuminating examples.

\chapter{Background}
\section{Modeling Concurrent Systems}
\label{sec:background}
The first step that has to be accomplished in order to reason formally 
about concurrent systems is to provide a mathematical model which allows to 
give a formal description of their behaviour.\\

At a descriptive level, we can think of systems as devices which can 
access different states; for example, if we consider a personal computer 
the set of states it can access coincides with the set of all its 
memory configurations. Further, concurrent systems can usually interact 
with the environment that surrounds them, by performing some kind of activity 
which can be detected by a component which is external to the system, or by 
receiving inputs from such a component. In general we can assume there is 
a set of actions that allows the system to interact with the 
external environment. We expect that the execution of one of those actions 
will result in an evolution of the state of the system. If we consider again 
the personal computer example, then the external environment can be a user 
typing the name of a program to be executed on the keyboard; 
when the enter key is pressed, the command will be sent to the computer. 
On the other hand, the computer will receive the name of the program to be 
executed and will load the instructions of such a program in its memory, thereby 
causing an evolution of the system state.\\

Finally, it is also the case that the state of a system evolves even when 
there is no interaction with the external environment; in other words, 
we must take into account the possibility for unobservable activities 
to be performed by a system. In the computer example above, once the 
program code has been loaded into the memory, instructions will start 
to be executed. Each time an instruction is executed, the content of 
the computer's memory is updated. However, this activity is the result 
of an internal computation which cannot be directly detected by any user 
which is interacting with the computer.\\

This discussion suggests that a possible mathematical description of a 
concurrent system should include 
\begin{itemize}
 \item its set of states,
 \item the set of actions it can perform to interact with a component 
external to the system,
 \item a special action which denotes unobservable ability
 \item a description of the evolution of the system states when some 
 action (either observable or unobservable) is performed.
\end{itemize}
The mathematical model used to represent such information takes the 
name of \textit{labeled transition system} (LTS).

\begin{defi}[Labeled transition System]
A LTS over a set of actions $Act$\ is a triple $\mathcal{L} = \langle S,\; Act_{\tau},\; \longrightarrow \rangle$\ where:
\begin{itemize}
\item $S$\ is a countable set of states
\item $Act_{\tau} = Act \cup \{\tau\}$\ is a countable set of actions,
where $\tau$ does not occur in $Act$
\item $\longrightarrow \subseteq S \times Act_{\tau} \times S$\ is a transition relation.
\end{itemize}
The special action $\tau$ denotes unobservable or internal activity.\\
We use $a, b, \cdots$\ to range over the set  of external actions $Act$, and $\alpha,
\beta, \cdots$\ to range over  $Act_\tau$.
The standard notation $s \trans{\alpha} s'$\ will be used in lieu of $(s,\alpha,s') \in \longrightarrow$. 
States of a LTS $\mathcal{L}$\ will also be referred to as (term)
\textit{processes} and ranged over by $s,\,s',p,\;q$.\qed
\end{defi}

First we look at an example of LTS which is standard in all 
concurrency theory.
 \begin{table}[h]
  \centering
       \begin{ltspic}{2.8cm}
        \node[state]   (A)                      {wait};
        \node[state]   (B)  [below of=A]        {select};
        \node[state]   (C)  [below left of=B]   {\footnotesize{do coffee}};
        \node[state]   (D)  [below right of=B]  {\footnotesize{~~do tea~~~}};

        \path (A)      edge              node{coin}           (B)
              (B)      edge              node{coffee}         (C)
                       edge              node{tea}            (D)
              (C)      edge[bend left]   node[left]{$\tau$}   (A)
              (D)      edge[bend right]  node[right]{$\tau$}  (A);
      \end{ltspic}
   \caption{LTS for the vending machine: graphical representation}
   \label{lts:vm}
 \end{table}
\begin{example}
\label{ex:vm}
 Suppose we want to model a vending machine which can provide 
 a customer either coffee or tea. The vending machine is initially 
 waiting for a customer to insert a coin. When this event occurs, 
 the vending machine enables two selection buttons, respectively for 
 coffee and tea, and waits for the customer to choose one of them. 
 Once the selection button has been pressed, the vending machine will 
 start producing the selected beverage; when this process has finished, 
 the vending machine will perform an unobservable action to return in 
 the initial state.

 The set of states of the vending machine can then be defined as 
 $\{\mbox{wait}, \mbox{select}, \mbox{do coffee}, \mbox{do tea}\}$, 
 while the set of external actions it can perform can be defined 
 as\\
 $\{\mbox{coin}, \mbox{coffee}, \mbox{tea}\}$.\\
 Finally, we can model the behaviour of the vending machine by 
 building the transition relation for the above sets of states and 
 actions. The relation $\trans{\;}$\ for the vending machine is then 
 given by 
 \begin{eqnarray*}
  \mbox{wait} &\trans{\mbox{coin}}& \mbox{select}\\
  \mbox{select} &\trans{\mbox{coffee}}& \mbox{do coffee}\\
  \mbox{select} &\trans{\mbox{tea}}& \mbox{do tea}\\
  \mbox{do coffee} &\trans{\tau}& \mbox{wait}\\
  \mbox{do tea} &\trans{\tau}& \mbox{wait}
 \end{eqnarray*}\qed
\end{example}

 Often it is useful to give a graphical representation of a LTS; 
 states are represented by balls labeled with the name of the 
 corresponding state. Whenever $p \trans{\alpha} q$\ for some 
 state $p, q$ and action $\alpha$, we draw a directed arrow 
 labeled with the name of the action $\alpha$\ from the ball 
 representing $p$\ to the ball representing $q$.
 The graphical representation of the LTS for the coffee vending 
 machine illustrated in Example \ref{lts:vm} is given in Table 
 \ref{lts:vm}.\\

Let us recall some standard notation associated with LTSs. We write
$s \trans{\alpha}$\ if there exists some $s'$\ such that $s
\trans{\alpha} s'$, $s \longrightarrow$\ if there exists $\alpha \in
Act_{\tau}$\ such that $s \trans{\alpha}$, and $s \nottrans{\alpha}$, $s
\nottrans{\;}$\ for their respective negations. We use $\Succ{\alpha, s}$ to
denote the set $\{s' | s \trans{\alpha} s'\}$, and $\Succ{s}$ for 
$\bigcup_{\alpha \in Act_{\tau}} \Succ{\alpha, s}$. 
If $\Succ{s}$ is finite for every state $s \in S$ the LTS is said to be \textit{finite
  branching}.  Finally, a state $s$\ diverges, denoted $s \Uparrow$,
if there is an infinite path of internal moves 
\[
s \trans{\tau} s_1 \trans{\tau} \cdots \trans{\tau} s_{n} \trans{\tau} s_{n+1} \trans{\tau} \cdots
\]
while it converges, denoted $s \Downarrow$, otherwise.
\begin{table}[t]
\centering
\begin{ltspic}{1.8cm}
        \node[state]   (A)                       {$s_0$};
        \node[state]   (B)  [below right of=A]   {$s_1$};
        \node[state]   (C)  [above right of=A]   {$s_2$};
        \node[state]   (D)  [right of=C]         {$s_3$};
        
        \path (A)      edge [loop above]  node{$\tau$}        (A)
                       edge               node{$a$}           (B)
                       edge               node{$b$}           (C)
              (C)      edge               node{$a$}           (D);
\end{ltspic}
\caption{a very simple LTS}
\label{lts:ex2}
\end{table}
\begin{example}
Consider the LTS depicted in Table \ref{lts:ex2}.
In this case we have $s_0 \trans{a}$, since $s_0 \trans{a} s_1$. Moreover 
it holds $s_0 \trans{b}$, as $s_0 \trans{b} s_2$. It is also the case 
that $s_0 \trans{\;}$ for there exists an action $\alpha$ (either 
$a$ or $b$) such that $s \trans{\alpha}$. For state $s_0$\ we find 
that $\Succ{a, s_0} = \{s_1\}, \Succ{b, s_0} = \{s_2\}$, and thereby 
$\Succ{s_0} = \{s_1, s_2\}$. Finally, notice that it is possible 
to produce an infinite path rooted in $s_0$ whose form is
\[
s_0 \trans{\tau} s_0 \trans{\tau} \cdots \trans{\tau} s_0 \trans{\tau} \cdots
\]
so that $s_0 \Uparrow$.\\
If we repeat this procedure for state $s_2$ we now find that it is 
also the case that $s_2 \trans{a}$, as $s_2 \trans{a} s_3$; further 
we can compute $\Succ{a, s_2}$ to find out that such a set is 
exactly $\{s_3\}$. However, for state $s_2$\ there exists no state $s$
such that $s_2 \trans{b} s$. Indeed, $\Succ{b, s_2} = \emptyset$; in 
this case we infer that $s_2 \nottrans{b}$. Finally, since $s_2 \trans{a}$ 
we obtain that $s_2 \trans{\;}$. It is trivial to notice that $s_2 \Downarrow$, 
as it cannot perform any internal transition $\trans{\tau}$.\\
Finally, let us look at state $s_3$. It is easy to notice that both for 
actions $a$ and $b$ we have $s \nottrans{a}$\ and $s\nottrans{b}$. Therefore, 
since there is no action that such a state can perform, we conclude that 
$s_3 \nottrans{\;}$. For such a state we have in fact $\Succ{s_3} = \emptyset$. 
Again, it is the case that $s_3 \Downarrow$. All the states in the LTS of 
Table \ref{lts:ex2} have a finite number of derivatives, so that they are 
all finite branching.\qed
\end{example}
\begin{example}
 \begin{table}
   \centering
          \begin{ltspic}{2.0cm}
        
            \node[state]  (A)                                                    {$s$};
            \node[state]  (B)  [right of=A, draw=white, fill=white, text=black]  {$\vdots$};
            \node[state]  (C)  [above of=B]                                      {$s_2$};
            \node[state]  (D)  [above of=C]                                      {$s_1$};
            \node[state]  (E)  [below of=B]                                      {$s_{n}$};
            \node[state]  (F)  [below of=E]                                      {$s_{n}$};
            \node[state]  (G)  [below of=F, draw=white, fill=white, text=black]  {$\vdots$};
            

            \path  (A)  edge  [bend left]   node[right]{$\alpha_2$}      (C)
                        edge  [bend left]   node[left]{$\alpha_1$}       (D)
                        edge  [bend right]  node[right]{$\alpha_{n}$}    (E)
                        edge  [bend right]  node[right]{$\alpha_{n+1}$}  (F);
          \end{ltspic}
   \caption{LTS with a non finite branching state}
   \label{lts:nbf}
 \end{table}
Look at state $s$\ in picture \ref{lts:nbf}. The set of successors of such a state 
is $\{s_1, s_2, \cdots, s_n, s_{n+1}, \cdots\}$, which is countable. Therefore,
we have that such a state is not branching finite.\qed
\end{example}

When analysing the behaviour of a system by giving its description as a LTS, 
it is often the case that we are interested in those activities which can be detected 
by the external environment. This give rise to the standard notation for weak 
actions $\Trans{\alpha}$. Intuitively speaking, if a system performs an unobservable 
activity which causes it to evolve from a state $s$ to a state $s'$, and then it 
performs another unobservable ability which makes it evolve from $s'$ to $s''$, then 
the result of these two activities can still be considered as some activity that 
cannot be detected by the environment. Formally, we say that 
$s \Trans{\tau} s''$. This procedure applies to arbitrary long sequences of 
unobservable activities, so that we say that $s \Trans{\tau} s'$ whenever 
it is the case that $s \transarrow{\tau} s'$, where we recall that 
$\transarrow{\tau}$ is the reflexive transitive closure of $\trans{\tau}$.\\

Further, consider the case when a system performs an arbitrary sequence 
of unobservable activities; then it performs another activity, represented in 
a LTS by action $a$, which can be detected by the external environment, and 
finally it performs another arbitrary sequence of unobservable activities. 
Again, this can be considered as an unique activity of the system where the 
only visible action that has been performed is $a$. Formally, for a given 
LTS we say that $s \Trans{a} s'$\ if and only if there exist $s_1, s_2$ 
such that $s \Trans{\tau} s_1 \trans{\tau} s_2 \Trans{\tau} s'$.
\begin{example}
\begin{table}[h]
\centering
 \begin{ltspic}{1.5cm}
        \node[state]   (A)                       {$s_0$};
        \node[state]   (B)  [right of=A]         {$s_1$};
        \node[state]   (C)  [right of=B]         {$s_2$};
        \node[state]   (D)  [right of=C]         {$s_3$};
        \node[state]   (E)  [right of=D]         {$s_4$};
        
        \path (A)      edge               node{$\tau$}        (B)
              (B)      edge               node{$a$}           (C)
              (C)      edge               node{$\tau$}        (D)
              (D)      edge               node{$\tau$}        (E);
 
 \end{ltspic}
 \caption{Another simple LTS}
 \label{lts:ex3}
\end{table}
Look at the LTS depicted in Table \ref{lts:ex3}. Since $s_0 \trans{\tau} s_1$, we 
have that $s_0 \Trans{\tau} s_1$. Analogously, we obtain that $s_2 \Trans{\tau} s_4$, 
for $s_2 \trans{\tau} s_3 \trans{\tau} s_4$. Finally, since $s_1 \Trans{\tau} s_2 
\trans{a} s_2 \Trans{\tau} s_4$ we obtain $s_0 \Trans{\tau} s_4$. A similar 
procedure shows that $s_0 \Trans{\tau} s_3$\ also.\qed
\end{example}

When $s \Trans{\alpha} s'$\ we say that $s'$ is an 
$\alpha$-derivative of $s$.
The associated notation  $s\, \Trans{\alpha}$,  
$s \Longrightarrow$, $s \notTrans{\alpha}$\ 
and $s \notTrans{\;}$\ have the obvious definitions.\\

As we are dealing with systems which 
can communicate with the external environment, it is often the 
case that we want to analyse the behaviour of a system when it 
is put in composition with another one. If both of them are 
represented as LTSs, then we expect to model their composition 
as a LTS as well. Formally we can define a parallel composition 
operator as follows:
\begin{defi}[Parallel composition]
\label{def:pcomp}
Let $\mathcal{L}_1 = \langle S_1,\; Act^{1}_{\tau},\; 
\longrightarrow\rangle$,\\ $\mathcal{L}_2 = \langle S_2,\;
 Act_{\tau}^2,\; \longrightarrow \rangle$ be LTSs.
The parallel composition of $\mathcal{L}_1$\ and $\mathcal{L}_2$\
 is a LTS $\mathcal{L}_1 | \mathcal{L}_2 =\; 
\langle S_1 \times S_2,\; \{\tau\}, \longrightarrow \rangle$, where
$\longrightarrow$\ is defined by the following SOS rules:
\begin{center}
\begin{tabular}{ccc}
\begin{prooftree}
s \trans{\tau} s'
\justifies
s | t \trans{\tau} s' | t
\end{prooftree}
&
\begin{prooftree}
t \trans{\tau} t'
\justifies
s | t \trans{\tau} s | t'
\end{prooftree}
&
\begin{prooftree}
s \trans{a} s' \quad t \trans{a}_2 t'
\justifies
s | t \trans{\tau} s' | t'
\end{prooftree}
\end{tabular}
\end{center}
$s | t$\ is used as a conventional notation for $(s, t)$.\qed
\end{defi}

The first two rules models the possibility for each component of a LTS to
perform their internal actions independently from the other one. This is needed, 
as internal activities of a component cannot be detected by the other one.
The third rule corresponds to a synchronization between the two components 
upon performing the same action; such a synchronization will result in an
internal activity which cannot be detected by an external environment.\\

Notice that the parallel composition operator we introduced does not allow 
any external action for the composition of two LTSs. This is non standard 
with respect to other definitions of parallel composition that can be found 
in Concurrency Theory literature; however, this choice will allow a simple 
presentation of extensional testing, which is covered in Section \ref{sec:testing}.\\

\begin{example}
Consider again the vending machine whose LTS is depicted in Table \ref{lts:vm}. Suppose 
a customer wants to interact with the vending machine to obtain a coffee. The 
customer will then insert a coin into the vending machine, then he will press the 
coffee button. The LTS that models a customer is straightforward and is depicted 
in Table \ref{lts:cust}. We can then apply Definition \ref{def:pcomp} to obtain 
the LTS which models the interaction between the vending machine and the customer. 
The LTS for the new composed system is given in Table \ref{lts:comp}; there 
$w, s$ and $c$ are used as abbreviations for states wait, select and 
do coffee respectively.\qed
\end{example}

\begin{table}[h]
\centering
\begin{ltspic}{2.0cm}
  \node[state]            (A)                                       {$t_0$};
  \node[state]            (B)  [right of=A]                         {$t_1$};
  \node[state,accepting]  (C)  [right of=B]  {$t_2$};
                
  \path                   (A)  edge  node{coin}    (B)
                          (B)  edge  node{coffee}  (C);
  \end{ltspic}
 \caption{LTS for a customer of the vending machine}
 \label{lts:cust}
\end{table}
\begin{table}[h]
\centering
        \begin{ltspic}{2.0cm}
          
          \node[state]  (A)                {$w \lvert t_0$};
          \node[state]  (B)  [right of=A]  {$s \lvert t_1$};
          \node[state]  (C)  [right of=B]  {$c \lvert t_2$};
          \node[state]  (D)  [right of=C]  {$w \lvert t_2$};

          \path         (A)  edge          node{$\tau$}  (B)
                        (B)  edge          node{$\tau$}  (C)
                        (C)  edge          node{$\tau$}  (D);
        \end{ltspic}
 \caption{composition between the vending machine and the customer}
 \label{lts:comp}
\end{table}
\section{Formalising Properties: Recursive HML}
\label{sec:recursivehml}
The next topic we address concerns how to express properties of 
interest for an LTS. To this end, we need to define both a formal 
language for the formulae which will be used to express properties, 
and an interpretation function that defines the set of states 
of a LTS that satisfies a given formula.\\

The \textbf{Hennessy Milner Logic} (HML) \cite{hml} has proven to 
be a very expressive property language based on a minimal set of modalities to 
capture the actions a process can perform, and what the effects of performing such 
actions are. Here we use a variant in which the interpretation depends on
the weak actions of a LTS.

\begin{defi}[Syntax of \rechml]
Let $Var$\ be a countable set of variables.
The language \rechml is defined as the set of 
closed formulae generated by the following grammar:
\begin{eqnarray*}
\phi &\is& \ttt \barra \fff \barra X \barra \Acc A \barra \dmnd{\alpha}\phi \barra [\alpha]\phi \barra\\ 
&\barra& \phi_1 \vee \phi_2 \barra \phi_1 \wedge \phi_2 \barra \lfp{X}{\phi} \barra \gfp{X}{\phi}
\end{eqnarray*}
Here $X$\ is chosen from the countable set of variables $Var$.
The operators $\lfp X{\phi}$, $\gfp X {\phi}$ act as binders for variables and we have the
standard notions of free and bound variables, and associated binding sensitive
substitution of formulae for variables.\qed
\end{defi}

Let us recall the informal meaning of \rechml operators. A formula 
of the form $\dmnd \alpha \phi$\ expresses the need for a process to have an 
$\alpha$-derivative which satisfies formula $\phi$, while formula $[\alpha]\phi$\ 
expresses the need for all $\alpha$-derivatives (if any) of a converging process to satisfy formula 
$\phi$.\\
Formula $\Acc A$\ is defined when $A$\ is a finite subset of $Act$, and is satisfied exactly 
by those converging processes for which each $\tau$\ derivative 
has at least an $a$-derivative for some $a \in Act$.
The formulae $\lfp X \phi$\ and $\gfp X \phi$ allow 
the description of recursive properties, respectively being
the least and largest solution of the equation $X = \phi$\ 
over the powerset domain of the state space.\\

Formally, given a LTS $\langle S, Act_{\tau}, \longrightarrow \rangle$, 
we interpret each (closed) formula
as a subset of $2^S$. The set $2^s$ is a complete lattice and the
semantics  is determined by interpreting each operator in the language as 
a monotonic operator over this complete lattice. The binary operators 
$\vee,\;\wedge$ are interpreted as set theoretic union and intersection
respectively while the unary operators are interpreted as follows:
\begin{align*}
  \dmnd{\cdot\alpha\cdot}P = &\;\setof{s}
            { s\Trans{\alpha} s' \mbox{ for some } s' \in P}\\
 \bbox{\cdot\alpha\cdot}P =&\; \setof{s}
        {s\Downarrow, \text{ and } s\Trans{\alpha} s' \mbox{ implies } s' \in P}
\end{align*}
where $P$ ranges over subsets of $2^S$.\\

Open formulae in \rechml can be interpreted by specifying, 
for each variable $X$, the set of states for which 
the atomic formula $X$\ is satisfied.
Such a mapping from $Var$\ to $2^S$\ is called environment.
Let $\mbox{Env}$\ be the set of environments,
mappings $\rho: \mbox{Var} \rightarrow 2^S$.  A formula $\phi$\ of
$\rechml$ will be interpreted as a function $\sem{\phi}: \env \rightarrow 2^S$. 
We will use the standard notation $\rho[X \mapsto P]$\ to refer to the 
environment $\rho'$\ such that $\rho'(X) = P$\ and $\rho'(Y) = \rho(Y)$\ for 
all variables $Y$\ such that $X \neq Y$.\\
The definition of the interpretation $\sem{\cdot}$\ is given in Table
\ref{tab:interpr}.\\

The interpretation of a formula $\lfp X \phi$\ in the  
environment $\rho$ is defined as the smallest pre fixpoint 
of a monotonic functional 
$\mathcal{F}_{\phi}^{\rho}: 2^S \rightarrow 2^S$ such that\\
$\mathcal{F}_{\phi}^{\rho}(P) = \sem{\phi}\rho[X \mapsto P]$. 
When dealing with closed formulae, Tarski's fixed point Theorem 
\cite{becik} ensures that such a set coincides with the least 
solution of the equation $X = \phi$, as described in our informal 
explanation of the meaning of \rechml formulae. A similar argument 
applies to formulae of the form $\gfp X \phi$, whose interpretation 
in an environment $\rho$\ is defined as the greatest post fixpoint 
of the monotonic functional considered above. We defer the proof 
of Tarski's fixed point Theorem until the end of the section, for it is first 
necessary to prove some simple properties enjoyed by language 
\rechml.\\

When referring to the interpretation of a closed formula $\phi \in
\rechml$, we will omit the environment application, and  sometimes 
use the standard notation $p \models \phi$ for $p \in \sem{\phi}$.
\begin{example}
Consider a LTS with a single state $p$\ and a unique transition $p \trans{b} p$.
Let us analyse whether or not state $s$ satisfies the properties 
$\lfp {X} {\bbox a \fff \wedge \bbox b X}$ and
$\gfp {X} {\bbox a \fff \wedge \bbox b X}$.\\
To do this, we apply directly the interpretation of \rechml formulae 
given in Table \ref{tab:interpr}.
For the first formula, consider the empty set $\emptyset$. 
It is simple to show that\\
$\sem{\bbox a \fff \wedge \bbox b X}[X \mapsto \emptyset]
\subseteq \emptyset$. The calculation is carried out below:
\begin{eqnarray*}
 \sem{\bbox a \fff \wedge \bbox b X}[X \mapsto \emptyset] &=& 
\sem{\bbox a \fff}[X \mapsto \emptyset] \cap \sem{\bbox b X}[X \mapsto \emptyset]\\
&=& \bbox{\cdot a \cdot}(\sem{\fff}[X \mapsto \emptyset]) \cap \bbox{\cdot b \cdot}\sem{X}[X \mapsto \emptyset]\\
&=& \bbox{\cdot a \cdot}\emptyset \cap \bbox{\cdot b \cdot} \emptyset\\
&=& \{s \in S | s \Downarrow, s \notTrans{a}\} \cap \{ s \in S | s \Downarrow, s \notTrans{b}\}\\
&=& \{p\} \cap \emptyset\; =\; \emptyset
\end{eqnarray*}
Therefore $\emptyset \in \{ P \;|\; \sem{\phi}\rho[X \mapsto P] \subseteq P\}$, or 
equivalently $\sem{\lfp X {\bbox a \fff \wedge \bbox b X}} \subseteq \emptyset$. As 
$\emptyset$ is the least element of the complete lattice $\{\emptyset, \{p\}\}$ we have 
that the inclusion above is actually an equality. Thus $p \not\models 
\lfp X {\bbox a \fff \wedge \bbox b X}$.\\
Next consider formula $\gfp {X} {\bbox a \fff \wedge \bbox b X}$. In this case we show that 
$\{p\} \subseteq \sem{\bbox a \fff \wedge \bbox b X}[X \mapsto \{p\}]$, 
and therefore (being $\{p\}$ the greatest element in the complete lattice 
$\{\emptyset, \{p\}\}$) we have that $\sem{\gfp {X} {\bbox a \fff \wedge \bbox b X}} 
= \{p\}$, i.e. $p \models \gfp {X} {\bbox a \fff \wedge \bbox b X}$. Again, 
the whole calculation is carried out below.
\begin{eqnarray*}
  \sem{\bbox a \fff \wedge \bbox b X}[X \mapsto \{p\}] &=&
  \bbox{\cdot a \cdot} \emptyset \cap \bbox{\cdot b \cdot}\{p\}\\
  &=& \{s \in S \,|\, s \Downarrow, s \notTrans{a}\} \cap \{s \in S \,|\, s \Downarrow, \forall s': s \Trans{b} s'.\, s'\in \{p\}\;\}\\
  &=& \{p\} \cap \{p\}\\
  &=&\{p\}
\end{eqnarray*}\qed

\end{example}
\begin{table}[t]%[ht]
\begin{eqnarray*}
\sem{\ttt}\rho &\triangleq& S\\
\sem{\fff}\rho &\triangleq& \emptyset\\
\sem{X}\rho &\triangleq& \rho(X)\\
\sem{\Acc A}\rho &\triangleq& \{ s | s \Downarrow, s \Trans{\tau} s' \mbox{ implies } \exists a \in A.s' \Trans{a} \}\\
\sem{\dmnd{\alpha} \phi}\rho &\triangleq& \dmnd{\cdot\alpha\cdot} (\sem{\phi}\rho)\\
\sem{\bbox{\alpha} \phi}\rho &\triangleq& \bbox{\cdot\alpha\cdot} (\sem{\phi}\rho)\\
\sem{\phi_1 \vee \phi_2}\rho &\triangleq& \sem{\phi_1}\rho \cup \sem{\phi_2}\rho\\
\sem{\phi_1 \wedge \phi_2} \rho &\triangleq& \sem{\phi_1}\rho \cap \sem{\phi_2}\rho\\
\sem{\lfp X \phi}\rho &\triangleq& \bigcap \{ P \;|\; \sem{\phi}\rho[X \mapsto P] \subseteq P\}\\
\sem{\gfp X \phi}\rho &\triangleq& \bigcup \{ P \;|\; P \subseteq \sem{\phi}\rho[X \mapsto P]\}
\end{eqnarray*}
\caption{Interpretation of \rechml}
\label{tab:interpr}
\end{table}
Our version of HML is non-standard, as we have added a convergence requirement for 
the interpretation of the box operator $\bbox{\alpha}$.
The intuition here is that, as in the \emph{failures model} of CSP \cite{csp}, divergence represents
\emph{underdefinedness}.  So if a process does not converge all of its
capabilities have not yet been determined; therefore one can not quantify over all
of its $\alpha$ derivatives, as the totality of this set has not yet been determined.\\

Further, the operator $\Acc\cdot$\ is also non-standard. It has been introduced 
for the sake of simplicity, as it will be useful later; in fact it does not add any 
expressive power to the logic, since for each finite set $A \subseteq Act$\ the formula 
$\Acc A$\ is logically equivalent to 
\[
 [\tau](\bigvee_{a \in A} \dmnd a \ttt).
\]

As usual, we will write $\phi\{\psi/X\}$\ to denote the formula $\phi$\ where all 
the free occurrences of the variable $X$\ are replaced with $\psi$. 
We will use the congruence symbol $\equiv$\ for syntactic equivalence.\\

Next, we show some useful properties which relate syntactic substitution 
in \rechml formulae with environments. These lemmas are particularly 
useful when dealing with recursive formula of the form $\lfp X \phi$\ 
and $\gfp X \phi$.
\begin{prop}\qquad
\label{prop:syntlemma}
\begin{enumerate}[(i)]
\item Let $\phi, \psi$\ be formulae such that $Y$\ does not occur 
free in $\psi$, let $\rho$\ be an environment and $P \subseteq 2^S$. 
Then
\[
\sem{\phi}\rho[X \mapsto \sem{\psi} \rho][Y \mapsto P] = 
\sem{\phi}\rho[Y \mapsto P][X \mapsto \sem{\psi}\rho[Y \mapsto P]\,]
\]
\label{prop:substlemma}
\item Let $\phi, \psi \in \rechml$, and $\rho$\ be an environment: then 
\[
\sem{\phi\{\psi/X\}}\rho = \sem{\phi}\rho[X \mapsto \sem{\psi}\rho].
\]
\label{prop:envlemma}
\end{enumerate}
\end{prop}
\begin{proof}
Both proofs can be performed by induction on the structure of the 
formula $\phi$. For (\ref{prop:substlemma}) three different sub 
cases should be handled when dealing with the case $\phi \equiv Z$ 
(namely $Z \equiv X;\; Z\equiv Y$\ and $Z \not\equiv X, Z \not\equiv Y$).\\ 
For (\ref{prop:envlemma}) we will only outline the details for the case 
$\phi \equiv \lfp Y {\phi_1}$: 
in this case we need to prove 
\[
 \sem{\lfp Y {\phi_1}\{\psi/X\}}\rho = \sem{\lfp Y {\phi_1}}\rho[X \mapsto \sem{\psi}\rho].
\]
By $\alpha$-renaming we can choose $Y$ to be a fresh variable, that is $Y \not\equiv X$ and 
$Y$ does not appear free in $\psi$.\\
Since $Y \not\equiv X$ we have that  $\lfp Y {\phi_1}\{\psi/X\} 
\equiv \lfp Y {\phi_1\{\psi/X\}}$. By inductive hypothesis we have
\[
\sem{\phi_1\{\psi/X\}}\rho = \sem{\phi_1}\rho[X \mapsto \sem{\psi}\rho]
\]
and, therefore,
\begin{eqnarray*}
\sem{\lfp Y {\phi_1\{\psi/X\}}}\rho &=& 
\bigcap \{P : \sem{\phi_1\{\psi/X\}}\rho[Y \mapsto P] \subseteq P\}\\
&\iheq& \bigcap \{P : \sem{\phi_1}\rho[Y\mapsto P][X 
\mapsto \sem{\psi}\rho[Y\mapsto P]] \subseteq P\}\\
&\stackrel{(\scriptstyle{\ref{prop:substlemma}})}{=}& 
\bigcap \{P : \sem{\phi_1}\rho[X\mapsto \sem{\psi}\rho][Y \mapsto P] 
\subseteq P\}\\
&=& \sem{\lfp Y {\phi_1}}\rho[X \mapsto \sem{\psi}\rho],
\end{eqnarray*}
where \ref{prop:substlemma} can be applied as $Y$ does not appear free in $\psi$.
\end{proof}

The language \rechml can be extended conservatively by adding
simultaneous fixpoints, leading to the language $\rechml^+$.  Given a sequence of variables
$(\overline{X})$ of length $n > 0$, and a sequence of formulae
$\overline{\phi}$\ of the same length, we allow the formula $min_i(\overline{X},
\overline{\phi})$ for $1 \leq i \leq n$, where the only variables allowed to
occur in each $\phi_i$ are those in $(\overline{X})$. This formula
will be interpreted as the $i$-th projection of the simultaneous
fixpoint formula.
\begin{defi}[Interpretation of simultaneous fixpoints]
  Let $\overline{X}$\ and $\overline{\phi}$\ respectively be sequences
  of variables and formulae of length $n$.
\begin{eqnarray*}
  \sem{\lfp {\overline{X}}{\overline{\phi}}}\rho &\triangleq& \bigcap 
 \{ \overline{P} \;|\; \sem{\phi_i}\rho[\overline{X}\mapsto\overline{P}]\subseteq 
  P_i \; \forall 1 \leq i \leq n\}\\
  \sem{\slfp i {\overline{X}}{\overline{\phi}}}\rho 
  &\triangleq& \pi_i(\sem{\lfp{\overline{X}}{\overline{\phi}}}\rho)
\end{eqnarray*}
where $\pi_i$\ is the $i$-th projection operator, and intersection over 
vectors of sets is defined to be the point wise intersection:
\[
\langle P_1, \cdots, P_n \rangle \cap \langle Q_1, \cdots, Q_n\rangle = \langle P_1 \cap Q_1, \cdots, P_n \cap Q_n\rangle
\]
\qed
\end{defi}

Intuitively, an interpretation $\sem{\lfp {\overline{X}} {\overline{\phi}}}$, where 
$\overline{X} = \langle X_1,\cdots,X_n\rangle$\ and 
$\overline{\phi} = \langle \phi_1, \cdots, \phi_n \rangle$, is the least solution 
(over the set of vectors of length $n$ over $2^S$) of the equation system whose form is
\begin{eqnarray*}
X_1 &=& \phi_1\\
&\vdots&\\
X_n &=& \phi_n.
\end{eqnarray*}

If the formula $\lfp {\overline{X}} {\overline{\phi}}$ is open, then 
its interpretation in environment $\rho$, $\sem{\lfp {\overline{X}} {\overline{\phi}}}\rho$, 
can be thought as the least solution of the system of equations above extended, 
for every variable $Y$ which appears free in the formula, 
with an equation of the form $Y = \rho(Y)$.\\
The interpretation of a formula of the form 
$\slfp i {\overline{X}} {\overline{\phi}}$ in environment 
$\rho$ is the $i$-th projection of the vector obtained as the 
least solution of the system of equations above; that is 
\[
\sem{\slfp i {\overline{X}} {\overline{\phi}}}\rho = 
\pi_i(\,\sem{\lfp {\overline{X}} {\overline{\phi}}}\rho\,). 
\]
Let $\overline{P} = \langle P_1, 
\cdots, P_n\rangle$\ be the least solution for a system of equations as above. 
The following theorem states that, for each index $i$, there exists an 
equation $X = \psi$\ such that its least solution coincides with $P_i$.

\begin{thm}[Bek\'ic]
\label{thm:becik}\qquad
\begin{enumerate}[(i)]
\item
Let $\overline{X} = \langle X_1,\; X_2 \rangle$\ and 
$\overline{\phi} = \langle \phi_1,\; \phi_2\rangle$. Then, 
for any environment $\rho$, 
\begin{eqnarray*}
\sem{min_1(\overline{X}, \; \overline{\phi})}\rho &=& 
\sem{\lfp {X_1} {\phi_1\{ \lfp{X_2}{\phi_2}/X_2\}}}\rho\\
\sem{min_2(\overline{X}, \; \overline{\phi})}\rho &=& 
\sem{\lfp {X_2} {\phi_2\{ \lfp{X_1}{\phi_1}/X_1\}}}\rho
\end{eqnarray*}
\label{prop:becik2}
\item For each formula $\phi \in \rechml^+$\ there is a formula 
$\psi \in \rechml$\ such that $\sem \phi = \sem \psi$.
\end{enumerate}
\end{thm}
\begin{proof}
\begin{enumerate}[(i)]
\item By straightforward calculations: we will show only the 
case for $\slfp 1 {\overline{X}} {\overline{\phi}}$, as the other one is obtained by symmetry:
\begin{eqnarray*}
&\sem{\lfp {X_1} {\phi_1\{\lfp {X_2}{\phi_2}/X_2\}}}\rho &=\\
&\bigcap \{P:\ \sem{\phi_1\{\lfp {X_2}{\phi_2}/X_2\}}\rho[X \mapsto P] 
\subseteq P\}&\stackrel{\mbox{\ref{prop:syntlemma}}}{=}\\
&\bigcap\{P: \sem{\phi_1}\rho[X_1 \mapsto P]
[X_2 \mapsto \sem{\lfp {X_2}{\phi_2}}\rho[X_1 \mapsto P]] \subseteq P\}&=\\
&\bigcap \{P: \sem{\phi_1}\rho[X_1 \mapsto P]
[X_2 \mapsto \bigcap Q: \sem{\phi_2}\rho[X_1 \mapsto P][X_2 \mapsto Q] 
\subseteq Q\}] \subseteq P\}&=\\
&\pi_1 (\bigcap \{ \langle P, Q \rangle: \sem{\phi_2}\rho[X_1 \mapsto P]
[X_2 \mapsto Q] \subseteq Q, \sem{\phi_1}\rho[X_1 \mapsto P]
[X_2 \mapsto Q] \subseteq P\})&
\end{eqnarray*}
\item Let $n \geq 2$, and let $\phi = \slfp i {\overline{X}} {\overline{\phi}}$\ be a 
(possibly open) simultaneous fixpoint formula with 
$\overline{X} = \langle X_1, \cdots, X_n\rangle$ and 
$\overline{\phi} = \langle \phi_1,\cdots,\phi_n\rangle$.\\ 
Without loss of generality, assume $i < n$, as if $i = n$ it is possible to 
order the vectors of variables and formulae in a consistent way.\\
Consider the formula
\[
 \psi = \slfp i {\langle X_1, \cdots, X_{n-1}\rangle} 
{\langle \phi_1\{\lfp {\phi_{n}} {X_n}/X_n\}, 
\cdots, \phi_{n-1}\{\lfp{\phi_n}{X_n}/X_n\}\rangle},
\]
which is a simultaneous fixpoint formula defined 
over a vector of variables of length $n-1$. In the 
same style of \ref{prop:becik2} it is possible 
to show that, for any environment $\rho$, 
it holds $\sem{\phi}\rho = \sem{\psi}\rho$. Further, 
it is straightforward to notice that the 
free variables of $\phi$ are the same of $\psi$.
We can therefore iterate this procedure 
until obtaining a fixpoint formula 
of the form $\lfp {X} {\varphi}$; if the 
original formula $\phi$ is closed, and therefore 
included in $\rechml^+$, then $\lfp {X} {\varphi}$ 
will also be closed, so that it will belong to 
\rechml.
\end{enumerate}
\end{proof}
The properties of these simultaneous least fixpoints which we will require are
summarised in the following theorem:
\begin{thm}[Fixpoint properties]\qquad
\label{thm:fixpointprop}
  \begin{enumerate}[(i)]
  \item 
\label{thm:minfixprop}
Let $(\overline{P})$\ be a vector of sets from $2^S$\ satisfying
$
\sem{\phi_i} \rho[\overline{X} \mapsto \overline{P}] \subseteq P_i
$ for every $1 \leq i \leq n$.
Then 
$
\sem{min_i(\overline{X}, \overline{\phi})} \rho \subseteq P_i
$
\item
\label{thm:fixprop}
Given an environment $\rho$, let $\rhomin$\ be the environment satisfying
$
\rhomin(X_i) = \sem{min_i(\overline{X}, \overline{\phi})} \rho.
$
Then
$
\sem{min_i(\overline{X}, \overline{\phi})}\rho = \sem{\phi_i} \rhomin.
$
 \end{enumerate}
\end{thm}
\begin{proof}\qquad
\begin{enumerate}[(i)]
\item This follows from the definition of 
$\sem{\lfp {\overline{X}} {\overline{\phi}}}$. Let $\overline{P}$ 
be a vector of sets from $2^S$\ such that\\
$\sem{\phi_i} \rho[\overline{X} \mapsto \overline{P}] \subseteq P_i$. 
Then
\begin{eqnarray*}
\sem{\lfp {\overline{X}} {\overline{\phi}}}\rho &=& \bigcap 
\{ \overline{Q} \;|\; \sem{\phi_i}\rho[\overline{X}\mapsto\overline{Q}] 
\subseteq Q_i,\; 1\leq i \leq n\}\\
&=& \overline{P} \cap \bigcap \{ \overline{Q} \;|\; 
\sem{\phi_i}\rho[\overline{X}\mapsto\overline{Q}] \subseteq Q_i,
\; 1\leq i \leq n\}
\end{eqnarray*}
we have therefore that
\[
\sem{\slfp i {\overline{X}} {\overline{\phi}}} = 
P_i \cap  \pi_i (\bigcap \{ \overline{Q} \;|\; 
\sem{\phi_i}\rho[\overline{X}\mapsto\overline{Q}] 
\subseteq Q_i,\; 1\leq i \leq n\}) \subseteq Q_i
\]
\item Let $1 \leq i \leq n$. By the definition of 
$\sem{\slfp i {\overline{X}} {\overline{\phi}}}$\ 
it holds 
\begin{eqnarray*}
\sem{\phi_i}\rhomin&=& \sem{\phi_i}\rho[\overline{X} 
\mapsto \sem{\lfp {\overline{X}} {\overline{\phi}}}\rho ]\\
&\subseteq& \sem{\slfp i {\overline{X}} {\overline{\phi}}}\rho
\end{eqnarray*}

The inclusion shows that $\sem{\phi_i}\rhomin \subseteq 
\sem{\slfp i {\overline{X}} {\overline{\phi}}}\rho$. Moreover, 
since $\sem{\phi_i}\rhomin \subseteq \rhomin$, 
the converse inclusion follows from (\ref{thm:minfixprop}).
\end{enumerate}
\end{proof}

Theorem \ref{thm:fixpointprop} and Proposition \ref{prop:syntlemma} 
lead to this useful Corollary which enables us to reason about recursive 
properties using syntactic substitutions.
\begin{corollary}
\label{cor:minsubst}
Let $\phi \equiv \lfp X \psi$ be a formula in \rechml. Then $\phi$\ is 
logically equivalent to $\psi\{\lfp X \psi/X\}$, that is 
$\sem{\phi} = \sem{\psi\{\lfp X \psi/X\}}$.
\end{corollary}
\begin{proof}
Given a closed formula $\phi \equiv \lfp X \psi$\ and an arbitrary environment $\rho$, we have\\
$\sem{\lfp X \psi}\rho = \sem {\psi}\rho[X \mapsto \sem{\lfp X \psi}]$\ by an application of Theorem 
\ref{thm:fixpointprop}(\ref{thm:fixprop}). Further, $\sem{\psi}\rho[X \mapsto \sem{\lfp X \psi}] 
= \sem{\psi\{\lfp X \psi/X\}}$\ by Proposition \ref{prop:syntlemma}(\ref{prop:envlemma}).
\end{proof}

We conclude this section by giving a proof of Tarski's Fixpoint Theorem
for \rechml; we consider only formulae of the form $\lfp X \phi$, since 
we will not deal with greatest fixpoints in what follows. The proof can 
be easily extended to prove that, given a vector of variables $\overline{X}$ 
of length $n$, and a vector of formulae of length $\overline{\varphi}$ of 
the same length, then 
formula $\lfp{\overline{X}}{\overline{\phi}}$\ is the least solution 
of the system of equations $X_i = \phi_i$ for all $1 \leq i \leq n$.
\begin{thm}[\cite{becik}]
\label{thm:tarski}
Let $\phi \equiv \lfp X \psi$\ a formula in \rechml. Then $\sem{\phi}$\ is the least solution of the equation
\[
X = \psi
\]
\end{thm}
\begin{proof}

Corollary \ref{cor:minsubst}\ ensures that $\sem{\phi}$\ is a solution 
of the equation $X = \psi$. Moreover, let $P$\ be a solution 
to such an equation; we have
\[
\sem{\psi}[X \mapsto P] = P,
\]

therefore $P \in \{ P \;|\; \sem{\psi}[X \mapsto P] \subseteq P\}$. 
Now it is trivial to notice $\sem{\lfp X \psi} \subseteq P$.
\end{proof}

\section{Testing Concurrent Systems}
\label{sec:testing}
Another way to analyse the behaviour of a process is given by
testing.
Testing a process can be thought as an experiment in which another
process, called a test, detects the actions performed by such a process, reacting to them 
by allowing or forbidding the execution of a subset of observables. After 
observing the behaviour of the process, the test could decree that it satisfied some property 
for which it was designed for, thus reporting the success of the experiment through the execution 
of a special action $\omega$.\\

Formally speaking, a  test is a state from a LTS 
$\mathcal{T} = \langle T, Act^\omega_{\tau}, \longrightarrow \rangle$, 
where $ Act^\omega_{\tau} = Act_{\tau} \cup \{\omega\}$ and $\omega$ 
is an action not contained in $Act_{\tau}$. 

Given a LTS of processes $\mathcal{L} = \langle S, Act_{\tau}, \longrightarrow \rangle$, an experiment
consists of a pair $p \;|\; t$ from the  product LTS 
$(\mathcal{L}\barra\mathcal{T})$. We refer to a maximal path
of $p \;|\; t$
\begin{align*}
  p \;|\; t \trans{\tau} p_1 \;|\; t_1 \trans{\tau} \ldots \ldots 
     \trans{\tau} p_k \;|\; t_k \trans{\tau} \ldots
\end{align*}
as a \emph{computation}; it may be finite or infinite. It is successful if there 
exists some $n \geq 0$ such that $t_n \trans{\omega}$. 
It is important to notice here that a computation is successful it contains a configuration 
in which the test component can perform a $\omega$\ action; however, it is not required that 
such an action has to be actually executed.\\ 
As only $\tau$-actions can be performed in a computation, as well as in a computation prefixes, 
henceforth we will avoid to use the  symbol $\tau$ in computations.\\
Computations and successful computations lead to the definition of two well known \textit{testing relations}, \cite{dhn}:
\begin{defi}[May Satisfy, Must Satisfy] Assuming a LTS of processes and a LTS of tests, 
let $s$  and $t$ be a state and a test from such LTSs, respectively. We say
\begin{enumerate}[(a)]
\item $s \maysatisfy t$ if there exists a successful computation for the experiment 
$s \;|\; t$.
\item $s \mustsatisfy t$ if each computation of the experiment $s | t$\ is successful.\qed
\end{enumerate}
\end{defi}

Processes can now be compared in terms of the set of test that they may/must pass.\\
Before continuing our discussion about testing, let us illustrate the ideas behind 
testing relations with some useful example.
\begin{table}[h]
\centering
  \begin{minipage}{0.4\textwidth}
        \begin{ltspic}{2.0cm}
          \node[state]             (A)                                       {$s$};
          \node[state]             (B)  [above right of=A]                   {$s_1$};
          \node[state]             (C)  [below right of=A]                   {$s_2$};
          \node[state]             (D)  [right of=C]                         {$s_3$};
          \node[state]             (I)  [right of=D]                         {$s_4$};
          
          \path         (A)  edge                node{$b$}     (B)
                             edge                node{$b$}     (C)
                        (C)  edge                node{$c$}     (D)
                        (D)  edge                node{$a$}     (I);
        \end{ltspic}
      \caption{The tested LTS}
      \label{lts:tested}
  \end{minipage}
  \hspace{0.1\textwidth}
  \begin{minipage}{0.4\textwidth}
        \begin{ltspic}{2.0cm}
          \node[state]             (F)                                       {$t$};
          \node[state]             (E)  [left of=F]                          {$t_1$};
          \node[state]             (G)  [right of=F]                         {$t_2$};
          \node[state, accepting]  (H)  [below of=F, accepting where=below]  {$t_3$};

          \path         (E)  edge  [bend left]   node        {$\tau$}  (F)
                        (F)  edge                node        {$b$}     (E)
                             edge                node[swap]  {$c$}     (G)
                             edge                node        {$a$}     (H)
                        (G)  edge  [bend right]  node[swap]  {$\tau$}  (F);
        \end{ltspic}
      \caption{The test}
      \label{lts:test2}
   \end{minipage}
\end{table}

\begin{example}
Consider the process LTS in Table \ref{lts:tested} and the test LTS in 
Table \ref{lts:test2}. We can build the experiment $s \;\lvert\; t$\ 
to analyse whether the statements
\begin{itemize}
 \item $s \maysatisfy t$\ and 
 \item $s \mustsatisfy t$
\end{itemize}
hold. For the first one, we consider the computation
\[
 s \;\lvert\; t \shortrightarrow s_2 \;\lvert\; t_1 \shortrightarrow 
s_2 \;\lvert\; t \shortrightarrow s_3 \;\lvert\; t_2 \shortrightarrow 
s_3 \;\lvert\; t \shortrightarrow s_4 \;\lvert\; t_3.
\]

As $t_3\trans{\omega}$ we can conclude that this computation is 
successful, and hence $s \maysatisfy t$.
On the other hand, we can consider the path
\[
 s \;\lvert\; t \shortrightarrow s_1 \;\lvert\; t_1 \shortrightarrow 
 s_1 \;\lvert\; t.
\]
Such a path is maximal, and therefore it is also a computation. 
As there is no configuration in such a computation for which 
the test component can perform an $\omega$ action, we can 
conclude that it is not the case that $s \mustsatisfy t$.\qed
\end{example}

Later in the paper we will use a specific LTS of tests, whose states are all
the closed terms generated by the grammar
\begin{equation}
t \is 0 \barra \alpha.t \barra \omega.0 \barra  X \barra t_1 + t_2 \barra \mu X.t \; .
\label{eq:tests}
\end{equation}
Again in this language  $X$\ is bound in $\mu X.t$, and  the test $t\{t'/X\}$ 
denotes the test $t$ in which  each free occurrence of $X$ is replaced by $t'$.
The transition relation  defined by the following rules:\footnote{The 
rules use an abuse of notation, by considering $\alpha$\ as an action from 
$Act_{\tau} \cup {\omega}$\ rather than from $Act_{\tau}$.}
%\begin{center}
\begin{displaymath}
\begin{tabular}{llll}
\begin{prooftree}
\;
\justifies
\alpha.t \trans{\alpha} t
\end{prooftree}
&\qquad
\begin{prooftree}
t_1 \trans{\alpha} t_1'
\justifies
t_1 + t_2 \trans{\alpha} t_1'
\end{prooftree}
&\qquad
\begin{prooftree}
t_2 \trans{\alpha} t_2'
\justifies
t_1 + t_2 \trans{\alpha} t_2'
\end{prooftree}
%\\&&\\
&\qquad
\begin{prooftree}
\;
\justifies
\mu X.t \trans{\tau} t\{(\mu X.t)/X\}
\end{prooftree} %&\\&&
\end{tabular}
%\end{center}
\end{displaymath}

The last rule states that a test of the form $\mu X.t$\ can always perform a 
$\tau$-action before evolving in the test $t\{\mu X.t/X\}$. Further, since 
the transition relation is the smallest relation defined 
by the inference rule above, it is also the case that this is the only 
action that a recursive test can perform.\\
This treatment of recursive processes will allow us to prove properties 
of paths of recursive tests and experiments by performing an induction on their length.

Further, the following properties hold for a test $t$ in grammar \eqref{eq:tests}:
\begin{prop}
\label{prop:Tbf}
Let $\mathcal{T} = \langle T, Act_{\tau}, \longrightarrow \rangle$\ be the LTS generated by a state $t$\ in grammar \eqref{eq:tests}: then
\begin{enumerate}[(i)]
\item $\mathcal{T}$ is finite branching.
\label{prop:branfin}
\item $\mathcal{T}$ is finite state.
\end{enumerate}
\end{prop}
\begin{proof} We prove the two statements separately.
\begin{enumerate}[(i)]
\item First, notice that every time a test $t$ in grammar \eqref{eq:tests} 
performs a transition $t \trans{\alpha} t'$, then $t'$ is itself a 
closed term of such a grammar.\\

Further, each closed term of grammar \ref{eq:tests}\ can be represented as
\[
\sum_{i \in I} t_i
\]

where $I$\ is finite and each $t_i$\ is either in the form 
$0$, $\alpha.t'$\ or $\mu X.t'$. Then for each $i \in I$\ the number of 
outgoing transitions $n(t_i)$\ of $t_i$\ is at most one: we have therefore
\[
n(t) \leq \sum_{i \in I} n(t_i) \leq |I|
\]

The above argument applies to all states of the generated LTS: hence $\mathcal{T}$\ is finite branching.

\item A standard proof of this Proposition can be obtained 
by converting each test into a \textbf{Nondeterministic Finite state Tree Automata} 
\cite{regulartrees}. 
\end{enumerate}
\end{proof}

Henceforth we will always make the assumption that the LTS of tests 
we consider is branching finite. Further, if also the LTS of processes 
is also assumed to contain only branching finite states, then the induced 
LTS of experiments is branching finite as well. It is also ensured that, 
given an experiment $s \;\lvert\;t$ in such a LTS and such that 
$s \mustsatisfy t$, then the maximal length of a successful 
computation is well defined. To prove this result 
we will need the following Lemma, which is a variation of 
Konig's Lemma \cite{boolos} for directed graphs.
\begin{lem}[Konig's Lemma for directed graphs]
 \label{lem:konig}
  Let $G$\ be a directed graph whose set of vertices is countable. 
  Let a root of $G$ be any node with no incoming edge. Also, assume 
  that $G$ satisfies the following hypothesis:
  \begin{itemize}
   \item $G$ has finitely many roots,
   \item each node of $G$ has finite degree,
   \item each node in $G$ is reachable from some root in $G$.
  \end{itemize}
  Then there is an infinite path in $G$ starting from some root.
\end{lem}
\begin{proof}
 See \cite{ioautomata}, Lemma 2.3.
\end{proof}
\begin{thm}
\label{thm:bfexp} 
Let $S,T$ be finite branching LTSs of processes and tests respectively.\\
Let $s,t$ be two states in such LTSs, respectively. Then if 
$s \mustsatisfy t$ the maximal length of a successful computation 
$|s,t|$ is well defined.
\end{thm}
\begin{proof}
Let $\mathcal{E} = \langle E, \{\tau\}, \rightarrow \rangle$ be 
a finite branching LTS of experiments.
For each $e \in E$ we define its \emph{Computation Tree} $T_e$ as 
the smallest tree whose nodes are (not necessarily all the) 
elements of $E*$, and whose 
edges of a node $e_1\cdots e_n$ are defined as follows:
follows:
\begin{itemize}
 \item if $e_n$ has the form $s\;\lvert\;t$, with $t\trans{\omega}$, 
then node $e_1\cdots e_n$ has no children,
 \item otherwise, for each $e_{n+1}$ such that $e_n \trans{\tau} e_{n+1}$, 
 there is an edge from $e_1\cdots e_n$ to $e_1\cdots e_n\cdot e_{n+1}$.
\end{itemize}
Intuitively speaking, each path of $T_e$ rooted in represents a computation of the 
experiment $e$. A more formal definition of $T_e$ can be given as a function 
of recursive type $\mathcal{T}: N \rightarrow \mathcal{T}$ (see \cite{courcelle} for 
details).\\

Suppose now $s,t$ are chosen in finite branching LTSs of processes and tests, 
respectively. Suppose also $s \mustsatisfy t$. It is straightforward to 
prove that the LTS of experiments 
generated by $s \;\lvert\;t$ is also finite branching. Since $s \mustsatisfy t$, 
it is the case that all leaves in $T_{s\;\lvert\;t}$ represent successful 
computations. In order to prove that the maximal length of a successful 
computation $|s,t|$ is well defined, we distinguish two different cases:
\begin{enumerate}[(i)]
 \item the number of nodes in $T_{s\;\lvert\;t}$ is finite. In this case 
each path between $s\;\lvert\;t$ and a leaf in $T_{s\;\lvert\;t}$ has 
finite length, bounded by the number of nodes in the tree itself; 
since every path is associated with a successful computation, it follows 
that $|s,t|$ is bounded by the number of nodes in $T_{s\;\lvert\;t}$ 
and therefore is well defined,
\item $T_{s\;\lvert\;t}$ has infinite nodes. Since the LTS generated by 
$s\;\lvert\;t$ is finite branching, we have that the degree of each node 
in the computation tree above is finite. Thus, by an application of 
Lemma \ref{lem:konig}, we have that $T_{s\;\lvert\;t}$ contains 
an infinite path starting from the unique root $s\;\lvert\;t$ of such 
a tree; such a path represents 
an infinite, unsuccessful computation, contradicting the hypothesis 
$s \mustsatisfy t$.
\end{enumerate}
\end{proof}
 
\chapter{Testing formulae}\label{sec:tf}
Relative to a  process LTS $\langle S, Act_{\tau}, \longrightarrow_S \rangle$\ 
and a test LTS $\langle T, Act_{\tau} \cup \{\omega\}, \longrightarrow_T \rangle$, 
we now explore the relationship between tests from our default LTS of tests and 
formulae of \rechml. Specifically, given a test $t$, our goal is to infer a 
formula $\phi$\ such that the set of processes which \maysatisfy/\mustsatisfy 
such test is completely characterised by the interpretation $\sem{\phi}$. 
Moreover, we aim to establish exactly the subsets of \rechml for which 
each formula can be checked by some test, both in the \may and \must case.
 
For this purpose some definitions are necessary:
\begin{defi}
Let $\phi$\ be a \rechml formula and $t$ a test. We say that:
\begin{itemize}
\item $\phi$ \emph{may}-represents/\emph{must}-represents  the test $t$,  if
for all  $p \in S,\;  p \maysatisfy  t/ p \mustsatisfy t$  if and only if $p \models \phi$.

\item $\phi$ is  \emph{may}-testable/\emph{must}-testable whenever there exists 
a test  which  $\phi$ \\\emph{may}-represents/\emph{must}-represents.

\item $t$ is \emph{may}-representable/\emph{must}-representable, if
  there exists some $\phi \in \rechml$ which 
  \emph{may}-represents/\emph{must}-represents it respectively.\qed
\end{itemize}
\end{defi}
First we present both formulae which are \emph{may}-testable 
(\emph{must}-testable) and formulae which are not.
\begin{example}[Testable formulae]
   In this example we will use tests defined from grammar \eqref{eq:tests}. 
  All the examples are handled in an informal manner, as formal details will 
  be covered in a more general way in the remaining of the report.
 \begin{enumerate}[(a)]
 \item Formula $\lfp X {\dmnd a \ttt \vee \dmnd b X}$ is \emph{may}-testable.
 A state satisfies such a formula if and only if there exists a finite index 
 $n \geq 0$\ such that $s = s_0 \Trans{b} s_1 \Trans{b}\cdots\Trans{b} s_n$\ for 
 some $s_0, \cdots s_n$ with $s_n \Trans{a}$. We can therefore consider the test 
 $t \equiv fix(X=\tau.a.\omega.0 + \tau.b.X)$ If a state $s$ satisfies the above property, 
 then it can synchronise (after a sequence of internal actions performed both by 
 the state itself and by the process) with the test through a $b$-action; that is, 
 the experiment $s \;\lvert\; t$\ can evolve in $s_1 \;\lvert\; t$\ after a finite sequence 
 of internal actions. This procedure can be repeated until the configuration $s_n \;\lvert\; 
 t$ is reached. In this case, $s_n$\ can now synchronise with test $t$ (again after both 
 of them performed some internal steps) through an $a$-action, thus reaching a successful 
 configuration.\\
 On the other hand, consider now a state $s$\ which not satisfies such a property. 
 That is, as long as it synchronises with the test through the execution of a $b$ 
 action in a computation of the induced experiment, the resulting state component 
 will never be able to synchronise with the test through the execution of an $a$ 
 action; however this is mandatory for the experiment to reach a successful configuration. 
 Therefore, in this case the experiment $s \;\lvert\; t$ has no successful computation, 
 and therefore $s$ does not \maysatisfy $t$.
 
\item Formula $\lfp X {\bbox a \fff \wedge \bbox b X}$\ is must-testable. 
 A process $s$ satisfies this formula if and only if whenever  
 $s = s_0 \Trans{b} s_1 \cdots \Trans{b} s_n$ for some $n \geq 0$ and 
 states $s_0 \cdots s_n$\ with $s_n \notTrans{b}$, it holds that 
 \begin{itemize}
  \item $s_i \Downarrow$ for all $i:0 \leq i \leq n$,
  \item $s_i \notTrans{a}$ for all $i:0\leq i \leq n$,
 \end{itemize}
 
 Consider the test $t\equiv fix(X=\tau.(a.0 + \tau.\omega.0) + 
 \tau.(b.X + \tau.\omega.0))$, and suppose $s$ satisfies the 
 property above. Consider an arbitrary computation of $s\;\lvert\; t$; 
 in this case either the test component will perform a series of $\tau$ 
 actions, thus reaching a successful computation, or a synchronisation 
 with the test occurs through the execution of a $b$ actions, thus 
 deriving $s \;\lvert\; t \Trans{\tau} s_1 \;\lvert\; t$. This procedure can be 
 repeated until reaching configuration $s_n \;\lvert\; t$. As in this case we 
 also have $s_n \notTrans{b}$, the only possibility is to make the test component 
 of the experiment to perform a series of internal actions, thus reaching a 
 successful configuration.
 In other words, each computation of $s \;\lvert\; t$ is doomed to reach a configuration 
 where the test component can perform a $\omega$ action, and therefore 
 $s \mustsatisfy t$.
 Conversely, suppose $s$ is a process which does not satisfy the property above. 
 That is, either one of the following occurs:
 \begin{itemize}
  \item there exists a finite index $n \geq 0$ such that $s = s_0 \Trans{b} s_1 
 \Trans{b} \cdot \Trans{b} s_n$ with $s_n \Uparrow$,
  \item there exists a finite index $n \geq 0$ such that $s = s_0 \Trans{b} s_1 
 \Trans{b} \cdot \Trans{b} s_n$ with $s_n \Trans{a}$,
  \item $s$ has an infinite path $s= s_0 \Trans{b} s_1 \Trans{b}\cdots$.
 \end{itemize}

 In the first case we can build an unsuccessful computation by letting the state 
 component of the experiment synchronise with the test through the execution of 
 a $b$ action until configuration $s_n \;\lvert\; t$ is reached. Then we can obtain 
 an unsuccessful infinite computation by making evolve only the state component of the 
 experiment.\\
 In the second case, we can build a computation where the process component synchronise 
 with the test through the execution of a $b$ action until reaching configuration 
 $s_n \;\lvert\; t$, then, through a series of internal steps and a synchronisation through 
 an $a$ action, we obtain a configuration in which the test component can no longer 
 proceed. This computation is also unsuccessful.
 Finally, in the third case we can provide an infinite computation in which the state 
 component of the experiment always synchronise with the test component through the 
 execution of a $b$ action; even this computation is not successful. It holds therefore 
 that $s$ does not $\mustsatisfy t$.\qed
 \end{enumerate}
\end{example}

\begin{example}[Negative results]
\begin{enumerate}[(a)]\qquad
\item $\phi = [a]\fff$ is not \emph{may}-testable.\\
Let $s \in \sem{[a]\fff}$; a new process $p$\ can be built starting from $s$\ by letting  
$p \trans{\tau} p$, whenever
$s \trans{\alpha} s'$ then $p \trans{\alpha} s'$.\\
Processes $p$\ and $s$\ \maysatisfy the same set of tests. However, $p \notin \sem{[a]\fff}$, as $p \Uparrow$. 
Therefore\\ no test \emph{may}-represents $[a]\fff$.
\item $\phi = \dmnd a \ttt$\ is not \emph{must}-testable.\\
We show by contradiction that there exists no test $t$ that \emph{must}-represents $\phi$. 
To this end, we perform a case analysis on the structure of $t$.
\begin{itemize}
\item $t \trans{\omega}$: Consider the process $0$ with no transitions. Then $0 \mustsatisfy t$, 
whereas $0 \notin \sem\phi$.
\item $t \nottrans{\omega}$: Let $s \in \sem\phi$ and consider the process $p$ built up 
from $s$ according to the rules of the example above; we have $p \in \sem\phi$. On the 
other hand, $p \mustsatisfy t$ is not true; indeed the experiment $p \;|\;t$ leads to 
the unsuccessful computation 
$p\;|\;t \shortrightarrow p\;|\;t \shortrightarrow \cdots.$
\end{itemize}
Therefore there is no test $t$ which \emph{must}-represents $\phi$.
\item $\phi = \dmnd a \ttt \wedge \dmnd b \ttt$\ is not \emph{may}-testable.\\
Let $s$\ be the process whose only transitions are $s \trans{a} 0$, $s \trans{b} 0$.
Let also $p, p'$ be the processes whose only transitions are 
$p \trans{a} 0$, $p' \trans{b} 0$. We have $s \in \sem{\phi}$, whereas 
$p, p' \notin \sem{\phi}$. We show that whenever $s \maysatisfy$ a test $t$, 
then either $p \maysatisfy t$ or $p' \maysatisfy t$. Thus there exists 
no test which is \emph{may}-satisfied by exactly those processes in 
$\sem{\phi}$, and therefore $\phi$ is not 
\emph{may}-representable.
First, notice that if $s \maysatisfy t$, then at least one of the following holds:
\begin{enumerate}[(i)]
\item $t\Trans{\omega}$, \label{cond:1}
\item $t\Trans{a}t'\Trans{\omega}$, \label{cond:2}
\item $t\Trans{b}t'\Trans{\omega}$. \label{cond:3}
\end{enumerate}

If $t\Trans{\omega}$, then trivially both $p$\ and $p'$\ \maysatisfy $t$. On the other hand, if $t\Trans{a}t'\Trans{\omega}$, 
then there exist $t'', t_{\omega}$\ such that $t \Trans{\tau} t'' \trans{a} t' \Trans{\tau} t_{\omega} \trans{\omega}$. We can 
build the computation fragment for $p \barra t$\ such that
\[
p \barra t \shortrightarrow \cdots \shortrightarrow p \barra t'' \shortrightarrow 0 \barra t' \shortrightarrow \cdots \shortrightarrow 0 \barra t_{\omega}
\]

which is successful. Hence $p \maysatisfy t$. Finally, The case $t\Trans{b}t'\Trans{\omega}$ is similar.
\label{ex:c}
\item In an analogous way of \eqref{ex:c} it can be shown that $[a] \fff \vee [b] \fff$\ is not \emph{must}-testable.\qed
\end{enumerate}
\end{example}
We now 
investigate precisely which  formulae in \rechml can be represented by tests. 
To this end, we define two sub-languages, namely \mayhml and \musthml.
\begin{defi}{(Representable formulae)}
\begin{itemize}
\item The language \mayhml is defined to be the set of closed formulae generated by the following \rechml grammar fragment:
\begin{eqnarray}
\phi \is \ttt \barra \fff \barra X \barra \dmnd \alpha \phi \barra \phi_1 \vee \phi_2 \barra \lfp X \phi
\label{eq:mayhml}
\end{eqnarray}
\item The language \musthml is defined to be the set of closed formulae generated by the following \rechml grammar fragment:
\begin{eqnarray}
\phi \is \ttt \barra \fff \barra \Acc A \barra X \barra [\alpha]\phi \barra \phi_1 \wedge \phi_2 \barra \lfp X \phi
\label{eq:musthml} 
\end{eqnarray}
\end{itemize}
\qed
\end{defi}

Note that both sub-languages use the minimal fixpoint operator only; this is not surprising, 
as informally at least testing is an inductive rather than a co-inductive property.\\
The modality $[\cdot]$\ and the conjunction operator $\wedge$ are not allowed in \mayhml; the above examples 
show in fact that there exist formulae of the form $[\alpha]\phi$\ which are not \emph{may}-testable, and that 
conjunction of two formulae is not always \emph{may}-testable. The same argument applies to the modality $\dmnd \cdot$ 
and the disjunction operator $\vee$\ in the must case, which are therefore not included in \musthml.\\

We have now completed the set of definitions setting up our framework of 
properties and tests. In the remainder of the paper we prove the results 
announced, informally, in the Introduction.

\section{The must case}\label{sec:must}
We will now develop the mathematical basis needed to relate \musthml
formulae and the \must testing relation; in this section we will assume
that the LTS of processes is branching finite.\\

First, we prove the following result:
\begin{lem}
\label{lem:divergence}
Let $\phi \in \musthml$, and let $p \in \sem{\phi}$, where $p
\Uparrow$: then $\sem{\phi}$\ is the entire process space,
i.e. $\sem{\phi} = S$.
\end{lem}
\begin{proof}
 Let $p$ be a process such that $p \Uparrow$, let $\phi \in \musthml$ such that $p \in \sem \phi$.
Then $\phi$ cannot be $\Acc A, \fff, [\alpha] \phi$\ 
nor a conjunction of formulae containing one of such terms.\\
We now show that $\phi$ cannot be a formula of the form $\lfp X \psi$, where $\psi$ 
contains either free occurrences of the variable $X$ or the operators $\Acc A, \bbox \alpha$. 
To this end, we perform a case analysis on the formula $\psi$: 
\begin{enumerate}[(i)]
\item \label{lem:div1} $\psi$ contains an occurrence of the operator $\bbox \alpha$. Here we can apply Corollary 
\ref{cor:minsubst} to obtain a formula of the form 
$\bbox \alpha \phi' \wedge \phi''$ which is logically equivalent to $\phi$. Thus, if $p \Uparrow$ then 
$p \notin \sem \phi$, 
\item \label{lem:div2} $\psi$ contains the operator $\Acc A$. We can proceed as in Case \eqref{lem:div1}, 
\item \label{lem:div3} $\psi$\ contains at least a free occurrence of 
variable $X$. If such an occurrence is guarded by a $\bbox \alpha$ operator, then we can proceed as in 
Case \ref{lem:div1}. Otherwise we can obtain a formula of the form $\lfp X {X \wedge \psi'}$ which is 
equivalent to $\phi = \lfp X \psi$. Again, this is done by a repeated application of Corollary \ref{cor:minsubst}. 
Now it is trivial to notice that $\emptyset$ is a solution to the equation $X = X \wedge \psi$, and therefore 
it is its least solution. Hence $\sem{\phi} = \emptyset$, so that $p \notin \sem{\phi}$.
\end{enumerate}

The only possible case left for $p\Uparrow$, $p \in \sem\phi$ to hold is therefore 
given by $\phi$ being generated by the Grammar below:
\begin{equation}
\phi \is \ttt \barra \phi_1 \wedge \phi_2 \barra \lfp X \phi.
\label{eq:ttgrammar}
\end{equation}
It is trivial now to show $\sem{\phi} = S$.
\end{proof}

\noindent
This Lemma has important consequences; it means formulae in \musthml either have the trivial interpretation as
the full set of states $S$, or they are only satisfied by convergent states. 
\begin{defi}
  Let $\mathcal{C}$ be the collection of subsets of $S$ determined by:
\begin{itemize}
\item $S \in \mathcal{C}$,
\item $X \in \mathcal{C}, s \in X$ implies $s \Downarrow$. \qed
\end{itemize}
\end{defi}

\begin{prop}
\label{prop:cpo}
$\mathcal{C}$ ordered by set inclusion is a  \emph{continuous partial
order}, \emph{cpo}.
\end{prop}
\begin{proof}
  The empty set is obviously the least element in $\mathcal{C}$. So it is sufficient to show
that if  $X_0 \subseteq X_1 \subseteq \cdots$\ is a chain of elements  in $\mathcal{C}$ then 
$\bigcup_n X_n$ is also in $\mathcal{C}$. 
\end{proof}
We can now take advantage of the fact that \musthml actually has 
a continuous interpretation in $(\mathcal{C}, \subseteq)$. 
The only non trivial case here is the continuity of 
the operator $\bbox{\cdot\alpha\cdot}$:
\begin{prop}
\label{prop:dmndcontinuous}
Suppose the LTS of processes is finite-branching: If  
$X_0 \subseteq X_1 \subseteq \cdots$\ is a chain 
of elements in $\mathcal{C}$ then
\[
\bigcup_n [\cdot \alpha \cdot] X_n = [\cdot \alpha \cdot] \bigcup_n X_n.
\]
\end{prop}
\begin{proof}
 It is trivial to show that
\[
\bigcup_n[\cdot \alpha \cdot] X_n \subseteq [\cdot \alpha \cdot] \bigcup_n X_n.
\]

Thus we only need to show that the opposite implication holds.\\
First, notice that it $X_i = S$ for some $i$, then
\[
\bigcup_n\bbox{\cdot\alpha\cdot}X_n = \{ s :\; s \Downarrow\} = \bbox{\cdot\alpha\cdot}\bigcup_n X_n
\]

Suppose then that $X_i \neq S$ for all $i \geq 0$. Then we have 
$\bigcup_n X_n \neq S$.
By definition the set $\bbox{\cdot\alpha\cdot}\bigcup_n X_n$ can 
be written as
\[
\{s\;:\; s \Downarrow, \Succ{\alpha, s} \subseteq \bigcup_n X_n\}.
\]
 We will prove that for each state $s$ in such a set $\Succ{\alpha, s}$ 
is finite, therefore there exists an $X_n$ such that $\Succ{\alpha, s} 
\subseteq X_n$. As a direct consequence, $s \in \bbox{\cdot\alpha\cdot} X_n$, 
which is included in $\bigcup_n \bbox{\cdot\alpha\cdot}X_n$.

Let $s \in \bbox{\cdot\alpha\cdot} \bigcup_n X_n$ and let 
$s'$ be one of its $\alpha$ derivative. By definition we have 
$s' \in \bigcup_n X_n$. Thus there exists $n \geq 0$ such that 
$s' \in X_n$. Since $X_n \in \mathcal{C}$, $X_n \neq S$, it holds 
$s' \Downarrow$. Since we are assuming that the LTS of processes 
is finite, as a consequence of Konig's lemma we obtain 
that if the set $\Succ{\alpha, s}$ is infinite then  
the $\tau$-computation tree of either $s$ or one of 
its $\alpha$-derivative $s'$ has an infinite path. 
The former contradicts the statement $s\Downarrow$, while 
the latter contradicts the property $s' \Downarrow$ we just proved. 
Thus $\Succ{\alpha, s}$ is finite.
\end{proof}

This continuous interpretation of \musthml allows us to 
use  chains of finite
approximations for these formulae of \musthml. 
That is given $\phi \in \musthml$\ and $k\geq 0$, recursion free
formulae $\phi^k$\ will be defined such that $\sem{\phi^k} \subseteq
\sem{\phi^{(k+1)}}$\ and $\bigcup_{k\geq 0} = \sem{\phi}$. We can therefore
 reason inductively on approximations in order to prove
properties of recursive formulae.
\begin{defi}[Formulae approximations]
For each formula $\phi$\ in \musthml define
\begin{eqnarray*}
\phi^0 &\triangleq& \fff\\
\phi^{(k+1)} &\triangleq& \phi \mbox{\hspace{135pt}if } \phi = \ttt,\fff \mbox{ or } \Acc A\\
([\alpha]\phi)^{(k+1)} &\triangleq& [\alpha](\phi)^{(k+1)}\\
(\phi_1 \wedge \phi_2)^{(k+1)} &\triangleq& \phi_1^{(k+1)} \wedge \phi_2^{(k+1)}\\
(\lfp X \phi)^{(k+1)} &\triangleq& (\phi\{min(X, \phi)/X\})^k
\end{eqnarray*}\qed
\label{def:mustapprox}
\end{defi}

It is obvious that for every $\phi \in \musthml$, $\sem{\phi^k} \subseteq
\sem{\phi^{(k+1)}}$ for every $k \geq 0$; The fact that the union of the
approximations of $\phi$\ converges to $\phi$\ itself depends on the
continuity of the interpretation: 
\begin{prop}
\label{cor:continuity}
\[
\bigcup_{k\geq 0} \sem{\phi^k} = \sem{\phi}
\]
\end{prop}
\begin{proof}
 This is true in the initial continuous interpretation of the language, and therefore also in our interpretation.
  For details see  \cite{finiteapprox}. 
\end{proof}

Having established these properties of the interpretation of formulae in \musthml, we now show that they are all
\emph{must}-testable.  The required tests are  defined by induction on the structure of the formulae. 
\begin{defi}
For each (possibly open) formula $\phi$\ in Grammar \eqref{eq:musthml} define $\Tmust \phi$\ as follows:
\begin{eqnarray}
\Tmust \ttt &=& \omega.0 \label{eq:tmusttt}\\
\Tmust \fff &=& 0 \label{eq:tmustff}\\
\Tmust {\Acc A} &=& \sum_{a \in A} a.\omega.0 \label{eq:tmustacc}\\
\Tmust {X} &=& X \label{eq:tmustX}\\
\Tmust {[\tau] \phi} &=& \tau.\Tmust \phi \label{eq:tmusttau}\\
\Tmust {[a] \phi} &=& a. \Tmust \phi + \tau.\omega.0 \label{eq:tmusta}\\
%\Tmust {\phi_1 \wedge \phi_2} &=& \omega.0 \;\;\;\mbox{if } \phi_1 \wedge \phi_2\ \mbox{ is closed and logically equivalent to }\ttt\\
%\Tmust {\phi_1 \wedge \phi_2} &=& \tau.\Tmust {\phi_1} + \tau. \Tmust{\phi_2}\;\;\;\mbox{otherwise}\\
\Tmust {\phi_1 \wedge \phi_2} &=& \begin{cases} 
	\omega.0, & \mbox{if } \phi_1 \wedge \phi_2 \mbox{ is closed and}\\
        &\mbox{logically equivalent to }\ttt\\
        &\\
	\tau.\Tmust {\phi_1} + \tau. \Tmust{\phi_2},&\mbox{otherwise}
	\end{cases} \label{eq:tmustwedge}\\
%\Tmust {\lfp X \phi} &=& \Tmust \phi \;\;\;\mbox{ if } \phi \mbox{ is closed}\\
%\Tmust {\lfp X \phi} &=& \mu X. \Tmust \phi \;\;\; \mbox{otherwise}
\Tmust{\lfp X \phi} &=& \begin{cases}
	\Tmust \phi, & \mbox{ if } \phi \mbox{ is closed}\\
	\mu X.\Tmust \phi, & \mbox{otherwise}
	\end{cases} \label{eq:tmustmin}
\end{eqnarray}
\qed
\end{defi}

For each formula $\phi$\ in $\musthml$, the test $\Tmust \phi$\ is defined 
in a way such that the set of processes which  $\mustsatisfy$\ $\Tmust\phi$\ is exactly $\sem{\phi}$. 
Before supplying the details of a formal proof of this statement, let us comment on the definition of $\Tmust\phi$.\\
Cases (\ref{eq:tmusttt}), (\ref{eq:tmustff}) and (\ref{eq:tmustX}) are straightforward.
In the case of $\Acc A$, the test allows only those action which are in $A$\ to be performed by a process, after which it reports success.\\
For the box operator, a distinction has to be made between $[a]\phi$\ and $[\tau]\phi$. In the former we have 
to take into account that a converging process which cannot perform a weak $a$-action 
satisfies such a property; thus, synchronisation through the execution of a $a$-action is allowed, but a possibility for the test to report success 
after the execution of an internal action is given.
In the case of $\bbox{\tau}\phi$ no synchronization with any action is required; however, 
since we are adding a convergence requirement to formula $\phi$, we have to avoid the possibility that the 
test $\Tmust{\bbox{\tau}\phi}$ can immediately perform a $\omega$ action. This is done by requiring the test 
$\Tmust{\bbox{\tau}\phi}$ to perform only an internal action.\\
Finally, (\ref{eq:tmustwedge})\ and (\ref{eq:tmustmin}) are defined by distinguishing between two cases; this is because a formula of the form $\phi_1 \wedge \phi_2$\ or $\lfp X \phi$\ can be logically equivalent to $\ttt$, whose interpretation is the entire state space. However, the second clause in the definition of $\Tmust \phi$\ for such formulae 
require the test to perform a $\tau$\ action before performing any other activity, thus at most converging processes \mustsatisfy such a test.\\

In order to give a formal proof that $\Tmust{\phi}$ does indeed capture the 
formula $\phi$ we need to establish some preliminary properties. 
The first essentially says that that no formula of the form $\lfp X \phi$, with $\phi$\
not closed, will be interpreted in the whole state space.

\begin{lem} 
\label{lem:statespaceformulae}
Let $\phi = \lfp X \psi$, with $\psi$\ not closed. Then $\sem{\phi} \neq S$.
\end{lem}
\begin{proof} 
By contradiction. Suppose $\sem{\lfp X \psi} = S$; then $\lfp X \psi$ is 
a term of the grammar \eqref{eq:ttgrammar}, as shown in the proof of 
Lemma \ref{lem:divergence}. That is, formula $\psi$ is necessarily 
closed.
\end{proof}

Next we state some simple properties about recursive tests.

\begin{lem}\qquad
\label{lem:testprops}
\begin{itemize}
\item $p \mustsatisfy \mu X.t$\ implies $p \mustsatisfy \mu X.t\{\mu X.t/X\}$.
\item $p \Downarrow, p \mustsatisfy t[\mu X.t/X]$\ implies $p \mustsatisfy \mu X.t$.
\end{itemize}
\end{lem}
\begin{proof}\qquad
\begin{itemize}
\item Suppose $p \mustsatisfy \mu X.t$. Then all computations with prefix
\[
p \;|\; \mu X.t \shortrightarrow p \;|\; t\{\mu X.t/X\}
\]
are successful; hence $p \mustsatisfy t\{\mu X.t/X\}$.
\item Suppose $p \Downarrow, p \mustsatisfy t\{\mu X.t/X\}$. Then for each computation of $p \barra \mu X.t$\ with prefix
\[
p \;|\; \mu X.t \shortrightarrow \cdots \shortrightarrow p' \;|\; \mu X.t \shortrightarrow p' \;|\; t\{\mu X.t/X\}
\]
there exists a computation with prefix
\[
p \;|\; t\{\mu X.t/X\} \shortrightarrow \cdots \shortrightarrow p' \;|\; t\{\mu X.t/X\}
\]
which is successful. Hence $p \mustsatisfy \mu X.t$.
\end{itemize}
\end{proof}
Note that the premise $p \Downarrow$  is essential in the second part of this lemma, 
as $\mu X.t$ cannot perform a $\omega$ action; therefore it can be \emph{must}-satisfied 
only by processes which converge.

%These results allow us to establish one implication of theorem \ref{thm:musthml}.
\begin{prop}\label{prop:oneway}
Suppose the LTS of processes is finitely branching. If $p \mustsatisfy \Tmust \phi$\ then $p \in \sem{\phi}$.
\end{prop}

\begin{proof}Suppose $p \mustsatisfy \Tmust \phi$; As both the LTS of
  processes (by assumption) and the LTS of tests (Proposition
  \ref{prop:Tbf}) are finite branching, then the LTS generated by 
  $p\;\lvert\;t$ is finite branching as well. By Theorem \ref{thm:bfexp} 
  we have that maximal length of a successful computation $|p,\Tmust \phi|$\ is defined and
  finite. Thus it is possible to perform an induction over
  $|p,\Tmust \phi|$ to prove that $p \in \sem{\phi^k}$ for some 
  $k \geq 0$.  The result
  will then follow from Proposition \ref{cor:continuity}.
\begin{itemize}
\item If $|p, \Tmust \phi| = 0$\ then $\Tmust \phi \trans{\omega}$, and hence for each $p \in S\; p \mustsatisfy\ \Tmust \phi$. Further, 
by the definition of $\Tmust \phi$ we have that $\phi$\ is logically equivalent to $\ttt$, hence $p \in \sem{\phi}$.
\item If $|p, \Tmust \phi| = n+1$\ then the validity of the Theorem follows from an application of an inner induction on $\phi$. We show only the most interesting case, which is $\phi = \lfp X \psi$. There are two possible cases.
\begin{enumerate}[(a)]
\item If $X$\ is not free in $\psi$\ then the result follows by the inner induction, as $\lfp X \psi$\ is logically equivalent to $\psi$, and $\Tmust{\lfp X \psi} \equiv \Tmust \psi$\ by definition.
\item If $X$\ is free in $\psi$\ then, by Lemma \ref{lem:testprops}\ $p \mustsatisfy \Tmust \psi \{\mu X.\Tmust{\psi}/X\}$, which is syntactically equal to $\Tmust {\psi\{ \lfp X \psi / X\}}$.\\
Since $|p, \Tmust {\psi\{\lfp X \psi / X\}}| < |p, \Tmust \phi|$, by inductive hypothesis we have \\$p \in \sem{\psi \{\lfp X \psi /X\}^k}$\ for some $k$, hence $p \in \sem{\phi^{(k+1)}}$.
\end{enumerate}
\end{itemize}
\end{proof}

To prove the converse of Proposition~\ref{prop:oneway} we use the following concept:
\begin{defi}[Satisfaction Relation]
Let $R \subseteq S \times \musthml$ and for any $\phi$\ let
$(R\; \phi) = \{ s \barra s\; R\;\phi\}$
Then $R$\ is a satisfaction relation if it satisfies
\begin{eqnarray*}
(R\;\ttt) &=& S\\
(R\;\fff) &=&\emptyset\\
 (R\; \Acc A) &=&\setof{s}{s \Downarrow, s \Trans{\tau} s' \mbox{ implies } S(s') \cap A \neq \emptyset}\\
(R \;[\alpha]\phi) &\subseteq& [\cdot \alpha \cdot] (R\; \phi)\\
(R\; \phi_1 \wedge \phi_2) &\subseteq& (R\;\phi_1) \cap (R\; \phi_2)\\
(R \; \phi\{\lfp X \phi /X\}) &\subseteq& (R\; \lfp X \phi)
\end{eqnarray*}
\qed
\end{defi}

Satisfaction relations are defined to agree with the interpretation $\sem \cdot$. 
Indeed, all implications required for satisfaction relations are satisfied 
by $\models$. Further, as $\sem{\lfp X \phi}$\ is defined to be the least 
solution to the recursive equation $X = \phi$, we expect it to be the 
smallest satisfaction relation.

\begin{prop}\label{prop:satisfaction}
The relation $\models$\ is a satisfaction relation. Further, it is the smallest satisfaction relation.
\end{prop}
\begin{proof}
The definition of $\sem\cdot$\ ensures that $\models$\ is a satisfaction relation; we have:
\begin{eqnarray*}
(\models \ttt) &=& S\\
(\models \fff) &=& \emptyset\\
(\models \Acc A) &=& \{ \setof{s}{s \Downarrow, s \Trans{\tau} s' \mbox{ implies } S(s') \cap A \neq \emptyset}\\
(\models \;[\alpha]\phi) &=& [\cdot \alpha \cdot] (\models\; \phi)\\
(\models \;\phi\{\lfp X \phi /X\}) &=& (\models\; \lfp X \phi)
\end{eqnarray*}
where the last equality follows from Corollary \ref{cor:minsubst}.

It remains to show that $\models$\ is in fact the smallest satisfaction relation.\\
Let $R$\ be a satisfaction relation, and suppose that $p \in \sem{\phi}$: we show that $p \; R \; \phi$.\\
By Proposition \ref{cor:continuity}\ there exists $k \geq 0$\ such that $p \in \sem{\phi^k}$. 
We proceed by induction on $k$.\\
The case $k = 0$\ is vacuous. Assume the result holds for a generic $k$; 
we will perform an inner induction on the structure of $\phi$. 
Again, only the most interesting details are given.\\
Suppose $\phi = \lfp X \psi$: then $\lfp{X}{\psi}^{(k+1)} = (\psi\{\phi/X\})^k$, 
and by inductive hypothesis $p \;R\; \psi\{\phi/X\}$ follows, and so $p \; R \; \phi$ 
by the definition of satisfaction relation.\\
Finally, if $\phi$ has the form $\bbox{\alpha}\psi$ or $\phi_1 \wedge \phi_2$, it is 
not possible to use the inductive hypothesis directly. This is because
$(\bbox{\alpha}\phi)^{(k+1)} = \bbox \alpha (\phi)^{(k+1)}, 
(\phi_1 \wedge \phi_2)^{(k+1)} = \phi_1{(k+1)} \wedge \phi_2^{(k+1)}$.\\
We define therefore the height of a formula $h(\phi)$ as
\begin{eqnarray*}
h(\ttt) &=& 0\\
h(\fff) &=& 0\\
h(\Acc A) &=& 0\\
h(\lfp X \psi) &=& 0\\
h(\bbox \alpha \psi) &=& h(\psi) + 1\\
h(\phi_1 \wedge \phi_2) &=& \mbox{max}(h(\phi_1), h(\phi_2)) +1
\end{eqnarray*}
and we perform another induction of $h(\phi)$. The case $h(\phi) = 0$ 
has already been handled. Suppose then $h(\phi) = n+1$; then 
either $\phi = \bbox \alpha \psi$ or $\phi = \phi_1 \wedge \phi_2$. 
We will consider only the first case.Here $h(\psi) = n$, so that 
by inductive hypothesis we have $p' \models \psi$ implies $p'\;R\;\psi$.\\
If $p \models \bbox \alpha \psi$ then $p \Downarrow$; further, whenever 
$p \Trans{\alpha} p'$, we have $p' \models \psi$ and therefore $p' \;R\; \psi$. 
Thus $p \in \bbox{\cdot \alpha \cdot}(R \phi)$.
\end{proof}

This Proposition can be exploited to prove properties for couples $(p, \phi)$ such that $p \models \phi$, 
for $\phi \in \musthml$.\\
Let $\pi$\ be a property over $S \times \musthml$, and suppose 
the relation $R = \{(s, \phi)\barra \pi(s,\phi)\}$ is a satisfaction relation. 
We obtain, by Proposition \ref{prop:satisfaction}, that $p \models \phi$ 
implies $\pi(p, \phi)$.\\
Next we consider the relation $R_{\scriptstyle{must}}$\ such that 
$p\; R_{\scriptstyle{must}}\;\phi$ whenever $p \mustsatisfy \Tmust \phi$, 
and show that it is a satisfaction relation.

\begin{prop}\label{prop:must.satisfaction}
The relation $R_{\text{must}}$  is a satisfaction relation.
\end{prop}

\begin{proof}
We proceed by induction on formula $\phi$. Again, we only check the most interesting case.\\
Suppose $\phi = \lfp X \psi$. We have to show $p \mustsatisfy \Tmust {\psi\{\phi/X\}}$\ 
implies $p \mustsatisfy \Tmust \phi$.\\
We distinguish two cases:
\begin{enumerate}[(a)]
\item $X$\ does not appear free in $\psi$. then 
$\Tmust \phi = \Tmust \psi$, and $\psi\{\phi/X\} = \psi$. This case is trivial.
\item $X$\ does appear free in $\phi$: in this case $\Tmust \phi = \mu X.\Tmust \psi$, 
and $\Tmust {\psi\{\phi/X\}}$\ has the form
$\Tmust \psi \{\mu X.\Tmust \psi /X\}$.\\
By Lemma \ref{lem:statespaceformulae} $\sem \phi \neq S$; therefore Lemma \ref{lem:divergence}\ 
ensures that $p \Downarrow$, and hence by Lemma \ref{lem:testprops}\ it follows 
$p \mustsatisfy \Tmust \phi$.

\end{enumerate}
\end{proof}

Combining all these results we now obtain our result on the testability of \musthml.
\begin{thm}
\label{thm:musthml}
Suppose the LTS of processes is finite-branching. Then for every 
$\phi \in \musthml$, there exists a   test $\Tmust \phi$\ such that $\phi$ \emph{must}-represents the test $\Tmust \phi$.
\end{thm}
\begin{proof}
We have to show that for any process $p$, $p \mustsatisfy \Tmust \phi$ if and only if $p \in \sem{\phi}$.
  One direction follows from Proposition~\ref{prop:oneway}.  Conversely suppose $p \in \sem{\phi}$. 
By Proposition \ref{prop:satisfaction}\ it follows that for all satisfaction relations 
$R$ it holds $p\; R\; \phi$; hence, by Proposition \ref{prop:must.satisfaction}, $p \;R_{\text{must}}\;\phi$, 
or equivalently $p \mustsatisfy \Tmust \phi$.
\end{proof}

We now turn our attention to the second result, namely that every test $t$ is \emph{must}-representable by some formula 
in \musthml. Let us for the moment assume a branching finite LTS of tests in which the state space $T$ is finite.
\begin{defi}\label{def:tests}
Assume we have a test-indexed set of variables $\{X_t\}$.
For each test $t \in T$\ define $\varphi_t$\ as below:
\begin{eqnarray}
\label{eq:must1}
\varphi_t &\triangleq&\ttt \hspace{139pt} \mbox{if } t\trans{\omega}\\
\label{eq:must2}
\varphi_t &\triangleq&\fff \hspace{139pt} \mbox{if } t \nottrans{\;}\\
\label{eq:must3}
\varphi_t &\triangleq& (\displaystyle{
\bigwedge_{\scriptstyle{a,t': t \trans{a} t'}}} [a] X_{t'})
 \;\wedge\; \Acc{\{a | t \trans{a}\}}
 \hspace{20pt} \mbox{if } t \nottrans{\omega}, t \nottrans{\tau}, 
 t \longrightarrow\\
\label{eq:must4}
\varphi_t &\triangleq& (\displaystyle{
\bigwedge_{t': t \trans{\tau}t'}} [\tau]X_{t'})
 \;\wedge\; (\displaystyle{\bigwedge_{a,t': t \trans{a} t'}} 
 [a] X_{t'}) \hspace{20pt}\mbox{if } t \nottrans{\omega}, t\trans{\tau}
\end{eqnarray}

Take $\phi_t$\ to be the extended formula $\slfp t {\overline{X_T}} {\overline{\varphi_T}}$, using  the simultaneous least fixed points
introduced in Section~\ref{sec:recursivehml}.
\end{defi}
Notice that we have a finite set of variables $\{X_t\}$ and 
that the conjunctions in Definition \ref{def:tests} are finite,
 as the LTS of tests 
is finite state and finite branching. These two conditions 
are needed therefore for $\phi_t$ to be well defined.\\

Formula $\phi_t$\ captures the properties required by a process 
to \mustsatisfy\ test $t$. The first two clauses of 
the definition are straightforward. If $t$\ cannot make 
an internal action or cannot report a success, but can 
perform a visible action $a$ to 
evolve in $t'$, then a process should be able to perform 
a $\Trans{a}$\ transition and evolve in a process 
$p'$ such that $p' \mustsatisfy t'$. 
The requirement $\Acc{\{a \barra t\trans{a}\}}$\ is needed 
because a synchronisation between the process $p$\ and the 
test $t$\ is required 
for $p \mustsatisfy t$\ to be true.\\
In the last clause, the test $t$\ is able to perform at 
least a $\tau$-action. In this case there is no need for a synchronisation 
between a process and the test, so there is no term of 
the form $\Acc{\{a \barra t\trans{a}\}}$\ in the 
definition of $\phi_t$. 
However, it is possible that a process $p$\ will never 
synchronise with such test, instead $t$\ will perform 
a transition $t \trans{\tau}t'$\ after $p$\ has 
executed an arbitrary number of 
internal actions. Thus, we require that for each 
transition $p \Trans{\tau} p'$, $p' \mustsatisfy t'$.\\

We now supply the formal details which lead to state that formula $\phi_t$\ characterises the test $t$. 
Our immediate aim is to show that the two environments, defined by
\begin{eqnarray*}
\rhomin(X_t) &\triangleq& \sem{ \phi_t}\\
\rhomust(X_t) &\triangleq& \{ p \barra p \mustsatisfy t\}
\end{eqnarray*}
are identical. This is achieved in the following two propositions. 
\begin{prop}
\label{thm:minsubsetmust}
For all $t \in T$ it holds that $\rhomin(X_t) \subseteq \rhomust(X_t)$.
\end{prop}

\begin{proof}
We just need to show that 
$\sem{\varphi_t} \rhomust \subseteq \rhomust(X_t)$: 
then we can apply the \textit{minimal fixpoint property}, 
Theorem \ref{thm:fixpointprop} (\ref{thm:minfixprop}), 
to conclude 
\[
\rhomin(X_t) = \sem{\slfp t {\overline{X_T}}{\overline{\phi_T}}} 
\subseteq \rhomust(X_T).
\]
The proof is carried out by performing a case 
analysis on $t$. We will only consider Case \eqref{eq:must3}, 
as cases \eqref{eq:must1} and \eqref{eq:must2} 
are trivial and Case \eqref{eq:must4} is handled similarly.

Assume $p \in \sem{\varphi_t}\rhomust$. We have
\begin{enumerate}[(a)]
\item \label{prf:cond1}$p \Downarrow$,
\item \label{prf:cond2}whenever $p \Trans{\tau} p'$\ there exists an action $a \in Act$\ such that $t \trans{a}$\ and $p' \Trans{a}$,
\item \label{prf:cond3}whenever $p \Trans{a} p'$\ and $t \trans{a} t'$, $p' \in \rhomust(X_{t'})$, i.e. $p' \mustsatisfy t'$.
\end{enumerate}

Conditions (\ref{prf:cond1}) and (\ref{prf:cond2}) are met since $p \in \sem{\Acc{\{a \;|\; t \trans{a}}}$ and $t \trans{a}$\ for some $a \in Act$, while (\ref{prf:cond3}) is true because of $p \in \sem{\bigwedge_{a, t':\; t \trans{a}t'}[a]X_{t'}}$.\\\\
To prove that $p \in \rhomust(X_t)$\ we have to show that every computation of $p\;|\;t$\ is successful. To this end, consider an arbitrary computation of $p\;|\; t$; condition (\ref{prf:cond2}) ensures that such a computation cannot have the finite form
\begin{equation}
\label{eq:nonmaximalcomp}
p \barra t \shortrightarrow p_1 \barra t \shortrightarrow \cdots p_k \barra t \shortrightarrow p_{k+1} \barra t \shortrightarrow \cdots \shortrightarrow p_n \barra t
\end{equation}

For such a computation we have that $p_n \Trans{\tau} p'$, and there exists $p''$\ with $p' \trans{a} p''$\ for some action $a$\ and test $t'$\ such that $t \trans{a} t'$. Therefore we have a computation prefix of the form
\[
p \barra t \shortrightarrow p_1 \barra t \shortrightarrow \cdots p_n \barra t \shortrightarrow \cdots \shortrightarrow p' \barra t \shortrightarrow p'' \barra t',
\]
hence the maximality of computation \eqref{eq:nonmaximalcomp}\ does not hold.\\

Further, condition (\ref{prf:cond1})\ ensures that a computation of $p \barra t$\ cannot have the form
\[
p \barra t \shortrightarrow p_1 \barra t \shortrightarrow \cdots \shortrightarrow  p_k \barra t \shortrightarrow p_{k+1} \barra t \shortrightarrow \cdots
\]

Therefore all computations of $p \barra t$\ have the form
\[
p \barra t \shortrightarrow p_1 \barra t \shortrightarrow \cdots \shortrightarrow p_n \barra t \shortrightarrow p' \barra t'
\]

with $p' \mustsatisfy t'$\ by condition (\ref{prf:cond3}); then for each computation of $p \barra t$ there exist $p'', t''$\ such that 
\[
p \barra t \shortrightarrow \cdots \shortrightarrow p' \barra t' \shortrightarrow \cdots \shortrightarrow p'' \barra t'',
\]

and $t''\trans{\omega}$. Hence, every computation from $p \barra t$\ is successful.
\end{proof}
\begin{prop}
\label{thm:minsubmust}
Assume the LTS of processes is branching finite. For every $ t \in T$,  $\rhomust(X_t) \subseteq \rhomin(X_t)$.
\end{prop}

\begin{proof}
We have to show $p \mustsatisfy t$\ implies $p \in \sem{\phi_t}$.\\
Suppose $p \mustsatisfy t$; since we are assuming that the set $T$, 
as well as the set $S$, contains only finite branching tests (processes), 
That is, the maximal length of a successful computation fragment $|p, t|$\ is defined and finite 
by Theorem \ref{thm:bfexp}.\\
Recall that $\phi_t = \slfp t {\overline{X_T}}{\overline{\varphi_T}}$. 
We proceed by induction on $k = |p, t|$ to show that 
$p \mustsatisfy t$ implies $p \in \sem{\varphi_t}\rhomin$; then the result 
$p \in \sem{\phi_t}$ is obtained by applying the Fixpoint Property \ref{thm:fixpointprop}(\ref{thm:fixprop}).
\begin{itemize}
\item $k = 0$: In this case, $t \trans{\omega}$, and hence for all $p \in S$\ we have $ p \mustsatisfy t$. 
Moreover, $\varphi_t = \ttt$, and hence for all $p \in S\; p \in \sem{\phi_t}\rhomin$,
\item $k > 0$. There are several cases to consider, according to the structure of the test $t$:
\begin{enumerate}
\item $t \nottrans{\omega}, t \nottrans{\tau}, t \longrightarrow$: we first show that $p \in \sem{\Acc {\{a | t \trans{a}}} \rhomin$.\\
Since $p \mustsatisfy t$, we have $p \Downarrow$. Consider a computation fragment of the form
\[
p \barra t \shortrightarrow \cdots \shortrightarrow p^n \barra t
\]

As $p \Downarrow$, we require that all computations rooted in $p^n \barra t$\ will eventually contain a term of the form $p^k \barra t'$, where $t' \neq t$. Further, as $t \nottrans{\tau}$, such a test should follow from a synchronisation between $p^{k-1}$\ and $t$. We have that then that, whenever $p\Trans{\tau} p^n$, there exists an action $a$\ such that $t \trans{a} t'$\ and $p^n \Trans{a} p^k$, which combined with the constraint $p \Downarrow$\ is equivalent to $p \in \sem{\Acc {\{a | t \trans{a}}}$.\\
We also have to show that $p \in \sem{[a]X_{t'}} \rhomin$. Let $p\trans{a}p'$. Then $p \mustsatisfy t$\ implies $p' \mustsatisfy t'$. Moreover, we have $|p', t'| < k$. By inductive hypothesis, we have that $p' \in \sem{\phi_{t'}}$, that is $p' \in \rhomin(X_{t'})$. Then the result $p \in \sem{[a]X_{t'}} \rhomin$\ holds.

\item $t \nottrans{\omega}, t \trans{\tau}$: A similar analysis as in the case above can be carried out.
\end{enumerate}
\end{itemize}
\end{proof}

Combining these two propositions we get our second result. Let us say that a test $t$ 
from a LTS of tests $\mathcal{T} = \langle T, Act_{\tau}^{\omega}, \rightarrow\rangle$ 
is finitary if the derived LTS consisting of all states in $\mathcal{T}$ accessible from $t$ 
is finite state and finite branching.
\begin{thm}
\label{thm:musttest}
Assuming the LTS of processes is finite branching, every finitary test $t$ is \emph{must}-representable. 
\end{thm}
\begin{proof}
  Consider any test $t$. We can apply Definition~\ref{def:tests} to the 
finite LTS of tests reachable from $t$ to obtain a formula $\phi_t$\ which 
\emph{must}-represents test $t$. Notice that this formula is not contained 
in $\rechml$, as it uses simultaneous least fixpoints. However, by Theorem 
\ref{thm:becik}\ there exists a formula $\phimust t \in \rechml$\ such 
that $\sem{\phi_t} = \sem{\phimust t}$, thus $t$\ is 
\emph{must}-representable. Further, since each operator used in Definition 
\ref{def:tests} to define $\varphi_t$\ belongs to \musthml, it is assured 
that $\phimust t \in \musthml$.
\end{proof}
As  a Corollary we are able to show that \musthml is actually the largest 
language (up to logical equivalences) of \emph{must}-testable formulae.
\begin{corollary}\label{cor:mustlargest}
Suppose $\phi$ is a formula in \rechml which is \emph{must}-testable. Then 
there exists some $\psi$ in $\musthml$ which is logically equivalent to it.
\end{corollary}

%\ifx\proofs\yes
\begin{proof}
Suppose $\phi$\ is \emph{must}-testable. By Theorem \ref{thm:musthml} 
there exists a finite test $t = \Tmust \phi$\ which \emph{must}-represents $\phi$. 
Further, by theorem \ref{thm:musttest}\ there exists a formula $\psi = 
\phimust {t} \in \musthml$\ which \emph{must}-tests for $t$. Therefore
\[
p \in \sem{\phi} \Leftrightarrow p \mustsatisfy \Tmust \phi \Leftrightarrow p \in \sem{\psi}
\]
\end{proof}

\section{The may case}\label{sec:may}

We now turn to the characterisation of the \maysatisfy testing relation in terms of \rechml formulae.\\
Notice that the nature of the \maysatisfy testing relation is different 
from that of the \mustsatisfy one; here an experiment 
composed of a process $s$ and a state $t$ is required to have only one successful computation to ensure 
that $s \maysatisfy t$ holds. As a consequence, when considering the \maysatisfy testing relation, we will not 
need to reason about all the computations generated by an experiment; in other words, it will be no 
longer necessary to reason on the maximal length of a successful computation, therefore the assumption 
that the LTS of processes to be tested contains only finitely branching states can be dropped. However, 
we still need to assume that the LTS of tests to be considered is finitely branching; informally 
speaking this is because a test is \emph{may}-represented by a disjunction of formulae, one 
for each of its branches. Therefore, as we do not allow infinite disjunction in our version of 
\rechml, we need to focus only to LTS of finitely branching tests.\\

First we will prove that each formula in \mayhml \emph{may}-represents 
some test $t$ in grammar \eqref{eq:tests}; then we show 
that if the LTS generated by a test $t$\ is finitely branching and finite state, 
then there exists a formula $\phi$\ which \emph{may}-represents $t$. 
In this case we do not require for the 
LTS of processes to be branching finite.\\

To prove that the power of tests defined in grammar \ref{eq:tests}\ can be captured (with respect to 
the \maysatisfy testing relation) by the language \mayhml, we define the concept of
\emph{weak satisfaction relation}; this is obtained as the dual version of 
the weak satisfaction relation relation defined in \cite{aceto}.

\begin{defi}
\label{def:wsatrel}
Let $R \subseteq S \times \mayhml$. Then $R$\ is a weak satisfaction relation if, and only if, it satisfies 
the following implications:
\begin{eqnarray*}
(R\; \ttt) &=& S\\
(R\; \fff) &=& \emptyset\\
(R\; \dmnd \alpha \phi) &\supseteq& \dmnd{\cdot\alpha\cdot}(R\; \phi)\\
(R\; \phi_1 \vee \phi_2) &\supseteq& \dmnd{\cdot\tau\cdot} [(R\; \phi_1) \cup (R\; \phi_2)]\\
(R\; \lfp X \phi) &\supseteq& \dmnd{\cdot\tau\cdot}(R\; \phi\{\lfp X \phi /X \})
\end{eqnarray*}
\qed
\end{defi}

Informally speaking, given a weak satisfaction relation $R$, it is possible 
to determine whether $s \in (R\;\phi)$ for some $s\in S$, $\phi \in \mayhml$ 
by looking at the set of the $\tau$-derivatives of $s$, rather than at the 
single state itself.\\
The satisfaction relation $\models$, when restricted to \mayhml, is a 
weak satisfaction relation. This is because for any $\phi \in \mayhml$ 
we have $\sem{\phi} = \sem{\dmnd\tau \phi}$.

\begin{lem}
\label{prop:mayhmltauclosed}
Let $p \in S$, $\phi \in \mayhml$. Then $p \models \phi$ if and 
only if there exists $p' : p \Trans{\tau} p'$\ and $p' \models \phi$.
\end{lem}

\begin{proof}
For the only if implication notice that for all $p \in S$\ it holds $p\Trans{\tau} p$.\\
For the only if implication, notice that the semantics of \mayhml is defined 
on weak actions, and that $\sem{\dmnd \alpha \phi} = \sem{\dmnd \tau \dmnd \alpha \phi}$.
\end{proof}
\begin{prop}
 The relation $\models$ is a weak satisfaction relation.
\end{prop}
\begin{proof}
 By Lemma \ref{prop:mayhmltauclosed}\ 
 and the definition of $\sem\cdot$\ we have the following implications:
\begin{eqnarray*}
(\models \ttt) &=& S\\
(\models \fff) &=& \emptyset\\
(\models \dmnd \alpha \phi) &=& \dmnd{\cdot\alpha\cdot}(\models\phi)\\
(\models \phi_1 \vee \phi_2) &=& (\models \phi_1) \cup \models(\phi_2)\\
&=&\dmnd{\cdot\tau\cdot}[(\models\phi_1) \cup (\models\phi_2)\\
(\models \lfp X \phi) &=& (\models \phi\{\lfp X \phi/X\})\\
&=& \dmnd{\cdot\tau\cdot}(\models \phi\{\lfp X \phi/X\})
\end{eqnarray*}
Corollary \ref{cor:minsubst} has been applied in the case of a least fixed point formula.
\end{proof}

Further, we have that $\models$ is the smallest weak satisfaction relation. 
To prove this statement we will use the same techniques used in Section 
\ref{sec:must}; that is, first we will show that $\mayhml$ has a 
continuous interpretation in the complete lattice $(2^S, \subseteq)$. 
The only non trivial case here consists in proving the continuity of 
the $\dmnd{\cdot\tau\cdot}$ operator; this is a direct consequence of 
the following results, which states that such an operator is distributive 
over countable sets chosen in $2^S$.

\begin{prop}
 Let $P_i, i \in I$ be a countable set of elements in $2^S$. Then
\[
 \dmnd{\cdot\alpha\cdot} \bigcup_{i \in I} P_i = \bigcup_{i \in I} \dmnd{\cdot\alpha\cdot}P_i
\]
\end{prop}

\begin{proof}
 It is trivial to show that 
\[
 \bigcup_{i \in I} \dmnd{\cdot\alpha\cdot} P_i \subseteq \dmnd{\cdot\alpha\cdot}\bigcup_{i \in I} P_i.
\]

For the opposite inclusion, suppose $s \in \dmnd{\cdot\alpha\cdot}\bigcup_{i \in I} P_i$; 
then there exists $s'$ such that $s \Trans{\alpha} s', s' \in \bigcup_{i \in I} P_i$.
That is, $s' \in P_j$ for some $j \in I$; since $s \Trans{\alpha} s'$, 
by definition $s \in \dmnd{\cdot\alpha\cdot} P_j$, and therefore 
$s \in \bigcup_{i \in I} \dmnd{\cdot\alpha\cdot}P_i$.
\end{proof}

Given a formula $\phi \in \mayhml$, it is possible to define a chain 
of recursion free formulae $\phi^0, \phi^1,\cdots$ which converge to $\phi$ 
itself. This definition is similar in style to that of Definition 
\ref{def:mustapprox}.
\begin{defi}[Formulae approximations]
For each formula $\phi$\ in \mayhml define
\begin{center}
\begin{eqnarray*}
\phi^0 &\triangleq& \fff\\
\ttt^{(k+1)} &\triangleq& \ttt\\
\fff^{(k+1)} &\triangleq &\fff\\
(\dmnd\alpha\phi)^{(k+1)} &\triangleq& \dmnd\alpha(\phi)^{(k+1)}\\
(\phi_1 \vee \phi_2)^{(k+1)} &\triangleq& \phi_1^{(k+1)} \vee \phi_2^{(k+1)}\\
(\lfp X \phi)^{(k+1)} &\triangleq& (\phi\{min(X, \phi)/X\})^k
\end{eqnarray*}\qed
\end{center}
\label{def:mayapprox}
\end{defi}
\begin{prop}
\label{cor:maycontinuity}
\[
\bigcup_{k\geq 0} \sem{\phi^k} = \sem{\phi}
\]\qed
\end{prop}

Chains of approximations of formulae in \mayhml can be exploited to show that 
$\models$ is indeed the smallest weak satisfaction relation.
\begin{prop}
 Let $R$ be a weak satisfaction relation. Then, for any 
$s \in S$ and $\phi \in \mayhml$, $s \models \phi$ implies 
$s\;R\;\phi$.
\label{prop:modsmallest}
\end{prop}
\begin{proof}
 The proof is similar in style to that of Proposition 
\ref{prop:satisfaction}. If $s \models \phi$ then by 
Corollary \ref{cor:maycontinuity} we have that
$s \models \phi^k$ for some $k \geq 0$. By performing 
an induction on $k$, we show that $s\; R\; \phi$.
For $k=0$ the statement is vacuous; assume then 
that the statement is true for a generic $k$, 
and consider the formula $\phi^{k+1}$; we will only check the 
case $\phi = \lfp X \psi$.\\
If $s \models (\lfp X \psi)^{k+1}$ then by Definition 
$s \models (\psi\{\lfp X \psi / X\})^k$. 
By Lemma \ref{prop:mayhmltauclosed} 
$s \models \dmnd \tau (\psi\{\lfp X \psi / X\})^k$, 
which is equivalent to 
$s \models \dmnd (\tau \psi\{\lfp X \psi / X\})^k$. 
Now, by inductive hypothesis 
$s \;R\; \dmnd (\tau \psi\{\lfp X \psi / X\})$, 
or equivalently $s \Trans{\tau} s'$ with 
$s' \;R\; (\tau \psi\{\lfp X \psi / X\})$; then 
by Definition \ref{def:wsatrel} we have 
$s \;R\; \lfp X \psi$.
\end{proof}

We are now ready to show that each formula of \mayhml \emph{may}-represents some test $t$.\\
For each formula $\phi$\ in Grammar \eqref{eq:mayhml}, the test $\Tmay \phi$\ is defined as below:
\begin{eqnarray*}
\Tmay \ttt &=& \omega.0\\
\Tmay \fff &=& 0\\
\Tmay X &=& X\\
\Tmay {\phi_1 \vee \phi_2} &=& \tau.\Tmay {\phi_1} + \tau.\Tmay{\phi_2}\\
\Tmay {\dmnd \alpha \phi} &=& \alpha.\Tmay \phi\\
\Tmay {\lfp X \phi} &=& \mu X.\Tmay{\phi}
\end{eqnarray*}

We will need the following property for tests:
\begin{prop}
 Let $\phi, \psi$ be two formulae in Grammar \eqref{eq:mayhml}, and 
suppose $\psi$ is a closed formula. Then 
\[
 \Tmay{\phi}\{\Tmay\psi/X\} = \Tmay{\phi\{\psi/X\}}
\]
\label{prop:testsubst}
\end{prop}
\begin{proof}
 By induction on the structure of $\phi$.
\end{proof}

\begin{prop}
\label{prop:maywsr}
The relation $\Rmay = \{\;(s, \phi) \barra s \maysatisfy \Tmay \phi\}$\ is a weak satisfaction relation.
\end{prop}
\begin{proof}
We prove that $\Rmay$\ satisfies the constraints of Definition \ref{def:wsatrel}.
\begin{itemize}
\item $\Tmay \ttt = \omega.0$. It is trivial to check that 
each process in $S$\ \maysatisfy such a test.
\item $\Tmay \fff = 0$. Again, it is straightforward to show 
that for no process $p \in S$\ we have $p \maysatisfy \Tmay \fff$.
\item Suppose $p \Trans{a} p'$, and $p' \Rmay \phi$. Then, we have the computation prefix
\[
p \barra \alpha.\Tmay \phi \shortrightarrow \cdots \shortrightarrow p'' \barra \alpha.\Tmay \phi \shortrightarrow p' \barra \Tmay \phi\footnote{where $p'' = p'$\ in the case $\alpha = \tau$}.
\]

Since $p' \maysatisfy \Tmay \phi$ by the definition of $\Rmay$, the experiment $p \barra \Tmay {\dmnd a \phi}$\ has a successful computation, hence $p \Rmay \dmnd{\alpha}\phi$.
\item Suppose $p \Trans{\tau} p'$, and $p' \Rmay \phi_1$. Given an arbitrary formula $\phi_2$, consider the experiment\\
$p \barra \tau.\Tmay{\phi_1} + \tau.\Tmay{\phi_2}$, which has the computation fragment
\[
p \barra \tau.\Tmay{\phi_1} + \tau.\Tmay{\phi_2} \shortrightarrow p \barra \Tmay{\phi_1} \shortrightarrow \cdots \shortrightarrow p' \barra \Tmay{\phi_1}
\]

As $p' \maysatisfy \Tmay{\phi_1}$, we have $p \maysatisfy \Tmay{\phi_1 \vee \phi_2}$.

\item Suppose $p \Trans{\tau} p'$, with $p' \Rmay \psi \{\lfp X \psi/X\}$; we have 
$\Tmay{\lfp X \psi} = \mu X.\Tmay{\psi}$. In this case we have the computation
\[
p \barra \mu X.\Tmay{\psi}\shortrightarrow \cdots \shortrightarrow p' \barra \mu X.\Tmay{\psi} \shortrightarrow p' \barra \Tmay{\psi}\{\mu X.\psi/X\},
\]
where $\Tmay{\psi}\{\mu X.\psi/X\} = \Tmay{\psi\{\lfp X \psi/X\}}$ by Proposition \ref{prop:testsubst},
and hence $p \Rmay \lfp X \psi$.
\end{itemize}
\end{proof}

\begin{prop}
\label{prop:maylwsr}
Let $p \in S$ and let $\phi \in \mayhml$. If $p \maysatisfy \Tmay \phi$\ then $p \models \phi$.
\end{prop}
\begin{proof}
Assume $p \maysatisfy \Tmay \phi$. We proceed by induction on the 
minimal length of a successful prefix of a computation, denoted 
$|p, \Tmay \phi|$\ with an abuse of notation, 
to show that $p \models \phi$.
\begin{itemize}
\item $|p, \Tmay \phi| = 0$. Then we may infer $\Tmay \phi \trans{\omega}$\ hence $\phi \equiv \ttt$. 
In this case, for each $p\in S$\ it holds. $p \maysatisfy \Tmay \phi$, and $\forall p \in S. p \models \ttt$.
\item $|p, \Tmay \phi| = k+1$. Assume the statement holds for $k$, and consider the prefix 
\[
p | \Tmay \phi \shortrightarrow p' | t'
\]

of a minimal successful computation.\\ We distinguish several cases:
\begin{enumerate}[(a)]
\item $p \trans{\tau} p', t' \equiv \Tmay \phi$. Then by inductive hypothesis $p' \models \phi$, 
and by Lemma \ref{prop:mayhmltauclosed}\ we have $p \models \phi$.
\item $p = p', \Tmay \phi \trans{\tau} t'$: in this case there are tree possibilities.
\begin{itemize}
\item $\phi = \lfp X \psi$\ for some $\psi$. Hence $t' \equiv \Tmay \psi \{\Tmay \phi/X\}$, 
which is $t' \equiv \Tmay {\psi \{\phi/X\}}$. Again, by induction we have 
$p \models \psi\{\phi/X\}$, and hence $p \models \phi$.
\item $\phi = \phi_1 \vee \phi_2$. Without loss of generality 
we may infer $t' \equiv \Tmay {\phi_1}$. By Inductive hypothesis 
we have $p \models \phi_1$, hence $p \models \phi_1 \vee \phi_2$.
\item $\phi = \dmnd\tau \psi$ for some $\psi$. In this case we have 
$t' = \Tmay\psi$; by the inductive hypothesis it holds $p \models \psi$. 
Therefore, by Lemma \ref{prop:mayhmltauclosed} $p \models \dmnd\tau \psi$.
\end{itemize}
\item $p \trans{a} p', \Tmay \phi \trans{a} t'$. In this case we have 
$\phi = \dmnd \alpha \psi$, and hence $t' \equiv \Tmay \psi$. 
Then, by using the inductive hypothesis again, we have $p \models \dmnd a \phi$.
\end{enumerate}
\end{itemize}
\end{proof}

\begin{thm}
\label{thm:mayhml}
Let $\phi \in \mayhml$, $p \in S$. Then $p \models \phi$\ if and only if  $p \maysatisfy \Tmay \phi$.
\end{thm}
\begin{proof}
Analogous to the proof of Theorem \ref{thm:musthml}
\end{proof}

Next, we show that if the LTS of tests generated by a test is finite state, then each test 
$t$ is \emph{may}-represented by a \mayhml formula $\phimay t$.\\
First, assume to have a test indexed set of test variables $\{X_t\}$. Then, for each test $t$\ define the formula $\phi_t$\ as
\begin{eqnarray*}
\varphi_t &= \ttt &\mbox {if }t\trans{\omega}\\
\varphi_t &= \fff &\mbox {if }t \nottrans{\;}\\
%\phi_t &= \displaystyle{\bigvee_{t': t \trans{a} t'}} \dmnd {a} X_{t'} \vee \displaystyle{\bigvee_{t': t \trans{\tau} t'}} X_{t'}
\varphi_t &= \displaystyle{\bigvee_{\alpha, t': t \trans{\alpha} t'}} \dmnd{\alpha} X_{t'} & \mbox{if } t \nottrans{\omega}, t\trans{\;}
\end{eqnarray*}

and take $\phimay t$\ to be the $\rechml^+$\ formula $\min_t({\overline{X_T}}, {\overline{\varphi_T}})$.\\
Next we define the following environments:
\begin{eqnarray*}
\rhomin(X_t) &=& \sem{\phimay t}\\
\rhomay(X_t) &=& \{ p \barra p \maysatisfy t\}
\end{eqnarray*}

In the same style as Section \ref{sec:must}, we will prove that the two environments above coincide.
\begin{prop}
\label{prop:minsubmay}
For each test $t, \rhomin(X_t) \subseteq \rhomay(X_t)$.
\end{prop}
\begin{proof}
Suppose the LTS generated by a test $t$\ is finite state and finite branching. 
We just need to show that 
$\sem{\varphi_t} \rhomust \subseteq \rhomust(X_t)$: 
then we can apply the \textit{minimal fixpoint property}, 
Theorem \ref{thm:fixpointprop} (\ref{thm:minfixprop}), 
to conclude 
\[
\rhomin(X_t) = \sem{\slfp t {\overline{X_T}}{\overline{\phi_T}}} 
\subseteq \rhomust(X_T).
\]
The proof is carried out by performing a case 
analysis on $t$.
\begin{itemize}
\item $t \trans{\omega}$. In this case we have $\rhomay(X_t) = S$, so the statement trivially holds.
\item $t \nottrans{\;}$. W have $\phi_t = \fff$, hence $\sem{\phi_t} \rhomay = \emptyset$. Again, the statement is trivial.
\item $t \nottrans{\omega}, t \trans{\;}$. 
Suppose $p \in \sem{\phi}\rhomay$. We have that there exists at least one action 
$\alpha$\ such that $t \trans{\alpha} t'$; thus there exists a process 
$p'$\ such that $p \Trans{\alpha} p'$\ and $p' \maysatisfy t'$ (in the case 
$\alpha = \tau$ choose $p' = p$). Hence we have the computation fragment
\[
p \barra t \shortrightarrow \cdots \shortrightarrow p'' \barra t \shortrightarrow p' \barra t',
\]
so that $p \maysatisfy t$.
\end{itemize}
\end{proof} 

\begin{prop}
\label{prop:maysubmin}
For each test $t, \rhomay(X_t) \subseteq \rhomin(X_t)$.
\end{prop}

\begin{proof}
Again, assume the LTS generated by a test $t$\ is finite state.
Let $p$\ be a process such that $p \maysatisfy t$. 
We proceed by induction on the minimal length of a successful computation prefix $|p, t|$\ 
to show that $p \maysatisfy t$ implies $p \in \sem{\varphi_t}\rhomin$; then the result 
$p \in \sem{\phi_t}$ is obtained by applying the Fixpoint Property \ref{thm:fixpointprop}(\ref{thm:fixprop}).
\begin{itemize}
\item $|p, t| = 0$. In this case we have $t \trans{\omega}$. By definition, $\phi_t = \ttt$, so that we have $\sem{\phi_t}\rhomin = S$. This case is trivial.
\item $|p, t| > 0$. Let
\[
p \barra t \shortrightarrow p' \barra t' \shortrightarrow \cdots \shortrightarrow p_n \barra t_n
\]
be a successful computation prefix of length $|p, t|$. 
We distinguish several cases according to the structure of the 
computation. Since $p' \maysatisfy t'$ and $|p',t'|<|p,t|$, 
in each case we have $p' \in \sem{\varphi_{t'}}\rhomin$\ by inductive hypothesis.
\begin{itemize}
\item $p = p'$, $t \trans{\tau} t'$; we have 
$p \in \sem{X_t}\rhomin = \sem{\dmnd{\tau}\phi_{t'}}\rhomin$. 
Then $p \in \sem{\bigvee_{\alpha, t':t\trans{\alpha}t'}\dmnd{\tau}X_{t'}}\rhomin$.
\item $p \trans{\tau} p'$, $t = t'$; we have 
$p' \in \sem{X_t}\rhomin$, and therefore 
$p \in \sem{X_t}\rhomin$ by Lemma \ref{prop:mayhmltauclosed}.
\item $p \trans{a} p'$, $t \trans{a} t'$; 
in this case $p \in \sem{\dmnd{a} X_{t'}}\rhomin$, and hence $p \in \sem{\phi_t}\rhomin$.
\end{itemize}
\end{itemize}
\end{proof}

Propositions \ref{prop:minsubmay} and \ref{prop:maysubmin} can be 
combined to obtain the following result:

\begin{thm}
\label{thm:maytest}
 Every finitary test $t$ is \emph{may}-representable.\qed
\end{thm}

\begin{corollary}\label{cor:maylargest}
Suppose $\phi$ is a formula in \rechml which is \emph{may}-testable. Then 
there exists some $\psi$ in $\mayhml$ which is logically equivalent to it.
\end{corollary}

\begin{proof}
Suppose $\phi$\ is \emph{may}-testable. By theorem 
\ref{thm:mayhml} there exists a finite test 
$t = \Tmay \phi$\ which \emph{may}-represents $\phi$. 
Further, by Theorem \ref{thm:maytest}\ there exists a 
formula $\psi = \phimay {t} \in \mayhml$\ which \emph{may}-tests for $t$. Therefore
\[
p \in \sem{\phi} \Leftrightarrow p \maysatisfy \Tmay \phi \Leftrightarrow p \in \sem{\psi}
\]
\end{proof}

\chapter{Conclusions}\label{sec:end}

We have investigated the relationship between properties of processes as expressed 
in a recursive version of Hennessy-Milner logic, \rechml, and \emph{extensional} tests as 
defined in \cite{dhn}. In particular we have shown that both \emph{may} and \emph{must}
tests can be captured in the logic, and we have isolated logically complete sub-languages
of \rechml which can be captured by \emph{may} testing and \emph{must} testing. One 
consequence of these results is that the \emph{may} and \emph{must} testing preorders
of \cite{dhn} are determined by the logical properties in these sub-languages \mayhml and
\musthml respectively.\\

However these results come at the price of modifying the satisfaction relation; 
to satisfy a box formula a process is required to converge. One consequence of this 
change is that the language \rechml no longer characterises the standard notion
of \emph{weak bisimulation equivalence}, as this equivalence is insensitive to
divergence. But there are variations on \emph{bisimulation equivalence} which do
take divergence into account; see for example \cite{walker,cbl}.\\

The research reported here was initiated after reading \cite{aceto};
there a notion of testing was used which is different from both
\emph{may} and \emph{must} testing. They define $s$ \emph{passes} the
test $t$ whenever no computation from $s \;|\; t$ can perform the
success action $\omega$, and give a sub-language which characterises this form of testing. 
It is easy to check that $s$ \emph{passes} $t$ if and only if, in our terminology, 
$s$ \emph{may} $t$ is not true. So their notion of testing is dual to \emph{may} testing,
and therefore, not surprisingly, our results on \emph{may} testing are simply dual versions
of theirs.\\

We have concentrated on properties associated with essentially two
behavioural theories, \emph{weak bisimulation equivalence} and
\emph{testing}. However there are a large number of other behavioural theories; 
see \cite{rob} for an extensive survey, including their characterisation in terms of
\emph{observational} properties.
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\begin{abstract}
Process behaviour is often defined either in terms of the tests they 
satisfy, or in terms of the logical properties they enjoy. Here we compare these
two approaches, using \emph{extensional testing} in the style of
DeNicola, Hennessy, and a recursive version of the property logic HML.

We first characterise subsets of the property logic which can be captured by tests. 
Then we show that those subsets adequately represent the power of tests.
\end{abstract}
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\chapter{Introduction}
It is very natural to use properties to determine process behaviour;
two processes are deemed to be behaviourally equivalent, $p
\approxprop q$ unless there is a property enjoyed by one and not the
other. Indeed this is often used as a justification for the use of the
well-known \emph{bisimulation equivalence} between processes,
\cite{ccs}. As a property language one can use the modal language
commonly referred to as \textit{Hennessy Milner Logic} (HML), 
which describes the ability of processes to repeatedly interact 
with each other by performing actions.  
Then, in an appropriate setting, it can be shown that two processes are
\emph{bisimulation equivalent}  unless there is some
property $\phi$ such that $p$ enjoys $\phi$ and $q$ does not, or
conversely $q$ enjoys $\phi$ and not $p$, \cite{ccs}; that is the
\emph{bisimulation equivalence} coincides with  $\approxprop$.\\

An alternative approach to process behaviour is based on tests,
\cite{dhn}.  Intuitively two processes are \emph{testing equivalent},
$p \approxtest q$, relative to a set of tests $T$ if $p$ and $q$ pass
exactly the same set of tests from $T$. Much here depends of course on
details, such as the nature of tests, how they are applied and how
they succeed. Indeed it has been shown, \cite{abramsky}, that if one
is sufficiently general with this detail then one can design a
scenario in which the property based view $p \approxprop q$ coincides
with the testing view $p \approxtest q$.\\

A much more restricted view of testing was proposed in \cite{dhn},
where observers have very limited ability to manipulate the processes
under test; informally processes are conceived as completely
independent entities which may or may not react to testing requests;
more importantly the application of a test to a process simply
consists of a run to completion of the process in a \emph{test
  harness}. Because processes are in general nondeterministic,
formally this leads to two testing based equivalences, $ p \approxmay
q$ and $p \approxmust q$; the latter is determined by the set of tests
a process guarantees to pass, written $p \mustsatisfy t$,
while the former by those it is possible to
pass, $p \maysatisfy t$.  The \emph{may} equivalence provides a basis for the so-called
trace theory of\\ processes \cite{csp} , while the \emph{must} equivalence
can be used to justify the various \emph{failures} denotational models
used in the theory of CSP, \cite{csp,olderog,rocco}.\\

We take these two different approaches to
process behaviour, properties versus tests, for granted. Intuitively the first leads to a
branching theory while the latter, in both its variations, leads to a
linear theory; see \cite{vardi} for a modern discussion of this
dichotomy.  Instead the purpose of this paper is to understand more
fully the difference in approach; we investigate the difference in power
between the use of properties as expressed in the modal language HML,
and the use of tests.\\

%A priori properties, at least those expressed in HML, and tests are orthogonal. 
%But
The relationship between properties and tests was first
investigated in \cite{aceto} for a recursive version of HML, which we will 
refer to as \rechml, for a non-standard notion of testing. Here we revisit 
this question but this time for the more standard notions of \emph{may}
and \emph{must} testing mentioned above.\\

To explain our results, at least intuitively, let us introduce some
informal notation; formal definitions will be given later in the paper.
Suppose we have a property $\phi$ and a test $t$ such that
\begin{quote}
  for every process $p$,\;\; $p$ satisfies $\phi$ if and only if $p$ \maysatisfy\ 
  the test $t$.
\end{quote}
Then we say the formula $\phi$ \emph{may}-represents the test $t$.
We use similar notation with respect to \emph{must} testing. 
Our first result shows that
the power of tests can be captured by properties; for every test $t$:
\begin{enumerate}[(i)]
\item 
there is a formula $\phimay{t}$ which \emph{may}-represents $t$; see Theorem~\ref{thm:maytest},
%$p \maysatisfy t$ if and only if  $p$ satisfies the formula 
%$\phimay{T}$

\item 
there is a formula $\phimust{t}$ which \emph{must}-represents $t$; see Theorem~\ref{thm:musttest}.
% $p \mustsatisfy t$ if and only if  $p$ satisfies the formula 
% $\phimust{t}$
\end{enumerate}

Properties, or at least those expressed in \rechml, are more
discriminating than tests, and so one would not expect the converse to hold.
But we can give simple descriptions of subsets of \rechml, called 
\mayhml and \musthml respectively, with the following properties:
\begin{enumerate}[(a)]
\item every $\phi \in \mayhml$ \emph{may}-represents some   test $\Tmay{\phi}$; see Theorem~\ref{thm:mayhml}

\item every $\phi \in \musthml$ \emph{must}-represents  some  test $\Tmust{\phi}$; see Theorem~\ref{thm:musthml}

\end{enumerate}

Moreover because the formulae $\phimay{t},$\;$\phimust{t}$ given in (i),
(ii) above are in \mayhml,\\ \musthml respectively, these sub-languages
of \rechml have a pleasing completeness property. For example let
$\phi$ be any formula from \rechml which can be represented by some
\emph{must} test $t$; that is $p$ satisfies $\phi$ if and only if $p
\mustsatisfy t$. Then up to logical equivalence the formula $\phi$ is
guaranteed to be already in the sub-language \musthml; that is there is
a formula $\psi \in \musthml$ which is logically equivalent to
$\phi$. The language \mayhml has a similar completeness property for
\emph{may} testing.\\

We now give a brief overview of the remainder of the paper.
In Section \ref{sec:background} we recall some basic definitions from 
concurrency theory. These are required to state our results precisely.
In Section \ref{sec:recursivehml} we present the modal logics that 
will be used to express properties of concurrent systems.
In Section \ref{sec:testing} we develop two testing frameworks testing 
frameworks, which are exactly those described in \cite{dhn}.\\
We then set up the formal definition of the question being addressed in 
the paper in Section \ref{sec:tf}. In Section \ref{sec:must} we analyse such a 
question when dealing with the must testing relation, while in Section \ref{sec:may} 
we deal with the may case.\\
Finally, we state our Conclusions in Section \ref{sec:end}.\\
We assume the reader has no previous knowledge in the field; that is, 
basic definitions are explained in detail, often providing illuminating examples.

\chapter{Background}
\section{Modeling Concurrent Systems}
\label{sec:background}
The first step that has to be accomplished in order to reason formally 
about concurrent systems is to provide a mathematical model which allows to 
give a formal description of their behaviour.\\

At a descriptive level, we can think of systems as devices which can 
access different states; for example, if we consider a personal computer 
the set of states it can access coincides with the set of all its 
memory configurations. Further, concurrent systems can usually interact 
with the environment that surrounds them, by performing some kind of activity 
which can be detected by a component which is external to the system, or by 
receiving inputs from such a component. In general we can assume there is 
a set of actions that allows the system to interact with the 
external environment. We expect that the execution of one of those actions 
will result in an evolution of the state of the system. If we consider again 
the personal computer example, then the external environment can be a user 
typing the name of a program to be executed on the keyboard; 
when the enter key is pressed, the command will be sent to the computer. 
On the other hand, the computer will receive the name of the program to be 
executed and will load the instructions of such a program in its memory, thereby 
causing an evolution of the system state.\\

Finally, it is also the case that the state of a system evolves even when 
there is no interaction with the external environment; in other words, 
we must take into account the possibility for unobservable activities 
to be performed by a system. In the computer example above, once the 
program code has been loaded into the memory, instructions will start 
to be executed. Each time an instruction is executed, the content of 
the computer's memory is updated. However, this activity is the result 
of an internal computation which cannot be directly detected by any user 
which is interacting with the computer.\\

This discussion suggests that a possible mathematical description of a 
concurrent system should include 
\begin{itemize}
 \item its set of states,
 \item the set of actions it can perform to interact with a component 
external to the system,
 \item a special action which denotes unobservable ability
 \item a description of the evolution of the system states when some 
 action (either observable or unobservable) is performed.
\end{itemize}
The mathematical model used to represent such information takes the 
name of \textit{labeled transition system} (LTS).

\begin{defi}[Labeled transition System]
A LTS over a set of actions $Act$\ is a triple $\mathcal{L} = \langle S,\; Act_{\tau},\; \longrightarrow \rangle$\ where:
\begin{itemize}
\item $S$\ is a countable set of states
\item $Act_{\tau} = Act \cup \{\tau\}$\ is a countable set of actions,
where $\tau$ does not occur in $Act$
\item $\longrightarrow \subseteq S \times Act_{\tau} \times S$\ is a transition relation.
\end{itemize}
The special action $\tau$ denotes unobservable or internal activity.\\
We use $a, b, \cdots$\ to range over the set  of external actions $Act$, and $\alpha,
\beta, \cdots$\ to range over  $Act_\tau$.
The standard notation $s \trans{\alpha} s'$\ will be used in lieu of $(s,\alpha,s') \in \longrightarrow$. 
States of a LTS $\mathcal{L}$\ will also be referred to as (term)
\textit{processes} and ranged over by $s,\,s',p,\;q$.\qed
\end{defi}

First we look at an example of LTS which is standard in all 
concurrency theory.
 \begin{table}[h]
  \centering
       \begin{ltspic}{2.8cm}
        \node[state]   (A)                      {wait};
        \node[state]   (B)  [below of=A]        {select};
        \node[state]   (C)  [below left of=B]   {\footnotesize{do coffee}};
        \node[state]   (D)  [below right of=B]  {\footnotesize{~~do tea~~~}};

        \path (A)      edge              node{coin}           (B)
              (B)      edge              node{coffee}         (C)
                       edge              node{tea}            (D)
              (C)      edge[bend left]   node[left]{$\tau$}   (A)
              (D)      edge[bend right]  node[right]{$\tau$}  (A);
      \end{ltspic}
   \caption{LTS for the vending machine: graphical representation}
   \label{lts:vm}
 \end{table}
\begin{example}
\label{ex:vm}
 Suppose we want to model a vending machine which can provide 
 a customer either coffee or tea. The vending machine is initially 
 waiting for a customer to insert a coin. When this event occurs, 
 the vending machine enables two selection buttons, respectively for 
 coffee and tea, and waits for the customer to choose one of them. 
 Once the selection button has been pressed, the vending machine will 
 start producing the selected beverage; when this process has finished, 
 the vending machine will perform an unobservable action to return in 
 the initial state.

 The set of states of the vending machine can then be defined as 
 $\{\mbox{wait}, \mbox{select}, \mbox{do coffee}, \mbox{do tea}\}$, 
 while the set of external actions it can perform can be defined 
 as\\
 $\{\mbox{coin}, \mbox{coffee}, \mbox{tea}\}$.\\
 Finally, we can model the behaviour of the vending machine by 
 building the transition relation for the above sets of states and 
 actions. The relation $\trans{\;}$\ for the vending machine is then 
 given by 
 \begin{eqnarray*}
  \mbox{wait} &\trans{\mbox{coin}}& \mbox{select}\\
  \mbox{select} &\trans{\mbox{coffee}}& \mbox{do coffee}\\
  \mbox{select} &\trans{\mbox{tea}}& \mbox{do tea}\\
  \mbox{do coffee} &\trans{\tau}& \mbox{wait}\\
  \mbox{do tea} &\trans{\tau}& \mbox{wait}
 \end{eqnarray*}\qed
\end{example}

 Often it is useful to give a graphical representation of a LTS; 
 states are represented by balls labeled with the name of the 
 corresponding state. Whenever $p \trans{\alpha} q$\ for some 
 state $p, q$ and action $\alpha$, we draw a directed arrow 
 labeled with the name of the action $\alpha$\ from the ball 
 representing $p$\ to the ball representing $q$.
 The graphical representation of the LTS for the coffee vending 
 machine illustrated in Example \ref{lts:vm} is given in Table 
 \ref{lts:vm}.\\

Let us recall some standard notation associated with LTSs. We write
$s \trans{\alpha}$\ if there exists some $s'$\ such that $s
\trans{\alpha} s'$, $s \longrightarrow$\ if there exists $\alpha \in
Act_{\tau}$\ such that $s \trans{\alpha}$, and $s \nottrans{\alpha}$, $s
\nottrans{\;}$\ for their respective negations. We use $\Succ{\alpha, s}$ to
denote the set $\{s' | s \trans{\alpha} s'\}$, and $\Succ{s}$ for 
$\bigcup_{\alpha \in Act_{\tau}} \Succ{\alpha, s}$. 
If $\Succ{s}$ is finite for every state $s \in S$ the LTS is said to be \textit{finite
  branching}.  Finally, a state $s$\ diverges, denoted $s \Uparrow$,
if there is an infinite path of internal moves 
\[
s \trans{\tau} s_1 \trans{\tau} \cdots \trans{\tau} s_{n} \trans{\tau} s_{n+1} \trans{\tau} \cdots
\]
while it converges, denoted $s \Downarrow$, otherwise.
\begin{table}[t]
\centering
\begin{ltspic}{1.8cm}
        \node[state]   (A)                       {$s_0$};
        \node[state]   (B)  [below right of=A]   {$s_1$};
        \node[state]   (C)  [above right of=A]   {$s_2$};
        \node[state]   (D)  [right of=C]         {$s_3$};
        
        \path (A)      edge [loop above]  node{$\tau$}        (A)
                       edge               node{$a$}           (B)
                       edge               node{$b$}           (C)
              (C)      edge               node{$a$}           (D);
\end{ltspic}
\caption{a very simple LTS}
\label{lts:ex2}
\end{table}
\begin{example}
Consider the LTS depicted in Table \ref{lts:ex2}.
In this case we have $s_0 \trans{a}$, since $s_0 \trans{a} s_1$. Moreover 
it holds $s_0 \trans{b}$, as $s_0 \trans{b} s_2$. It is also the case 
that $s_0 \trans{\;}$ for there exists an action $\alpha$ (either 
$a$ or $b$) such that $s \trans{\alpha}$. For state $s_0$\ we find 
that $\Succ{a, s_0} = \{s_1\}, \Succ{b, s_0} = \{s_2\}$, and thereby 
$\Succ{s_0} = \{s_1, s_2\}$. Finally, notice that it is possible 
to produce an infinite path rooted in $s_0$ whose form is
\[
s_0 \trans{\tau} s_0 \trans{\tau} \cdots \trans{\tau} s_0 \trans{\tau} \cdots
\]
so that $s_0 \Uparrow$.\\
If we repeat this procedure for state $s_2$ we now find that it is 
also the case that $s_2 \trans{a}$, as $s_2 \trans{a} s_3$; further 
we can compute $\Succ{a, s_2}$ to find out that such a set is 
exactly $\{s_3\}$. However, for state $s_2$\ there exists no state $s$
such that $s_2 \trans{b} s$. Indeed, $\Succ{b, s_2} = \emptyset$; in 
this case we infer that $s_2 \nottrans{b}$. Finally, since $s_2 \trans{a}$ 
we obtain that $s_2 \trans{\;}$. It is trivial to notice that $s_2 \Downarrow$, 
as it cannot perform any internal transition $\trans{\tau}$.\\
Finally, let us look at state $s_3$. It is easy to notice that both for 
actions $a$ and $b$ we have $s \nottrans{a}$\ and $s\nottrans{b}$. Therefore, 
since there is no action that such a state can perform, we conclude that 
$s_3 \nottrans{\;}$. For such a state we have in fact $\Succ{s_3} = \emptyset$. 
Again, it is the case that $s_3 \Downarrow$. All the states in the LTS of 
Table \ref{lts:ex2} have a finite number of derivatives, so that they are 
all finite branching.\qed
\end{example}
\begin{example}
 \begin{table}
   \centering
          \begin{ltspic}{2.0cm}
        
            \node[state]  (A)                                                    {$s$};
            \node[state]  (B)  [right of=A, draw=white, fill=white, text=black]  {$\vdots$};
            \node[state]  (C)  [above of=B]                                      {$s_2$};
            \node[state]  (D)  [above of=C]                                      {$s_1$};
            \node[state]  (E)  [below of=B]                                      {$s_{n}$};
            \node[state]  (F)  [below of=E]                                      {$s_{n}$};
            \node[state]  (G)  [below of=F, draw=white, fill=white, text=black]  {$\vdots$};
            

            \path  (A)  edge  [bend left]   node[right]{$\alpha_2$}      (C)
                        edge  [bend left]   node[left]{$\alpha_1$}       (D)
                        edge  [bend right]  node[right]{$\alpha_{n}$}    (E)
                        edge  [bend right]  node[right]{$\alpha_{n+1}$}  (F);
          \end{ltspic}
   \caption{LTS with a non finite branching state}
   \label{lts:nbf}
 \end{table}
Look at state $s$\ in picture \ref{lts:nbf}. The set of successors of such a state 
is $\{s_1, s_2, \cdots, s_n, s_{n+1}, \cdots\}$, which is countable. Therefore,
we have that such a state is not branching finite.\qed
\end{example}

When analysing the behaviour of a system by giving its description as a LTS, 
it is often the case that we are interested in those activities which can be detected 
by the external environment. This give rise to the standard notation for weak 
actions $\Trans{\alpha}$. Intuitively speaking, if a system performs an unobservable 
activity which causes it to evolve from a state $s$ to a state $s'$, and then it 
performs another unobservable ability which makes it evolve from $s'$ to $s''$, then 
the result of these two activities can still be considered as some activity that 
cannot be detected by the environment. Formally, we say that 
$s \Trans{\tau} s''$. This procedure applies to arbitrary long sequences of 
unobservable activities, so that we say that $s \Trans{\tau} s'$ whenever 
it is the case that $s \transarrow{\tau} s'$, where we recall that 
$\transarrow{\tau}$ is the reflexive transitive closure of $\trans{\tau}$.\\

Further, consider the case when a system performs an arbitrary sequence 
of unobservable activities; then it performs another activity, represented in 
a LTS by action $a$, which can be detected by the external environment, and 
finally it performs another arbitrary sequence of unobservable activities. 
Again, this can be considered as an unique activity of the system where the 
only visible action that has been performed is $a$. Formally, for a given 
LTS we say that $s \Trans{a} s'$\ if and only if there exist $s_1, s_2$ 
such that $s \Trans{\tau} s_1 \trans{\tau} s_2 \Trans{\tau} s'$.
\begin{example}
\begin{table}[h]
\centering
 \begin{ltspic}{1.5cm}
        \node[state]   (A)                       {$s_0$};
        \node[state]   (B)  [right of=A]         {$s_1$};
        \node[state]   (C)  [right of=B]         {$s_2$};
        \node[state]   (D)  [right of=C]         {$s_3$};
        \node[state]   (E)  [right of=D]         {$s_4$};
        
        \path (A)      edge               node{$\tau$}        (B)
              (B)      edge               node{$a$}           (C)
              (C)      edge               node{$\tau$}        (D)
              (D)      edge               node{$\tau$}        (E);
 
 \end{ltspic}
 \caption{Another simple LTS}
 \label{lts:ex3}
\end{table}
Look at the LTS depicted in Table \ref{lts:ex3}. Since $s_0 \trans{\tau} s_1$, we 
have that $s_0 \Trans{\tau} s_1$. Analogously, we obtain that $s_2 \Trans{\tau} s_4$, 
for $s_2 \trans{\tau} s_3 \trans{\tau} s_4$. Finally, since $s_1 \Trans{\tau} s_2 
\trans{a} s_2 \Trans{\tau} s_4$ we obtain $s_0 \Trans{\tau} s_4$. A similar 
procedure shows that $s_0 \Trans{\tau} s_3$\ also.\qed
\end{example}

When $s \Trans{\alpha} s'$\ we say that $s'$ is an 
$\alpha$-derivative of $s$.
The associated notation  $s\, \Trans{\alpha}$,  
$s \Longrightarrow$, $s \notTrans{\alpha}$\ 
and $s \notTrans{\;}$\ have the obvious definitions.\\

As we are dealing with systems which 
can communicate with the external environment, it is often the 
case that we want to analyse the behaviour of a system when it 
is put in composition with another one. If both of them are 
represented as LTSs, then we expect to model their composition 
as a LTS as well. Formally we can define a parallel composition 
operator as follows:
\begin{defi}[Parallel composition]
\label{def:pcomp}
Let $\mathcal{L}_1 = \langle S_1,\; Act^{1}_{\tau},\; 
\longrightarrow\rangle$,\\ $\mathcal{L}_2 = \langle S_2,\;
 Act_{\tau}^2,\; \longrightarrow \rangle$ be LTSs.
The parallel composition of $\mathcal{L}_1$\ and $\mathcal{L}_2$\
 is a LTS $\mathcal{L}_1 | \mathcal{L}_2 =\; 
\langle S_1 \times S_2,\; \{\tau\}, \longrightarrow \rangle$, where
$\longrightarrow$\ is defined by the following SOS rules:
\begin{center}
\begin{tabular}{ccc}
\begin{prooftree}
s \trans{\tau} s'
\justifies
s | t \trans{\tau} s' | t
\end{prooftree}
&
\begin{prooftree}
t \trans{\tau} t'
\justifies
s | t \trans{\tau} s | t'
\end{prooftree}
&
\begin{prooftree}
s \trans{a} s' \quad t \trans{a}_2 t'
\justifies
s | t \trans{\tau} s' | t'
\end{prooftree}
\end{tabular}
\end{center}
$s | t$\ is used as a conventional notation for $(s, t)$.\qed
\end{defi}

The first two rules models the possibility for each component of a LTS to
perform their internal actions independently from the other one. This is needed, 
as internal activities of a component cannot be detected by the other one.
The third rule corresponds to a synchronization between the two components 
upon performing the same action; such a synchronization will result in an
internal activity which cannot be detected by an external environment.\\

Notice that the parallel composition operator we introduced does not allow 
any external action for the composition of two LTSs. This is non standard 
with respect to other definitions of parallel composition that can be found 
in Concurrency Theory literature; however, this choice will allow a simple 
presentation of extensional testing, which is covered in Section \ref{sec:testing}.\\

\begin{example}
Consider again the vending machine whose LTS is depicted in Table \ref{lts:vm}. Suppose 
a customer wants to interact with the vending machine to obtain a coffee. The 
customer will then insert a coin into the vending machine, then he will press the 
coffee button. The LTS that models a customer is straightforward and is depicted 
in Table \ref{lts:cust}. We can then apply Definition \ref{def:pcomp} to obtain 
the LTS which models the interaction between the vending machine and the customer. 
The LTS for the new composed system is given in Table \ref{lts:comp}; there 
$w, s$ and $c$ are used as abbreviations for states wait, select and 
do coffee respectively.\qed
\end{example}

\begin{table}[h]
\centering
\begin{ltspic}{2.0cm}
  \node[state]            (A)                                       {$t_0$};
  \node[state]            (B)  [right of=A]                         {$t_1$};
  \node[state,accepting]  (C)  [right of=B]  {$t_2$};
                
  \path                   (A)  edge  node{coin}    (B)
                          (B)  edge  node{coffee}  (C);
  \end{ltspic}
 \caption{LTS for a customer of the vending machine}
 \label{lts:cust}
\end{table}
\begin{table}[h]
\centering
        \begin{ltspic}{2.0cm}
          
          \node[state]  (A)                {$w \lvert t_0$};
          \node[state]  (B)  [right of=A]  {$s \lvert t_1$};
          \node[state]  (C)  [right of=B]  {$c \lvert t_2$};
          \node[state]  (D)  [right of=C]  {$w \lvert t_2$};

          \path         (A)  edge          node{$\tau$}  (B)
                        (B)  edge          node{$\tau$}  (C)
                        (C)  edge          node{$\tau$}  (D);
        \end{ltspic}
 \caption{composition between the vending machine and the customer}
 \label{lts:comp}
\end{table}
\section{Formalising Properties: Recursive HML}
\label{sec:recursivehml}
The next topic we address concerns how to express properties of 
interest for an LTS. To this end, we need to define both a formal 
language for the formulae which will be used to express properties, 
and an interpretation function that defines the set of states 
of a LTS that satisfies a given formula.\\

The \textbf{Hennessy Milner Logic} (HML) \cite{hml} has proven to 
be a very expressive property language based on a minimal set of modalities to 
capture the actions a process can perform, and what the effects of performing such 
actions are. Here we use a variant in which the interpretation depends on
the weak actions of a LTS.

\begin{defi}[Syntax of \rechml]
Let $Var$\ be a countable set of variables.
The language \rechml is defined as the set of 
closed formulae generated by the following grammar:
\begin{eqnarray*}
\phi &\is& \ttt \barra \fff \barra X \barra \Acc A \barra \dmnd{\alpha}\phi \barra [\alpha]\phi \barra\\ 
&\barra& \phi_1 \vee \phi_2 \barra \phi_1 \wedge \phi_2 \barra \lfp{X}{\phi} \barra \gfp{X}{\phi}
\end{eqnarray*}
Here $X$\ is chosen from the countable set of variables $Var$.
The operators $\lfp X{\phi}$, $\gfp X {\phi}$ act as binders for variables and we have the
standard notions of free and bound variables, and associated binding sensitive
substitution of formulae for variables.\qed
\end{defi}

Let us recall the informal meaning of \rechml operators. A formula 
of the form $\dmnd \alpha \phi$\ expresses the need for a process to have an 
$\alpha$-derivative which satisfies formula $\phi$, while formula $[\alpha]\phi$\ 
expresses the need for all $\alpha$-derivatives (if any) of a converging process to satisfy formula 
$\phi$.\\
Formula $\Acc A$\ is defined when $A$\ is a finite subset of $Act$, and is satisfied exactly 
by those converging processes for which each $\tau$\ derivative 
has at least an $a$-derivative for some $a \in Act$.
The formulae $\lfp X \phi$\ and $\gfp X \phi$ allow 
the description of recursive properties, respectively being
the least and largest solution of the equation $X = \phi$\ 
over the powerset domain of the state space.\\

Formally, given a LTS $\langle S, Act_{\tau}, \longrightarrow \rangle$, 
we interpret each (closed) formula
as a subset of $2^S$. The set $2^s$ is a complete lattice and the
semantics  is determined by interpreting each operator in the language as 
a monotonic operator over this complete lattice. The binary operators 
$\vee,\;\wedge$ are interpreted as set theoretic union and intersection
respectively while the unary operators are interpreted as follows:
\begin{align*}
  \dmnd{\cdot\alpha\cdot}P = &\;\setof{s}
            { s\Trans{\alpha} s' \mbox{ for some } s' \in P}\\
 \bbox{\cdot\alpha\cdot}P =&\; \setof{s}
        {s\Downarrow, \text{ and } s\Trans{\alpha} s' \mbox{ implies } s' \in P}
\end{align*}
where $P$ ranges over subsets of $2^S$.\\

Open formulae in \rechml can be interpreted by specifying, 
for each variable $X$, the set of states for which 
the atomic formula $X$\ is satisfied.
Such a mapping from $Var$\ to $2^S$\ is called environment.
Let $\mbox{Env}$\ be the set of environments,
mappings $\rho: \mbox{Var} \rightarrow 2^S$.  A formula $\phi$\ of
$\rechml$ will be interpreted as a function $\sem{\phi}: \env \rightarrow 2^S$. 
We will use the standard notation $\rho[X \mapsto P]$\ to refer to the 
environment $\rho'$\ such that $\rho'(X) = P$\ and $\rho'(Y) = \rho(Y)$\ for 
all variables $Y$\ such that $X \neq Y$.\\
The definition of the interpretation $\sem{\cdot}$\ is given in Table
\ref{tab:interpr}.\\

The interpretation of a formula $\lfp X \phi$\ in the  
environment $\rho$ is defined as the smallest pre fixpoint 
of a monotonic functional 
$\mathcal{F}_{\phi}^{\rho}: 2^S \rightarrow 2^S$ such that\\
$\mathcal{F}_{\phi}^{\rho}(P) = \sem{\phi}\rho[X \mapsto P]$. 
When dealing with closed formulae, Tarski's fixed point Theorem 
\cite{becik} ensures that such a set coincides with the least 
solution of the equation $X = \phi$, as described in our informal 
explanation of the meaning of \rechml formulae. A similar argument 
applies to formulae of the form $\gfp X \phi$, whose interpretation 
in an environment $\rho$\ is defined as the greatest post fixpoint 
of the monotonic functional considered above. We defer the proof 
of Tarski's fixed point Theorem until the end of the section, for it is first 
necessary to prove some simple properties enjoyed by language 
\rechml.\\

When referring to the interpretation of a closed formula $\phi \in
\rechml$, we will omit the environment application, and  sometimes 
use the standard notation $p \models \phi$ for $p \in \sem{\phi}$.
\begin{example}
Consider a LTS with a single state $p$\ and a unique transition $p \trans{b} p$.
Let us analyse whether or not state $s$ satisfies the properties 
$\lfp {X} {\bbox a \fff \wedge \bbox b X}$ and
$\gfp {X} {\bbox a \fff \wedge \bbox b X}$.\\
To do this, we apply directly the interpretation of \rechml formulae 
given in Table \ref{tab:interpr}.
For the first formula, consider the empty set $\emptyset$. 
It is simple to show that\\
$\sem{\bbox a \fff \wedge \bbox b X}[X \mapsto \emptyset]
\subseteq \emptyset$. The calculation is carried out below:
\begin{eqnarray*}
 \sem{\bbox a \fff \wedge \bbox b X}[X \mapsto \emptyset] &=& 
\sem{\bbox a \fff}[X \mapsto \emptyset] \cap \sem{\bbox b X}[X \mapsto \emptyset]\\
&=& \bbox{\cdot a \cdot}(\sem{\fff}[X \mapsto \emptyset]) \cap \bbox{\cdot b \cdot}\sem{X}[X \mapsto \emptyset]\\
&=& \bbox{\cdot a \cdot}\emptyset \cap \bbox{\cdot b \cdot} \emptyset\\
&=& \{s \in S | s \Downarrow, s \notTrans{a}\} \cap \{ s \in S | s \Downarrow, s \notTrans{b}\}\\
&=& \{p\} \cap \emptyset\; =\; \emptyset
\end{eqnarray*}
Therefore $\emptyset \in \{ P \;|\; \sem{\phi}\rho[X \mapsto P] \subseteq P\}$, or 
equivalently $\sem{\lfp X {\bbox a \fff \wedge \bbox b X}} \subseteq \emptyset$. As 
$\emptyset$ is the least element of the complete lattice $\{\emptyset, \{p\}\}$ we have 
that the inclusion above is actually an equality. Thus $p \not\models 
\lfp X {\bbox a \fff \wedge \bbox b X}$.\\
Next consider formula $\gfp {X} {\bbox a \fff \wedge \bbox b X}$. In this case we show that 
$\{p\} \subseteq \sem{\bbox a \fff \wedge \bbox b X}[X \mapsto \{p\}]$, 
and therefore (being $\{p\}$ the greatest element in the complete lattice 
$\{\emptyset, \{p\}\}$) we have that $\sem{\gfp {X} {\bbox a \fff \wedge \bbox b X}} 
= \{p\}$, i.e. $p \models \gfp {X} {\bbox a \fff \wedge \bbox b X}$. Again, 
the whole calculation is carried out below.
\begin{eqnarray*}
  \sem{\bbox a \fff \wedge \bbox b X}[X \mapsto \{p\}] &=&
  \bbox{\cdot a \cdot} \emptyset \cap \bbox{\cdot b \cdot}\{p\}\\
  &=& \{s \in S \,|\, s \Downarrow, s \notTrans{a}\} \cap \{s \in S \,|\, s \Downarrow, \forall s': s \Trans{b} s'.\, s'\in \{p\}\;\}\\
  &=& \{p\} \cap \{p\}\\
  &=&\{p\}
\end{eqnarray*}\qed

\end{example}
\begin{table}[t]%[ht]
\begin{eqnarray*}
\sem{\ttt}\rho &\triangleq& S\\
\sem{\fff}\rho &\triangleq& \emptyset\\
\sem{X}\rho &\triangleq& \rho(X)\\
\sem{\Acc A}\rho &\triangleq& \{ s | s \Downarrow, s \Trans{\tau} s' \mbox{ implies } \exists a \in A.s' \Trans{a} \}\\
\sem{\dmnd{\alpha} \phi}\rho &\triangleq& \dmnd{\cdot\alpha\cdot} (\sem{\phi}\rho)\\
\sem{\bbox{\alpha} \phi}\rho &\triangleq& \bbox{\cdot\alpha\cdot} (\sem{\phi}\rho)\\
\sem{\phi_1 \vee \phi_2}\rho &\triangleq& \sem{\phi_1}\rho \cup \sem{\phi_2}\rho\\
\sem{\phi_1 \wedge \phi_2} \rho &\triangleq& \sem{\phi_1}\rho \cap \sem{\phi_2}\rho\\
\sem{\lfp X \phi}\rho &\triangleq& \bigcap \{ P \;|\; \sem{\phi}\rho[X \mapsto P] \subseteq P\}\\
\sem{\gfp X \phi}\rho &\triangleq& \bigcup \{ P \;|\; P \subseteq \sem{\phi}\rho[X \mapsto P]\}
\end{eqnarray*}
\caption{Interpretation of \rechml}
\label{tab:interpr}
\end{table}
Our version of HML is non-standard, as we have added a convergence requirement for 
the interpretation of the box operator $\bbox{\alpha}$.
The intuition here is that, as in the \emph{failures model} of CSP \cite{csp}, divergence represents
\emph{underdefinedness}.  So if a process does not converge all of its
capabilities have not yet been determined; therefore one can not quantify over all
of its $\alpha$ derivatives, as the totality of this set has not yet been determined.\\

Further, the operator $\Acc\cdot$\ is also non-standard. It has been introduced 
for the sake of simplicity, as it will be useful later; in fact it does not add any 
expressive power to the logic, since for each finite set $A \subseteq Act$\ the formula 
$\Acc A$\ is logically equivalent to 
\[
 [\tau](\bigvee_{a \in A} \dmnd a \ttt).
\]

As usual, we will write $\phi\{\psi/X\}$\ to denote the formula $\phi$\ where all 
the free occurrences of the variable $X$\ are replaced with $\psi$. 
We will use the congruence symbol $\equiv$\ for syntactic equivalence.\\

Next, we show some useful properties which relate syntactic substitution 
in \rechml formulae with environments. These lemmas are particularly 
useful when dealing with recursive formula of the form $\lfp X \phi$\ 
and $\gfp X \phi$.
\begin{prop}\qquad
\label{prop:syntlemma}
\begin{enumerate}[(i)]
\item Let $\phi, \psi$\ be formulae such that $Y$\ does not occur 
free in $\psi$, let $\rho$\ be an environment and $P \subseteq 2^S$. 
Then
\[
\sem{\phi}\rho[X \mapsto \sem{\psi} \rho][Y \mapsto P] = 
\sem{\phi}\rho[Y \mapsto P][X \mapsto \sem{\psi}\rho[Y \mapsto P]\,]
\]
\label{prop:substlemma}
\item Let $\phi, \psi \in \rechml$, and $\rho$\ be an environment: then 
\[
\sem{\phi\{\psi/X\}}\rho = \sem{\phi}\rho[X \mapsto \sem{\psi}\rho].
\]
\label{prop:envlemma}
\end{enumerate}
\end{prop}
\begin{proof}
Both proofs can be performed by induction on the structure of the 
formula $\phi$. For (\ref{prop:substlemma}) three different sub 
cases should be handled when dealing with the case $\phi \equiv Z$ 
(namely $Z \equiv X;\; Z\equiv Y$\ and $Z \not\equiv X, Z \not\equiv Y$).\\ 
For (\ref{prop:envlemma}) we will only outline the details for the case 
$\phi \equiv \lfp Y {\phi_1}$: 
in this case we need to prove 
\[
 \sem{\lfp Y {\phi_1}\{\psi/X\}}\rho = \sem{\lfp Y {\phi_1}}\rho[X \mapsto \sem{\psi}\rho].
\]
By $\alpha$-renaming we can choose $Y$ to be a fresh variable, that is $Y \not\equiv X$ and 
$Y$ does not appear free in $\psi$.\\
Since $Y \not\equiv X$ we have that  $\lfp Y {\phi_1}\{\psi/X\} 
\equiv \lfp Y {\phi_1\{\psi/X\}}$. By inductive hypothesis we have
\[
\sem{\phi_1\{\psi/X\}}\rho = \sem{\phi_1}\rho[X \mapsto \sem{\psi}\rho]
\]
and, therefore,
\begin{eqnarray*}
\sem{\lfp Y {\phi_1\{\psi/X\}}}\rho &=& 
\bigcap \{P : \sem{\phi_1\{\psi/X\}}\rho[Y \mapsto P] \subseteq P\}\\
&\iheq& \bigcap \{P : \sem{\phi_1}\rho[Y\mapsto P][X 
\mapsto \sem{\psi}\rho[Y\mapsto P]] \subseteq P\}\\
&\stackrel{(\scriptstyle{\ref{prop:substlemma}})}{=}& 
\bigcap \{P : \sem{\phi_1}\rho[X\mapsto \sem{\psi}\rho][Y \mapsto P] 
\subseteq P\}\\
&=& \sem{\lfp Y {\phi_1}}\rho[X \mapsto \sem{\psi}\rho],
\end{eqnarray*}
where \ref{prop:substlemma} can be applied as $Y$ does not appear free in $\psi$.
\end{proof}

The language \rechml can be extended conservatively by adding
simultaneous fixpoints, leading to the language $\rechml^+$.  Given a sequence of variables
$(\overline{X})$ of length $n > 0$, and a sequence of formulae
$\overline{\phi}$\ of the same length, we allow the formula $min_i(\overline{X},
\overline{\phi})$ for $1 \leq i \leq n$, where the only variables allowed to
occur in each $\phi_i$ are those in $(\overline{X})$. This formula
will be interpreted as the $i$-th projection of the simultaneous
fixpoint formula.
\begin{defi}[Interpretation of simultaneous fixpoints]
  Let $\overline{X}$\ and $\overline{\phi}$\ respectively be sequences
  of variables and formulae of length $n$.
\begin{eqnarray*}
  \sem{\lfp {\overline{X}}{\overline{\phi}}}\rho &\triangleq& \bigcap 
 \{ \overline{P} \;|\; \sem{\phi_i}\rho[\overline{X}\mapsto\overline{P}]\subseteq 
  P_i \; \forall 1 \leq i \leq n\}\\
  \sem{\slfp i {\overline{X}}{\overline{\phi}}}\rho 
  &\triangleq& \pi_i(\sem{\lfp{\overline{X}}{\overline{\phi}}}\rho)
\end{eqnarray*}
where $\pi_i$\ is the $i$-th projection operator, and intersection over 
vectors of sets is defined to be the point wise intersection:
\[
\langle P_1, \cdots, P_n \rangle \cap \langle Q_1, \cdots, Q_n\rangle = \langle P_1 \cap Q_1, \cdots, P_n \cap Q_n\rangle
\]
\qed
\end{defi}

Intuitively, an interpretation $\sem{\lfp {\overline{X}} {\overline{\phi}}}$, where 
$\overline{X} = \langle X_1,\cdots,X_n\rangle$\ and 
$\overline{\phi} = \langle \phi_1, \cdots, \phi_n \rangle$, is the least solution 
(over the set of vectors of length $n$ over $2^S$) of the equation system whose form is
\begin{eqnarray*}
X_1 &=& \phi_1\\
&\vdots&\\
X_n &=& \phi_n
\end{eqnarray*}

while $\sem{\slfp i {\overline{X}} {\overline{\phi}}}$\ is the 
$i$-th projection of such a vector. Let $\overline{P} = \langle P_1, 
\cdots, P_n\rangle$\ be the least solution for a system of equations as above. 
The following theorem states that, for each index $i$, there exists an 
equation $X = \psi$\ such that its least solution coincides with $P_i$.

\begin{thm}[(Bek\'ic)]
\label{thm:becik}\qquad
\begin{enumerate}[(i)]
\item
Let $\overline{X} = \langle X_1,\; X_2 \rangle$\ and 
$\overline{\phi} = \langle \phi_1,\; \phi_2\rangle$. Then, 
for any environment $\rho$, 
\begin{eqnarray*}
\sem{min_1(\overline{X}, \; \overline{\phi})}\rho &=& 
\sem{\lfp {X_1} {\phi_1\{ \lfp{X_2}{\phi_2}/X_2\}}}\rho\\
\sem{min_2(\overline{X}, \; \overline{\phi})}\rho &=& 
\sem{\lfp {X_2} {\phi_2\{ \lfp{X_1}{\phi_1}/X_1\}}}\rho
\end{eqnarray*}
\label{prop:becik2}
\item For each formula $\phi \in \rechml^+$\ there is a formula 
$\psi \in \rechml$\ such that $\sem \phi = \sem \psi$.
\end{enumerate}
\end{thm}
\begin{proof}
\begin{enumerate}[(i)]
\item By straightforward calculations: we will show only the 
case for $\slfp 1 {\overline{X}} {\overline{\phi}}$, as the other one is obtained by symmetry:
\begin{eqnarray*}
&\sem{\lfp {X_1} {\phi_1\{\lfp {X_2}{\phi_2}/X_2\}}}\rho &=\\
&\bigcap \{P:\ \sem{\phi_1\{\lfp {X_2}{\phi_2}/X_2\}}\rho[X \mapsto P] 
\subseteq P\}&\stackrel{\mbox{\ref{prop:syntlemma}}}{=}\\
&\bigcap\{P: \sem{\phi_1}\rho[X_1 \mapsto P]
[X_2 \mapsto \sem{\lfp {X_2}{\phi_2}}\rho[X_1 \mapsto P]] \subseteq P\}&=\\
&\bigcap \{P: \sem{\phi_1}\rho[X_1 \mapsto P]
[X_2 \mapsto \bigcap Q: \sem{\phi_2}\rho[X_1 \mapsto P][X_2 \mapsto Q] 
\subseteq Q\}] \subseteq P\}&=\\
&\pi_1 (\bigcap \{ \langle P, Q \rangle: \sem{\phi_2}\rho[X_1 \mapsto P]
[X_2 \mapsto Q] \subseteq Q, \sem{\phi_1}\rho[X_1 \mapsto P]
[X_2 \mapsto Q] \subseteq P\})&
\end{eqnarray*}
\item Let $n \geq 2$, and let $\phi = \slfp i {\overline{X}} {\overline{\phi}}$\ be a 
(possibly open) simultaneous fixpoint formula with 
$\overline{X} = \langle X_1, \cdots, X_n\rangle$ and 
$\overline{\phi} = \langle \phi_1,\cdots,\phi_n\rangle$.\\ 
Without loss of generality, assume $i < n$, as if $i = n$ it is possible to 
order the vectors of variables and formulae in a consistent way.\\
Consider the formula
\[
 \psi = \slfp i {\langle X_1, \cdots, X_{n-1}\rangle} 
{\langle \phi_1\{\lfp {\phi_{n}} {X_n}/X_n\}, 
\cdots, \phi_{n-1}\{\lfp{\phi_n}{X_n}/X_n\}\rangle},
\]
which is a simultaneous fixpoint formula defined 
over a vector of variables of length $n-1$. In the 
same style of \ref{prop:becik2} it is possible 
to show that, for any environment $\rho$, 
it holds $\sem{\phi}\rho = \sem{\psi}\rho$. Further, 
it is straightforward to notice that the 
free variables of $\phi$ are the same of $\psi$.
We can therefore iterate this procedure 
until obtaining a fixpoint formula 
of the form $\lfp {X} {\varphi}$; if the 
original formula $\phi$ is closed, and therefore 
included in $\rechml^+$, then $\lfp {X} {\varphi}$ 
will also be closed, so that it will belong to 
\rechml.
\end{enumerate}
\end{proof}
The properties of these simultaneous least fixpoints which we will require are
summarised in the following theorem:
\begin{thm}[Fixpoint properties]\qquad
\label{thm:fixpointprop}
  \begin{enumerate}[(i)]
  \item 
\label{thm:minfixprop}
Let $(\overline{P})$\ be a vector of sets from $2^S$\ satisfying
$
\sem{\phi_i} \rho[\overline{X} \mapsto \overline{P}] \subseteq P_i
$ for every $1 \leq i \leq n$.
Then 
$
\sem{min_i(\overline{X}, \overline{\phi})} \rho \subseteq P_i
$
\item
\label{thm:fixprop}
Given an environment $\rho$, let $\rhomin$\ be the environment satisfying
$
\rhomin(X_i) = \sem{min_i(\overline{X}, \overline{\phi})} \rho.
$
Then
$
\sem{min_i(\overline{X}, \overline{\phi})} = \sem{\phi_i} \rhomin.
$
 \end{enumerate}
\end{thm}
\begin{proof}\qquad
\begin{enumerate}[(i)]
\item This follows from the definition of 
$\sem{\lfp {\overline{X}} {\overline{\phi}}}$. Let $\overline{P}$ 
be a vector of sets from $2^S$\ such that\\
$\sem{\phi_i} \rho[\overline{X} \mapsto \overline{P}] \subseteq P_i$. 
Then
\begin{eqnarray*}
\sem{\lfp {\overline{X}} {\overline{\phi}}}\rho &=& \bigcap 
\{ \overline{Q} \;|\; \sem{\phi_i}\rho[\overline{X}\mapsto\overline{Q}] 
\subseteq Q_i,\; 1\leq i \leq n\}\\
&=& \overline{P} \cap \bigcap \{ \overline{Q} \;|\; 
\sem{\phi_i}\rho[\overline{X}\mapsto\overline{Q}] \subseteq Q_i,
\; 1\leq i \leq n\}
\end{eqnarray*}
we have therefore that
\[
\sem{\slfp i {\overline{X}} {\overline{\phi}}} = 
P_i \cap  \pi_i (\bigcap \{ \overline{Q} \;|\; 
\sem{\phi_i}\rho[\overline{X}\mapsto\overline{Q}] 
\subseteq Q_i,\; 1\leq i \leq n\}) \subseteq Q_i
\]
\item Let $1 \leq i \leq n$. By the definition of 
$\sem{\slfp i {\overline{X}} {\overline{\phi}}}$\ 
it holds 
\begin{eqnarray*}
\sem{\phi_i}\rhomin&=& \sem{\phi_i}\rho[\overline{X} 
\mapsto \sem{\lfp {\overline{X}} {\overline{\phi}}}\rho ]\\
&\subseteq& \sem{\slfp i {\overline{X}} {\overline{\phi}}}\rho
\end{eqnarray*}

The inclusion shows that $\sem{\phi_i}\rhomin \subseteq 
\sem{\slfp i {\overline{X}} {\overline{\phi}}}\rho$. Moreover, 
since $\sem{\phi_i}\rhomin \subseteq \rhomin$, 
the converse inclusion follows from (\ref{thm:minfixprop}).
\end{enumerate}
\end{proof}

Theorem \ref{thm:fixpointprop} and Proposition \ref{prop:syntlemma} 
lead to this useful Corollary which enables us to reason about recursive 
properties using syntactic substitutions.
\begin{corollary}
\label{cor:minsubst}
Let $\phi \equiv \lfp X \psi$ be a formula in \rechml. Then $\phi$\ is 
logically equivalent to $\psi\{\lfp X \psi/X\}$, that is 
$\sem{\phi} = \sem{\psi\{\lfp X \psi/X\}}$.
\end{corollary}
\begin{proof}
Given a closed formula $\phi \equiv \lfp X \psi$\ and an arbitrary environment $\rho$, we have\\
$\sem{\lfp X \psi}\rho = \sem {\psi}\rho[X \mapsto \sem{\lfp X \psi}]$\ by an application of Theorem 
\ref{thm:fixpointprop}(\ref{thm:fixprop}). Further, $\sem{\psi}\rho[X \mapsto \sem{\lfp X \psi}] 
= \sem{\psi\{\lfp X \psi/X\}}$\ by Proposition \ref{prop:syntlemma}(\ref{prop:envlemma}).
\end{proof}

We conclude this section by giving a proof of Tarski's Fixpoint Theorem
for \rechml; we consider only formulae of the form $\lfp X \phi$, since 
we will not deal with greatest fixpoints in what follows. The proof can 
be easily extended to prove that, given a vector of variables $\overline{X}$ 
of length $n$, and a vector of formulae of length $\overline{\varphi}$ of 
the same length, then 
formula $\lfp{\overline{X}}{\overline{\phi}}$\ is the least solution 
of the system of equations $X_i = \phi_i$ for all $1 \leq i \leq n$.
\begin{thm}[\cite{becik}]
\label{thm:tarski}
Let $\phi \equiv \lfp X \psi$\ a formula in \rechml. Then $\sem{\phi}$\ is the least solution of the equation
\[
X = \psi
\]
\end{thm}
\begin{proof}

Corollary \ref{cor:minsubst}\ ensures that $\sem{\phi}$\ is a solution 
of the equation $X = \psi$. Moreover, let $P$\ be a solution 
to such an equation; we have
\[
\sem{\psi}[X \mapsto P] = P,
\]

therefore $P \in \{ P \;|\; \sem{\psi}[X \mapsto P] \subseteq P\}$. 
Now it is trivial to notice $\sem{\lfp X \psi} \subseteq P$.
\end{proof}

\section{Testing Concurrent Systems}
\label{sec:testing}
Another way to analyse the behaviour of a process is given by
testing.
Testing a process can be thought as an experiment in which another
process, called a test, detects the actions performed by such a process, reacting to them 
by allowing or forbidding the execution of a subset of observables. After 
observing the behaviour of the process, the test could decree that it satisfied some property 
for which it was designed for, thus reporting the success of the experiment through the execution 
of a special action $\omega$.\\

Formally speaking, a  test is a state from a LTS 
$\mathcal{T} = \langle T, Act^\omega_{\tau}, \longrightarrow \rangle$, 
where $ Act^\omega_{\tau} = Act_{\tau} \cup \{\omega\}$ and $\omega$ 
is an action not contained in $Act_{\tau}$. 

Given a LTS of processes $\mathcal{L} = \langle S, Act_{\tau}, \longrightarrow \rangle$, an experiment
consists of a pair $p \;|\; t$ from the  product LTS 
$(\mathcal{L}\barra\mathcal{T})$. We refer to a maximal path
of $p \;|\; t$
\begin{align*}
  p \;|\; t \trans{\tau} p_1 \;|\; t_1 \trans{\tau} \ldots \ldots 
     \trans{\tau} p_k \;|\; t_k \trans{\tau} \ldots
\end{align*}
as a \emph{computation}; it may be finite or infinite. It is successful if there 
exists some $n \geq 0$ such that $t_n \trans{\omega}$. 
It is important to notice here that a computation is successful it contains a configuration 
in which the test component can perform a $\omega$\ action; however, it is not required that 
such an action has to be actually executed.\\ 
As only $\tau$-actions can be performed in a computation, as well as in a computation prefixes, 
henceforth we will avoid to use the  symbol $\tau$ in computations.\\
Computations and successful computations lead to the definition of two well known \textit{testing relations}, \cite{dhn}:
\begin{defi}[May Satisfy, Must Satisfy] Assuming a LTS of processes and a LTS of tests, 
let $s$  and $t$ be a state and a test from such LTSs, respectively. We say
\begin{enumerate}[(a)]
\item $s \maysatisfy t$ if there exists a successful computation for the experiment 
$s \;|\; t$.
\item $s \mustsatisfy t$ if each computation of the experiment $s | t$\ is successful.\qed
\end{enumerate}
\end{defi}

Processes can now be compared in terms of the set of test that they may/must pass.\\
Before continuing our discussion about testing, let us illustrate the ideas behind 
testing relations with some useful example.
\begin{table}[h]
\centering
  \begin{minipage}{0.4\textwidth}
        \begin{ltspic}{2.0cm}
          \node[state]             (A)                                       {$s$};
          \node[state]             (B)  [above right of=A]                   {$s_1$};
          \node[state]             (C)  [below right of=A]                   {$s_2$};
          \node[state]             (D)  [right of=C]                         {$s_3$};
          \node[state]             (I)  [right of=D]                         {$s_4$};
          
          \path         (A)  edge                node{$b$}     (B)
                             edge                node{$b$}     (C)
                        (C)  edge                node{$c$}     (D)
                        (D)  edge                node{$a$}     (I);
        \end{ltspic}
      \caption{The tested LTS}
      \label{lts:tested}
  \end{minipage}
  \hspace{0.1\textwidth}
  \begin{minipage}{0.4\textwidth}
        \begin{ltspic}{2.0cm}
          \node[state]             (F)                                       {$t$};
          \node[state]             (E)  [left of=F]                          {$t_1$};
          \node[state]             (G)  [right of=F]                         {$t_2$};
          \node[state, accepting]  (H)  [below of=F, accepting where=below]  {$t_3$};

          \path         (E)  edge  [bend left]   node        {$\tau$}  (F)
                        (F)  edge                node        {$b$}     (E)
                             edge                node[swap]  {$c$}     (G)
                             edge                node        {$a$}     (H)
                        (G)  edge  [bend right]  node[swap]  {$\tau$}  (F);
        \end{ltspic}
      \caption{The test}
      \label{lts:test2}
   \end{minipage}
\end{table}

\begin{example}
Consider the process LTS in Table \ref{lts:tested} and the test LTS in 
Table \ref{lts:test2}. We can build the experiment $s \;\lvert\; t$\ 
to analyse whether the statements
\begin{itemize}
 \item $s \maysatisfy t$\ and 
 \item $s \mustsatisfy t$
\end{itemize}
hold. For the first one, we consider the computation
\[
 s \;\lvert\; t \shortrightarrow s_2 \;\lvert\; t_1 \shortrightarrow 
s_2 \;\lvert\; t \shortrightarrow s_3 \;\lvert\; t_2 \shortrightarrow 
s_3 \;\lvert\; t \shortrightarrow s_4 \;\lvert\; t_3.
\]

As $t_3\trans{\omega}$ we can conclude that this computation is 
successful, and hence $s \maysatisfy t$.
On the other hand, we can consider the path
\[
 s \;\lvert\; t \shortrightarrow s_1 \;\lvert\; t_1 \shortrightarrow 
 s_1 \;\lvert\; t.
\]
Such a path is maximal, and therefore it is also a computation. 
As there is no configuration in such a computation for which 
the test component can perform an $\omega$ action, we can 
conclude that it is not the case that $s \mustsatisfy t$.\qed
\end{example}

Later in the paper we will use a specific LTS of tests, whose states are all
the closed terms generated by the grammar
\begin{equation}
t \is 0 \barra \alpha.t \barra \omega.0 \barra  X \barra t_1 + t_2 \barra \mu X.t \; .
\label{eq:tests}
\end{equation}
Again in this language  $X$\ is bound in $\mu X.t$, and  the test $t\{t'/X\}$ 
denotes the test $t$ in which  each free occurrence of $X$ is replaced by $t'$.
The transition relation  defined by the following rules:\footnote{The 
rules use an abuse of notation, by considering $\alpha$\ as an action from 
$Act_{\tau} \cup {\omega}$\ rather than from $Act_{\tau}$.}
%\begin{center}
\begin{displaymath}
\begin{tabular}{llll}
\begin{prooftree}
\;
\justifies
\alpha.t \trans{\alpha} t
\end{prooftree}
&\qquad
\begin{prooftree}
t_1 \trans{\alpha} t_1'
\justifies
t_1 + t_2 \trans{\alpha} t_1'
\end{prooftree}
&\qquad
\begin{prooftree}
t_2 \trans{\alpha} t_2'
\justifies
t_1 + t_2 \trans{\alpha} t_2'
\end{prooftree}
%\\&&\\
&\qquad
\begin{prooftree}
\;
\justifies
\mu X.t \trans{\tau} t\{(\mu X.t)/X\}
\end{prooftree} %&\\&&
\end{tabular}
%\end{center}
\end{displaymath}

The last rule states that a test of the form $\mu X.t$\ can always perform a 
$\tau$-action before evolving in the test $t\{\mu X.t/X\}$. Further, since 
the transition relation is the smallest relation defined 
by the inference rule above, it is also the case that this is the only 
action that a recursive test can perform.\\
This treatment of recursive processes will allow us to prove properties 
of paths of recursive tests and experiments by performing an induction on their length.

Further, the following properties hold for a test $t$ in grammar \eqref{eq:tests}:
\begin{prop}
\label{prop:Tbf}
Let $\mathcal{T} = \langle T, Act_{\tau}, \longrightarrow \rangle$\ be the LTS generated by a state $t$\ in grammar \eqref{eq:tests}: then
\begin{enumerate}[(i)]
\item $\mathcal{T}$ is finite branching.
\label{prop:branfin}
\item $\mathcal{T}$ is finite state.
\end{enumerate}
\end{prop}
\begin{proof} We prove the two statements separately.
\begin{enumerate}[(i)]
\item First, notice that every time a test $t$ in grammar \eqref{eq:tests} 
performs a transition $t \trans{\alpha} t'$, then $t'$ is itself a 
closed term of such a grammar.\\

Further, each closed term of grammar \ref{eq:tests}\ can be represented as
\[
\sum_{i \in I} t_i
\]

where $I$\ is finite and each $t_i$\ is either in the form 
$0$, $\alpha.t'$\ or $\mu X.t'$. Then for each $i \in I$\ the number of 
outgoing transitions $n(t_i)$\ of $t_i$\ is at most one: we have therefore
\[
n(t) \leq \sum_{i \in I} n(t_i) \leq |I|
\]

The above argument applies to all states of the generated LTS: hence $\mathcal{T}$\ is finite branching.

\item A standard proof of this Proposition can be obtained 
by converting each test into a \textbf{Nondeterministic Finite state Tree Automata} 
\cite{regulartrees}. 
\end{enumerate}
\end{proof}

Henceforth we will always make the assumption that the LTS of tests 
we consider is branching finite. Further, if also the LTS of processes 
is also assumed to contain only branching finite states, then the induced 
LTS of experiments is branching finite as well. It is also ensured that, 
given an experiment $s \;\lvert\;t$ in such a LTS and such that 
$s \mustsatisfy t$, then the maximal length of a successful 
computation is well defined. To prove this result 
we will need the following Lemma, which is a variation of 
Konig's Lemma \cite{boolos} for directed graphs.
\begin{lem}[Konig's Lemma for directed graphs]
 \label{lem:konig}
  Let $G$\ be a directed graph whose set of vertices is countable. 
  Let a root of $G$ be any node with no incoming edge. Also, assume 
  that $G$ satisfies the following hypothesis:
  \begin{itemize}
   \item $G$ has finitely many roots,
   \item each node of $G$ has finite degree,
   \item each node in $G$ is reachable from some root in $G$.
  \end{itemize}
  Then there is an infinite path in $G$ starting from some root.
\end{lem}
\begin{proof}
 See \cite{ioautomata}, Lemma 2.3.
\end{proof}
\begin{thm}
\label{thm:bfexp} 
Let $S,T$ be finite branching LTSs of processes and tests respectively.\\
Let $s,t$ be two states in such LTSs, respectively. Then if 
$s \mustsatisfy t$ the maximal length of a successful computation 
$|s,t|$ is well defined.
\end{thm}
\begin{proof}
Let $\mathcal{E} = \langle E, \{\tau\}, \rightarrow \rangle$ be 
a finite branching LTS of experiments.
For each $e \in E$ we define its \emph{Computation Tree} $T_e$ as 
the smallest tree whose nodes are (not necessarily all the) 
elements of $E*$, and whose 
edges of a node $e_1\cdots e_n$ are defined as follows:
follows:
\begin{itemize}
 \item if $e_n$ has the form $s\;\lvert\;t$, with $t\trans{\omega}$, 
then node $e_1\cdots e_n$ has no children,
 \item otherwise, for each $e_{n+1}$ such that $e_n \trans{\tau} e_{n+1}$, 
 there is an edge from $e_1\cdots e_n$ to $e_1\cdots e_n\cdot e_{n+1}$.
\end{itemize}
Intuitively speaking, each path of $T_e$ rooted in represents a computation of the 
experiment $e$. A more formal definition of $T_e$ can be given as a function 
of recursive type $\mathcal{T}: N \rightarrow \mathcal{T}$ (see \cite{courcelle} for 
details).\\

Suppose now $s,t$ are chosen in finite branching LTSs of processes and tests, 
respectively. Suppose also $s \mustsatisfy t$. It is straightforward to 
prove that the LTS of experiments 
generated by $s \;\lvert\;t$ is also finite branching. Since $s \mustsatisfy t$, 
it is the case that all leaves in $T_{s\;\lvert\;t}$ represent successful 
computations. In order to prove that the maximal length of a successful 
computation $|s,t|$ is well defined, we distinguish two different cases:
\begin{enumerate}[(i)]
 \item the number of nodes in $T_{s\;\lvert\;t}$ is finite. In this case 
each path between $s\;\lvert\;t$ and a leaf in $T_{s\;\lvert\;t}$ has 
finite length, bounded by the number of nodes in the tree itself; 
since every path is associated with a successful computation, it follows 
that $|s,t|$ is bounded by the number of nodes in $T_{s\;\lvert\;t}$ 
and therefore is well defined,
\item $T_{s\;\lvert\;t}$ has infinite nodes. Since the LTS generated by 
$s\;\lvert\;t$ is finite branching, we have that the degree of each node 
in the computation tree above is finite. Thus, by an application of 
Lemma \ref{lem:konig}, we have that $T_{s\;\lvert\;t}$ contains 
an infinite path starting from the unique root $s\;\lvert\;t$ of such 
a tree; such a path represents 
an infinite, unsuccessful computation, contradicting the hypothesis 
$s \mustsatisfy t$.
\end{enumerate}
\end{proof}
 
\chapter{Testing formulae}\label{sec:tf}
Relative to a  process LTS $\langle S, Act_{\tau}, \longrightarrow_S \rangle$\ 
and a test LTS $\langle T, Act_{\tau} \cup \{\omega\}, \longrightarrow_T \rangle$, 
we now explore the relationship between tests from our default LTS of tests and 
formulae of \rechml. Specifically, given a test $t$, our goal is to infer a 
formula $\phi$\ such that the set of processes which \maysatisfy/\mustsatisfy 
such test is completely characterised by the interpretation $\sem{\phi}$. 
Moreover, we aim to establish exactly the subsets of \rechml for which 
each formula can be checked by some test, both in the \may and \must case.
 
For this purpose some definitions are necessary:
\begin{defi}
Let $\phi$\ be a \rechml formula and $t$ a test. We say that:
\begin{itemize}
\item $\phi$ \emph{may}-represents/\emph{must}-represents  the test $t$,  if
for all  $p \in S,\;  p \maysatisfy  t/ p \mustsatisfy t$  if and only if $p \models \phi$.

\item $\phi$ is  \emph{may}-testable/\emph{must}-testable whenever there exists 
a test  which  $\phi$ \\\emph{may}-represents/\emph{must}-represents.

\item $t$ is \emph{may}-representable/\emph{must}-representable, if
  there exists some $\phi \in \rechml$ which 
  \emph{may}-represents/\emph{must}-represents it respectively.\qed
\end{itemize}
\end{defi}
First we present both formulae which are \emph{may}-testable 
(\emph{must}-testable) and formulae which are not.
\begin{example}[Testable formulae]
   In this example we will use tests defined from grammar \eqref{eq:tests}. 
  All the examples are handled in an informal manner, as formal details will 
  be covered in a more general way in the remaining of the report.
 \begin{enumerate}[(a)]
 \item Formula $\lfp X {\dmnd a \ttt \vee \dmnd b X}$ is \emph{may}-testable.
 A state satisfies such a formula if and only if there exists a finite index 
 $n \geq 0$\ such that $s = s_0 \Trans{b} s_1 \Trans{b}\cdots\Trans{b} s_n$\ for 
 some $s_0, \cdots s_n$ with $s_n \Trans{a}$. We can therefore consider the test 
 $t \equiv fix(X=\tau.a.\omega.0 + \tau.b.X)$ If a state $s$ satisfies the above property, 
 then it can synchronise (after a sequence of internal actions performed both by 
 the state itself and by the process) with the test through a $b$-action; that is, 
 the experiment $s \;\lvert\; t$\ can evolve in $s_1 \;\lvert\; t$\ after a finite sequence 
 of internal actions. This procedure can be repeated until the configuration $s_n \;\lvert\; 
 t$ is reached. In this case, $s_n$\ can now synchronise with test $t$ (again after both 
 of them performed some internal steps) through an $a$-action, thus reaching a successful 
 configuration.\\
 On the other hand, consider now a state $s$\ which not satisfies such a property. 
 That is, as long as it synchronises with the test through the execution of a $b$ 
 action in a computation of the induced experiment, the resulting state component 
 will never be able to synchronise with the test through the execution of an $a$ 
 action; however this is mandatory for the experiment to reach a successful configuration. 
 Therefore, in this case the experiment $s \;\lvert\; t$ has no successful computation, 
 and therefore $s$ does not \maysatisfy $t$.
 
\item Formula $\lfp X {\bbox a \fff \wedge \bbox b X}$\ is must-testable. 
 A process $s$ satisfies this formula if and only if whenever  
 $s = s_0 \Trans{b} s_1 \cdots \Trans{b} s_n$ for some $n \geq 0$ and 
 states $s_0 \cdots s_n$\ with $s_n \notTrans{b}$, it holds that 
 \begin{itemize}
  \item $s_i \Downarrow$ for all $i:0 \leq i \leq n$,
  \item $s_i \notTrans{a}$ for all $i:0\leq i \leq n$,
 \end{itemize}
 
 Consider the test $t\equiv fix(X=\tau.(a.0 + \tau.\omega.0) + 
 \tau.(b.X + \tau.\omega.0))$, and suppose $s$ satisfies the 
 property above. Consider an arbitrary computation of $s\;\lvert\; t$; 
 in this case either the test component will perform a series of $\tau$ 
 actions, thus reaching a successful computation, or a synchronisation 
 with the test occurs through the execution of a $b$ actions, thus 
 deriving $s \;\lvert\; t \Trans{\tau} s_1 \;\lvert\; t$. This procedure can be 
 repeated until reaching configuration $s_n \;\lvert\; t$. As in this case we 
 also have $s_n \notTrans{b}$, the only possibility is to make the test component 
 of the experiment to perform a series of internal actions, thus reaching a 
 successful configuration.
 In other words, each computation of $s \;\lvert\; t$ is doomed to reach a configuration 
 where the test component can perform a $\omega$ action, and therefore 
 $s \mustsatisfy t$.
 Conversely, suppose $s$ is a process which does not satisfy the property above. 
 That is, either one of the following occurs:
 \begin{itemize}
  \item there exists a finite index $n \geq 0$ such that $s = s_0 \Trans{b} s_1 
 \Trans{b} \cdot \Trans{b} s_n$ with $s_n \Uparrow$,
  \item there exists a finite index $n \geq 0$ such that $s = s_0 \Trans{b} s_1 
 \Trans{b} \cdot \Trans{b} s_n$ with $s_n \Trans{a}$,
  \item $s$ has an infinite path $s= s_0 \Trans{b} s_1 \Trans{b}\cdots$.
 \end{itemize}

 In the first case we can build an unsuccessful computation by letting the state 
 component of the experiment synchronise with the test through the execution of 
 a $b$ action until configuration $s_n \;\lvert\; t$ is reached. Then we can obtain 
 an unsuccessful infinite computation by making evolve only the state component of the 
 experiment.\\
 In the second case, we can build a computation where the process component synchronise 
 with the test through the execution of a $b$ action until reaching configuration 
 $s_n \;\lvert\; t$, then, through a series of internal steps and a synchronisation through 
 an $a$ action, we obtain a configuration in which the test component can no longer 
 proceed. This computation is also unsuccessful.
 Finally, in the third case we can provide an infinite computation in which the state 
 component of the experiment always synchronise with the test component through the 
 execution of a $b$ action; even this computation is not successful. It holds therefore 
 that $s$ does not $\mustsatisfy t$.\qed
 \end{enumerate}
\end{example}

\begin{example}[Negative results]
\begin{enumerate}[(a)]\qquad
\item $\phi = [a]\fff$ is not \emph{may}-testable.\\
Let $s \in \sem{[a]\fff}$; a new process $p$\ can be built starting from $s$\ by letting  
$p \trans{\tau} p$, whenever
$s \trans{\alpha} s'$ then $p \trans{\alpha} s'$.\\
Processes $p$\ and $s$\ \maysatisfy the same set of tests. However, $p \notin \sem{[a]\fff}$, as $p \Uparrow$. 
Therefore\\ no test \emph{may}-represents $[a]\fff$.
\item $\phi = \dmnd a \ttt$\ is not \emph{must}-testable.\\
We show by contradiction that there exists no test $t$ that \emph{must}-represents $\phi$. 
To this end, we perform a case analysis on the structure of $t$.
\begin{itemize}
\item $t \trans{\omega}$: Consider the process $0$ with no transitions. Then $0 \mustsatisfy t$, 
whereas $0 \notin \sem\phi$.
\item $t \nottrans{\omega}$: Let $s \in \sem\phi$ and consider the process $p$ built up 
from $s$ according to the rules of the example above; we have $p \in \sem\phi$. On the 
other hand, $p \mustsatisfy t$ is not true; indeed the experiment $p \;|\;t$ leads to 
the unsuccessful computation 
$p\;|\;t \shortrightarrow p\;|\;t \shortrightarrow \cdots.$
\end{itemize}
Therefore there is no test $t$ which \emph{must}-represents $\phi$.
\item $\phi = \dmnd a \ttt \wedge \dmnd b \ttt$\ is not \emph{may}-testable.\\
Let $s$\ be the process whose only transitions are $s \trans{a} 0$, $s \trans{b} 0$.
Let also $p, p'$ be the processes whose only transitions are 
$p \trans{a} 0$, $p' \trans{b} 0$. We have $s \in \sem{\phi}$, whereas 
$p, p' \notin \sem{\phi}$. We show that whenever $s \maysatisfy$ a test $t$, 
then either $p \maysatisfy t$ or $p' \maysatisfy t$. Thus there exists 
no test which is \emph{may}-satisfied by exactly those processes in 
$\sem{\phi}$, and therefore $\phi$ is not 
\emph{may}-representable.
First, notice that if $s \maysatisfy t$, then at least one of the following holds:
\begin{enumerate}[(i)]
\item $t\Trans{\omega}$, \label{cond:1}
\item $t\Trans{a}t'\Trans{\omega}$, \label{cond:2}
\item $t\Trans{b}t'\Trans{\omega}$. \label{cond:3}
\end{enumerate}

If $t\Trans{\omega}$, then trivially both $p$\ and $p'$\ \maysatisfy $t$. On the other hand, if $t\Trans{a}t'\Trans{\omega}$, 
then there exist $t'', t_{\omega}$\ such that $t \Trans{\tau} t'' \trans{a} t' \Trans{\tau} t_{\omega} \trans{\omega}$. We can 
build the computation fragment for $p \barra t$\ such that
\[
p \barra t \shortrightarrow \cdots \shortrightarrow p \barra t'' \shortrightarrow 0 \barra t' \shortrightarrow \cdots \shortrightarrow 0 \barra t_{\omega}
\]

which is successful. Hence $p \maysatisfy t$. Finally, The case $t\Trans{b}t'\Trans{\omega}$ is similar.
\label{ex:c}
\item In an analogous way of \eqref{ex:c} it can be shown that $[a] \fff \vee [b] \fff$\ is not \emph{must}-testable.\qed
\end{enumerate}
\end{example}
We now 
investigate precisely which  formulae in \rechml can be represented by tests. 
To this end, we define two sub-languages, namely \mayhml and \musthml.
\begin{defi}{(Representable formulae)}
\begin{itemize}
\item The language \mayhml is defined to be the set of closed formulae generated by the following \rechml grammar fragment:
\begin{eqnarray}
\phi \is \ttt \barra \fff \barra X \barra \dmnd \alpha \phi \barra \phi_1 \vee \phi_2 \barra \lfp X \phi
\label{eq:mayhml}
\end{eqnarray}
\item The language \musthml is defined to be the set of closed formulae generated by the following \rechml grammar fragment:
\begin{eqnarray}
\phi \is \ttt \barra \fff \barra \Acc A \barra X \barra [\alpha]\phi \barra \phi_1 \wedge \phi_2 \barra \lfp X \phi
\label{eq:musthml} 
\end{eqnarray}
\end{itemize}
\qed
\end{defi}

Note that both sub-languages use the minimal fixpoint operator only; this is not surprising, 
as informally at least testing is an inductive rather than a co-inductive property.\\
The modality $[\cdot]$\ and the conjunction operator $\wedge$ are not allowed in \mayhml; the above examples 
show in fact that there exist formulae of the form $[\alpha]\phi$\ which are not \emph{may}-testable, and that 
conjunction of two formulae is not always \emph{may}-testable. The same argument applies to the modality $\dmnd \cdot$ 
and the disjunction operator $\vee$\ in the must case, which are therefore not included in \musthml.\\

We have now completed the set of definitions setting up our framework of 
properties and tests. In the remainder of the paper we prove the results 
announced, informally, in the Introduction.

\section{The must case}\label{sec:must}
We will now develop the mathematical basis needed to relate \musthml
formulae and the \must testing relation; in this section we will assume
that the LTS of processes is branching finite.\\

First, we prove the following result:
\begin{lem}
\label{lem:divergence}
Let $\phi \in \musthml$, and let $p \in \sem{\phi}$, where $p
\Uparrow$: then $\sem{\phi}$\ is the entire process space,
i.e. $\sem{\phi} = S$.
\end{lem}
\begin{proof}
 Let $p$ be a process such that $p \Uparrow$, let $\phi \in \musthml$ such that $p \in \sem \phi$.
Then $\phi$ cannot be $\Acc A, \fff, [\alpha] \phi$\ 
nor a conjunction of formulae containing one of such terms.\\
We now show that $\phi$ cannot be a formula of the form $\lfp X \psi$, where $\psi$ 
contains either free occurrences of the variable $X$ or the operators $\Acc A, \bbox \alpha$. 
To this end, we perform a case analysis on the formula $\psi$: 
\begin{enumerate}[(i)]
\item \label{lem:div1} $\psi$ contains an occurrence of the operator $\bbox \alpha$. Here we can apply Corollary 
\ref{cor:minsubst} to obtain a formula of the form 
$\bbox \alpha \phi' \wedge \phi''$ which is logically equivalent to $\phi$. Thus, if $p \Uparrow$ then 
$p \notin \sem \phi$, 
\item \label{lem:div2} $\psi$ contains the operator $\Acc A$. We can proceed as in Case \eqref{lem:div1}, 
\item \label{lem:div3} $\psi$\ contains at least a free occurrence of 
variable $X$. If such an occurrence is guarded by a $\bbox \alpha$ operator, then we can proceed as in 
Case \ref{lem:div1}. Otherwise we can obtain a formula of the form $\lfp X {X \wedge \psi'}$ which is 
equivalent to $\phi = \lfp X \psi$. Again, this is done by a repeated application of Corollary \ref{cor:minsubst}. 
Now it is trivial to notice that $\emptyset$ is a solution to the equation $X = X \wedge \psi$, and therefore 
it is its least solution. Hence $\sem{\phi} = \emptyset$, so that $p \notin \sem{\phi}$.
\end{enumerate}

The only possible case left for $p\Uparrow$, $p \in \sem\phi$ to hold is therefore 
given by $\phi$ being generated by the Grammar below:
\begin{equation}
\phi \is \ttt \barra \phi_1 \wedge \phi_2 \barra \lfp X \phi.
\label{eq:ttgrammar}
\end{equation}
It is trivial now to show $\sem{\phi} = S$.
\end{proof}

\noindent
This Lemma has important consequences; it means formulae in \musthml either have the trivial interpretation as
the full set of states $S$, or they are only satisfied by convergent states. 
\begin{defi}
  Let $\mathcal{C}$ be the collection of subsets of $S$ determined by:
\begin{itemize}
\item $S \in \mathcal{C}$,
\item $X \in \mathcal{C}, s \in X$ implies $s \Downarrow$. \qed
\end{itemize}
\end{defi}

\begin{prop}
\label{prop:cpo}
$\mathcal{C}$ ordered by set inclusion is a  \emph{continuous partial
order}, \emph{cpo}.
\end{prop}
\begin{proof}
  The empty set is obviously the least element in $\mathcal{C}$. So it is sufficient to show
that if  $X_0 \subseteq X_1 \subseteq \cdots$\ is a chain of elements  in $\mathcal{C}$ then 
$\bigcup_n X_n$ is also in $\mathcal{C}$. 
\end{proof}
We can now take advantage of the fact that \musthml actually has 
a continuous interpretation in $(\mathcal{C}, \subseteq)$. 
The only non trivial case here is the continuity of 
the operator $\bbox{\cdot\alpha\cdot}$:
\begin{prop}
\label{prop:dmndcontinuous}
Suppose the LTS of processes is finite-branching: If  
$X_0 \subseteq X_1 \subseteq \cdots$\ is a chain 
of elements in $\mathcal{C}$ then
\[
\bigcup_n [\cdot \alpha \cdot] X_n = [\cdot \alpha \cdot] \bigcup_n X_n.
\]
\end{prop}
\begin{proof}
 It is trivial to show that
\[
\bigcup_n[\cdot \alpha \cdot] X_n \subseteq [\cdot \alpha \cdot] \bigcup_n X_n.
\]

Thus we only need to show that the opposite implication holds.\\
First, notice that it $X_i = S$ for some $i$, then
\[
\bigcup_n\bbox{\cdot\alpha\cdot}X_n = \{ s :\; s \Downarrow\} = \bbox{\cdot\alpha\cdot}\bigcup_n X_n
\]

Suppose then that $X_i \neq S$ for all $i \geq 0$. Then we have 
$\bigcup_n X_n \neq S$.
By definition the set $\bbox{\cdot\alpha\cdot}\bigcup_n X_n$ can 
be written as
\[
\{s\;:\; s \Downarrow, \Succ{\alpha, s} \subseteq \bigcup_n X_n\}.
\]
 We will prove that for each state $s$ in such a set $\Succ{\alpha, s}$ 
is finite, therefore there exists an $X_n$ such that $\Succ{\alpha, s} 
\subseteq X_n$. As a direct consequence, $s \in \bbox{\cdot\alpha\cdot} X_n$, 
which is included in $\bigcup_n \bbox{\cdot\alpha\cdot}X_n$.

Let $s \in \bbox{\cdot\alpha\cdot} \bigcup_n X_n$ and let 
$s'$ be one of its $\alpha$ derivative. By definition we have 
$s' \in \bigcup_n X_n$. Thus there exists $n \geq 0$ such that 
$s' \in X_n$. Since $X_n \in \mathcal{C}$, $X_n \neq S$, it holds 
$s' \Downarrow$. Since we are assuming that the LTS of processes 
is finite, as a consequence of Konig's lemma we obtain 
that if the set $\Succ{\alpha, s}$ is infinite then  
the $\tau$-computation tree of either $s$ or one of 
its $\alpha$-derivative $s'$ has an infinite path. 
The former contradicts the statement $s\Downarrow$, while 
the latter contradicts the property $s' \Downarrow$ we just proved. 
Thus $\Succ{\alpha, s}$ is finite.
\end{proof}

This continuous interpretation of \musthml allows us to 
use  chains of finite
approximations for these formulae of \musthml. 
That is given $\phi \in \musthml$\ and $k\geq 0$, recursion free
formulae $\phi^k$\ will be defined such that $\sem{\phi^k} \subseteq
\sem{\phi^{(k+1)}}$\ and $\bigcup_{k\geq 0} = \sem{\phi}$. We can therefore
 reason inductively on approximations in order to prove
properties of recursive formulae.
\begin{defi}[Formulae approximations]
For each formula $\phi$\ in \musthml define
\begin{eqnarray*}
\phi^0 &\triangleq& \fff\\
\phi^{(k+1)} &\triangleq& \phi \mbox{\hspace{135pt}if } \phi = \ttt,\fff \mbox{ or } \Acc A\\
([\alpha]\phi)^{(k+1)} &\triangleq& [\alpha](\phi)^{(k+1)}\\
(\phi_1 \wedge \phi_2)^{(k+1)} &\triangleq& \phi_1^{(k+1)} \wedge \phi_2^{(k+1)}\\
(\lfp X \phi)^{(k+1)} &\triangleq& (\phi\{min(X, \phi)/X\})^k
\end{eqnarray*}\qed
\label{def:mustapprox}
\end{defi}

It is obvious that for every $\phi \in \musthml$, $\sem{\phi^k} \subseteq
\sem{\phi^{(k+1)}}$ for every $k \geq 0$; The fact that the union of the
approximations of $\phi$\ converges to $\phi$\ itself depends on the
continuity of the interpretation: 
\begin{prop}
\label{cor:continuity}
\[
\bigcup_{k\geq 0} \sem{\phi^k} = \sem{\phi}
\]
\end{prop}
\begin{proof}
 This is true in the initial continuous interpretation of the language, and therefore also in our interpretation.
  For details see  \cite{finiteapprox}. 
\end{proof}

Having established these properties of the interpretation of formulae in \musthml, we now show that they are all
\emph{must}-testable.  The required tests are  defined by induction on the structure of the formulae. 
\begin{defi}
For each (possibly open) formula $\phi$\ in Grammar \eqref{eq:musthml} define $\Tmust \phi$\ as follows:
\begin{eqnarray}
\Tmust \ttt &=& \omega.0 \label{eq:tmusttt}\\
\Tmust \fff &=& 0 \label{eq:tmustff}\\
\Tmust {\Acc A} &=& \sum_{a \in A} a.\omega.0 \label{eq:tmustacc}\\
\Tmust {X} &=& X \label{eq:tmustX}\\
\Tmust {[\tau] \phi} &=& \tau.\Tmust \phi \label{eq:tmusttau}\\
\Tmust {[a] \phi} &=& a. \Tmust \phi + \tau.\omega.0 \label{eq:tmusta}\\
%\Tmust {\phi_1 \wedge \phi_2} &=& \omega.0 \;\;\;\mbox{if } \phi_1 \wedge \phi_2\ \mbox{ is closed and logically equivalent to }\ttt\\
%\Tmust {\phi_1 \wedge \phi_2} &=& \tau.\Tmust {\phi_1} + \tau. \Tmust{\phi_2}\;\;\;\mbox{otherwise}\\
\Tmust {\phi_1 \wedge \phi_2} &=& \begin{cases} 
	\omega.0, & \mbox{if } \phi_1 \wedge \phi_2 \mbox{ is closed and}\\
        &\mbox{logically equivalent to }\ttt\\
        &\\
	\tau.\Tmust {\phi_1} + \tau. \Tmust{\phi_2},&\mbox{otherwise}
	\end{cases} \label{eq:tmustwedge}\\
%\Tmust {\lfp X \phi} &=& \Tmust \phi \;\;\;\mbox{ if } \phi \mbox{ is closed}\\
%\Tmust {\lfp X \phi} &=& \mu X. \Tmust \phi \;\;\; \mbox{otherwise}
\Tmust{\lfp X \phi} &=& \begin{cases}
	\Tmust \phi, & \mbox{ if } \phi \mbox{ is closed}\\
	\mu X.\Tmust \phi, & \mbox{otherwise}
	\end{cases} \label{eq:tmustmin}
\end{eqnarray}
\qed
\end{defi}

For each formula $\phi$\ in $\musthml$, the test $\Tmust \phi$\ is defined 
in a way such that the set of processes which  $\mustsatisfy$\ $\Tmust\phi$\ is exactly $\sem{\phi}$. 
Before supplying the details of a formal proof of this statement, let us comment on the definition of $\Tmust\phi$.\\
Cases (\ref{eq:tmusttt}), (\ref{eq:tmustff}) and (\ref{eq:tmustX}) are straightforward.
In the case of $\Acc A$, the test allows only those action which are in $A$\ to be performed by a process, after which it reports success.\\
For the box operator, a distinction has to be made between $[a]\phi$\ and $[\tau]\phi$. In the former we have 
to take into account that a converging process which cannot perform a weak $a$-action 
satisfies such a property; thus, synchronisation through the execution of a $a$-action is allowed, but a possibility for the test to report success 
after the execution of an internal action is given.
In the case of $\bbox{\tau}\phi$ no synchronization with any action is required; however, 
since we are adding a convergence requirement to formula $\phi$, we have to avoid the possibility that the 
test $\Tmust{\bbox{\tau}\phi}$ can immediately perform a $\omega$ action. This is done by requiring the test 
$\Tmust{\bbox{\tau}\phi}$ to perform only an internal action.\\
Finally, (\ref{eq:tmustwedge})\ and (\ref{eq:tmustmin}) are defined by distinguishing between two cases; this is because a formula of the form $\phi_1 \wedge \phi_2$\ or $\lfp X \phi$\ can be logically equivalent to $\ttt$, whose interpretation is the entire state space. However, the second clause in the definition of $\Tmust \phi$\ for such formulae 
require the test to perform a $\tau$\ action before performing any other activity, thus at most converging processes \mustsatisfy such a test.\\

In order to give a formal proof that $\Tmust{\phi}$ does indeed capture the 
formula $\phi$ we need to establish some preliminary properties. 
The first essentially says that that no formula of the form $\lfp X \phi$, with $\phi$\
not closed, will be interpreted in the whole state space.

\begin{lem} 
\label{lem:statespaceformulae}
Let $\phi = \lfp X \psi$, with $\psi$\ not closed. Then $\sem{\phi} \neq S$.
\end{lem}
\begin{proof} 
By contradiction. Suppose $\sem{\lfp X \psi} = S$; then $\lfp X \psi$ is 
a term of the grammar \eqref{eq:ttgrammar}, as shown in the proof of 
Lemma \ref{lem:divergence}. That is, formula $\psi$ is necessarily 
closed.
\end{proof}

Next we state some simple properties about recursive tests.

\begin{lem}\qquad
\label{lem:testprops}
\begin{itemize}
\item $p \mustsatisfy \mu X.t$\ implies $p \mustsatisfy \mu X.t\{\mu X.t/X\}$.
\item $p \Downarrow, p \mustsatisfy t[\mu X.t/X]$\ implies $p \mustsatisfy \mu X.t$.
\end{itemize}
\end{lem}
\begin{proof}\qquad
\begin{itemize}
\item Suppose $p \mustsatisfy \mu X.t$. Then all computations with prefix
\[
p \;|\; \mu X.t \shortrightarrow p \;|\; t\{\mu X.t/X\}
\]
are successful; hence $p \mustsatisfy t\{\mu X.t/X\}$.
\item Suppose $p \Downarrow, p \mustsatisfy t\{\mu X.t/X\}$. Then for each computation of $p \barra \mu X.t$\ with prefix
\[
p \;|\; \mu X.t \shortrightarrow \cdots \shortrightarrow p' \;|\; \mu X.t \shortrightarrow p' \;|\; t\{\mu X.t/X\}
\]
there exists a computation with prefix
\[
p \;|\; t\{\mu X.t/X\} \shortrightarrow \cdots \shortrightarrow p' \;|\; t\{\mu X.t/X\}
\]
which is successful. Hence $p \mustsatisfy \mu X.t$.
\end{itemize}
\end{proof}
Note that the premise $p \Downarrow$  is essential in the second part of this lemma, 
as $\mu X.t$ cannot perform a $\omega$ action; therefore it can be \emph{must}-satisfied 
only by processes which converge.

%These results allow us to establish one implication of theorem \ref{thm:musthml}.
\begin{prop}\label{prop:oneway}
Suppose the LTS of processes is finitely branching. If $p \mustsatisfy \Tmust \phi$\ then $p \in \sem{\phi}$.
\end{prop}

\begin{proof}Suppose $p \mustsatisfy \Tmust \phi$; As both the LTS of
  processes (by assumption) and the LTS of tests (Proposition
  \ref{prop:Tbf}) are finite branching, then the LTS generated by 
  $p\;\lvert\;t$ is finite branching as well. By Theorem \ref{thm:bfexp} 
  we have that maximal length of a successful computation $|p,\Tmust \phi|$\ is defined and
  finite. Thus it is possible to perform an induction over
  $|p,\Tmust \phi|$ to prove that $p \in \sem{\phi^k}$ for some 
  $k \geq 0$.  The result
  will then follow from Proposition \ref{cor:continuity}.
\begin{itemize}
\item If $|p, \Tmust \phi| = 0$\ then $\Tmust \phi \trans{\omega}$, and hence for each $p \in S\; p \mustsatisfy\ \Tmust \phi$. Further, 
by the definition of $\Tmust \phi$ we have that $\phi$\ is logically equivalent to $\ttt$, hence $p \in \sem{\phi}$.
\item If $|p, \Tmust \phi| = n+1$\ then the validity of the Theorem follows from an application of an inner induction on $\phi$. We show only the most interesting case, which is $\phi = \lfp X \psi$. There are two possible cases.
\begin{enumerate}[(a)]
\item If $X$\ is not free in $\psi$\ then the result follows by the inner induction, as $\lfp X \psi$\ is logically equivalent to $\psi$, and $\Tmust{\lfp X \psi} \equiv \Tmust \psi$\ by definition.
\item If $X$\ is free in $\psi$\ then, by Lemma \ref{lem:testprops}\ $p \mustsatisfy \Tmust \psi \{\mu X.\Tmust{\psi}/X\}$, which is syntactically equal to $\Tmust {\psi\{ \lfp X \psi / X\}}$.\\
Since $|p, \Tmust {\psi\{\lfp X \psi / X\}}| < |p, \Tmust \phi|$, by inductive hypothesis we have \\$p \in \sem{\psi \{\lfp X \psi /X\}^k}$\ for some $k$, hence $p \in \sem{\phi^{(k+1)}}$.
\end{enumerate}
\end{itemize}
\end{proof}

To prove the converse of Proposition~\ref{prop:oneway} we use the following concept:
\begin{defi}[Satisfaction Relation]
Let $R \subseteq S \times \musthml$ and for any $\phi$\ let
$(R\; \phi) = \{ s \barra s\; R\;\phi\}$
Then $R$\ is a satisfaction relation if it satisfies
\begin{eqnarray*}
(R\;\ttt) &=& S\\
(R\;\fff) &=&\emptyset\\
 (R\; \Acc A) &=&\setof{s}{s \Downarrow, s \Trans{\tau} s' \mbox{ implies } S(s') \cap A \neq \emptyset}\\
(R \;[\alpha]\phi) &\subseteq& [\cdot \alpha \cdot] (R\; \phi)\\
(R\; \phi_1 \wedge \phi_2) &\subseteq& (R\;\phi_1) \cap (R\; \phi_2)\\
(R \; \phi\{\lfp X \phi /X\}) &\subseteq& (R\; \lfp X \phi)
\end{eqnarray*}
\qed
\end{defi}

Satisfaction relations are defined to agree with the interpretation $\sem \cdot$. 
Indeed, all implications required for satisfaction relations are satisfied 
by $\models$. Further, as $\sem{\lfp X \phi}$\ is defined to be the least 
solution to the recursive equation $X = \phi$, we expect it to be the 
smallest satisfaction relation.

\begin{prop}\label{prop:satisfaction}
The relation $\models$\ is a satisfaction relation. Further, it is the smallest satisfaction relation.
\end{prop}
\begin{proof}
The definition of $\sem\cdot$\ ensures that $\models$\ is a satisfaction relation; we have:
\begin{eqnarray*}
(\models \ttt) &=& S\\
(\models \fff) &=& \emptyset\\
(\models \Acc A) &=& \{ \setof{s}{s \Downarrow, s \Trans{\tau} s' \mbox{ implies } S(s') \cap A \neq \emptyset}\\
(\models \;[\alpha]\phi) &=& [\cdot \alpha \cdot] (\models\; \phi)\\
(\models \;\phi\{\lfp X \phi /X\}) &=& (\models\; \lfp X \phi)
\end{eqnarray*}
where the last equality follows from Corollary \ref{cor:minsubst}.

It remains to show that $\models$\ is in fact the smallest satisfaction relation.\\
Let $R$\ be a satisfaction relation, and suppose that $p \in \sem{\phi}$: we show that $p \; R \; \phi$.\\
By Proposition \ref{cor:continuity}\ there exists $k \geq 0$\ such that $p \in \sem{\phi^k}$. 
We proceed by induction on $k$.\\
The case $k = 0$\ is vacuous. Assume the result holds for a generic $k$; 
we will perform an inner induction on the structure of $\phi$. 
Again, only the most interesting details are given.\\
Suppose $\phi = \lfp X \psi$: then $\lfp{X}{\psi}^{(k+1)} = (\psi\{\phi/X\})^k$, 
and by inductive hypothesis $p \;R\; \psi\{\phi/X\}$ follows, and so $p \; R \; \phi$ 
by the definition of satisfaction relation.\\
Finally, if $\phi$ has the form $\bbox{\alpha}\psi$ or $\phi_1 \wedge \phi_2$, it is 
not possible to use the inductive hypothesis directly. This is because
$(\bbox{\alpha}\phi)^{(k+1)} = \bbox \alpha (\phi)^{(k+1)}, 
(\phi_1 \wedge \phi_2)^{(k+1)} = \phi_1{(k+1)} \wedge \phi_2^{(k+1)}$.\\
We define therefore the height of a formula $h(\phi)$ as
\begin{eqnarray*}
h(\ttt) &=& 0\\
h(\fff) &=& 0\\
h(\Acc A) &=& 0\\
h(\lfp X \psi) &=& 0\\
h(\bbox \alpha \psi) &=& h(\psi) + 1\\
h(\phi_1 \wedge \phi_2) &=& \mbox{max}(h(\phi_1), h(\phi_2)) +1
\end{eqnarray*}
and we perform another induction of $h(\phi)$. The case $h(\phi) = 0$ 
has already been handled. Suppose then $h(\phi) = n+1$; then 
either $\phi = \bbox \alpha \psi$ or $\phi = \phi_1 \wedge \phi_2$. 
We will consider only the first case.Here $h(\psi) = n$, so that 
by inductive hypothesis we have $p' \models \psi$ implies $p'\;R\;\psi$.\\
If $p \models \bbox \alpha \psi$ then $p \Downarrow$; further, whenever 
$p \Trans{\alpha} p'$, we have $p' \models \psi$ and therefore $p' \;R\; \psi$. 
Thus $p \in \bbox{\cdot \alpha \cdot}(R \phi)$.
\end{proof}

This Proposition can be exploited to prove properties for couples $(p, \phi)$ such that $p \models \phi$, 
for $\phi \in \musthml$.\\
Let $\pi$\ be a property over $S \times \musthml$, and suppose 
the relation $R = \{(s, \phi)\barra \pi(s,\phi)\}$ is a satisfaction relation. 
We obtain, by Proposition \ref{prop:satisfaction}, that $p \models \phi$ 
implies $\pi(p, \phi)$.\\
Next we consider the relation $R_{\scriptstyle{must}}$\ such that 
$p\; R_{\scriptstyle{must}}\;\phi$ whenever $p \mustsatisfy \Tmust \phi$, 
and show that it is a satisfaction relation.

\begin{prop}\label{prop:must.satisfaction}
The relation $R_{\text{must}}$  is a satisfaction relation.
\end{prop}

\begin{proof}
We proceed by induction on formula $\phi$. Again, we only check the most interesting case.\\
Suppose $\phi = \lfp X \psi$. We have to show $p \mustsatisfy \Tmust {\psi\{\phi/X\}}$\ 
implies $p \mustsatisfy \Tmust \phi$.\\
We distinguish two cases:
\begin{enumerate}[(a)]
\item $X$\ does not appear free in $\psi$. then 
$\Tmust \phi = \Tmust \psi$, and $\psi\{\phi/X\} = \psi$. This case is trivial.
\item $X$\ does appear free in $\phi$: in this case $\Tmust \phi = \mu X.\Tmust \psi$, 
and $\Tmust {\psi\{\phi/X\}}$\ has the form
$\Tmust \psi \{\mu X.\Tmust \psi /X\}$.\\
By Lemma \ref{lem:statespaceformulae} $\sem \phi \neq S$; therefore Lemma \ref{lem:divergence}\ 
ensures that $p \Downarrow$, and hence by Lemma \ref{lem:testprops}\ it follows 
$p \mustsatisfy \Tmust \phi$.

\end{enumerate}
\end{proof}

Combining all these results we now obtain our result on the testability of \musthml.
\begin{thm}
\label{thm:musthml}
Suppose the LTS of processes is finite-branching. Then for every 
$\phi \in \musthml$, there exists a   test $\Tmust \phi$\ such that $\phi$ \emph{must}-represents the test $\Tmust \phi$.
\end{thm}
\begin{proof}
We have to show that for any process $p$, $p \mustsatisfy \Tmust \phi$ if and only if $p \in \sem{\phi}$.
  One direction follows from Proposition~\ref{prop:oneway}.  Conversely suppose $p \in \sem{\phi}$. 
By Proposition \ref{prop:satisfaction}\ it follows that for all satisfaction relations 
$R$ it holds $p\; R\; \phi$; hence, by Proposition \ref{prop:must.satisfaction}, $p \;R_{\text{must}}\;\phi$, 
or equivalently $p \mustsatisfy \Tmust \phi$.
\end{proof}

We now turn our attention to the second result, namely that every test $t$ is \emph{must}-representable by some formula 
in \musthml. Let us for the moment assume a branching finite LTS of tests in which the state space $T$ is finite.
\begin{defi}\label{def:tests}
Assume we have a test-indexed set of variables $\{X_t\}$.
For each test $t \in T$\ define $\varphi_t$\ as below:
\begin{eqnarray}
\label{eq:must1}
\varphi_t &\triangleq&\ttt \hspace{139pt} \mbox{if } t\trans{\omega}\\
\label{eq:must2}
\varphi_t &\triangleq&\fff \hspace{139pt} \mbox{if } t \nottrans{\;}\\
\label{eq:must3}
\varphi_t &\triangleq& (\displaystyle{
\bigwedge_{\scriptstyle{a,t': t \trans{a} t'}}} [a] X_{t'})
 \;\wedge\; \Acc{\{a | t \trans{a}\}}
 \hspace{20pt} \mbox{if } t \nottrans{\omega}, t \nottrans{\tau}, 
 t \longrightarrow\\
\label{eq:must4}
\varphi_t &\triangleq& (\displaystyle{
\bigwedge_{t': t \trans{\tau}t'}} [\tau]X_{t'})
 \;\wedge\; (\displaystyle{\bigwedge_{a,t': t \trans{a} t'}} 
 [a] X_{t'}) \hspace{20pt}\mbox{if } t \nottrans{\omega}, t\trans{\tau}
\end{eqnarray}

Take $\phi_t$\ to be the extended formula $\slfp t {\overline{X_T}} {\overline{\varphi_T}}$, using  the simultaneous least fixed points
introduced in Section~\ref{sec:recursivehml}.
\end{defi}
Notice that we have a finite set of variables $\{X_t\}$ and 
that the conjunctions in Definition \ref{def:tests} are finite,
 as the LTS of tests 
is finite state and finite branching. These two conditions 
are needed therefore for $\phi_t$ to be well defined.\\

Formula $\phi_t$\ captures the properties required by a process 
to \mustsatisfy\ test $t$. The first two clauses of 
the definition are straightforward. If $t$\ cannot make 
an internal action or cannot report a success, but can 
perform a visible action $a$ to 
evolve in $t'$, then a process should be able to perform 
a $\Trans{a}$\ transition and evolve in a process 
$p'$ such that $p' \mustsatisfy t'$. 
The requirement $\Acc{\{a \barra t\trans{a}\}}$\ is needed 
because a synchronisation between the process $p$\ and the 
test $t$\ is required 
for $p \mustsatisfy t$\ to be true.\\
In the last clause, the test $t$\ is able to perform at 
least a $\tau$-action. In this case there is no need for a synchronisation 
between a process and the test, so there is no term of 
the form $\Acc{\{a \barra t\trans{a}\}}$\ in the 
definition of $\phi_t$. 
However, it is possible that a process $p$\ will never 
synchronise with such test, instead $t$\ will perform 
a transition $t \trans{\tau}t'$\ after $p$\ has 
executed an arbitrary number of 
internal actions. Thus, we require that for each 
transition $p \Trans{\tau} p'$, $p' \mustsatisfy t'$.\\

We now supply the formal details which lead to state that formula $\phi_t$\ characterises the test $t$. 
Our immediate aim is to show that the two environments, defined by
\begin{eqnarray*}
\rhomin(X_t) &\triangleq& \sem{ \phi_t}\\
\rhomust(X_t) &\triangleq& \{ p \barra p \mustsatisfy t\}
\end{eqnarray*}
are identical. This is achieved in the following two propositions. 
\begin{prop}
\label{thm:minsubsetmust}
For all $t \in T$ it holds that $\rhomin(X_t) \subseteq \rhomust(X_t)$.
\end{prop}

\begin{proof}
We just need to show that 
$\sem{\varphi_t} \rhomust \subseteq \rhomust(X_t)$: 
then we can apply the \textit{minimal fixpoint property}, 
Theorem \ref{thm:fixpointprop} (\ref{thm:minfixprop}), 
to conclude 
\[
\rhomin(X_t) = \sem{\slfp t {\overline{X_T}}{\overline{\phi_T}}} 
\subseteq \rhomust(X_T).
\]
The proof is carried out by performing a case 
analysis on $t$. We will only consider Case \eqref{eq:must3}, 
as cases \eqref{eq:must1} and \eqref{eq:must2} 
are trivial and Case \eqref{eq:must4} is handled similarly.

Assume $p \in \sem{\varphi_t}\rhomust$. We have
\begin{enumerate}[(a)]
\item \label{prf:cond1}$p \Downarrow$,
\item \label{prf:cond2}whenever $p \Trans{\tau} p'$\ there exists an action $a \in Act$\ such that $t \trans{a}$\ and $p' \Trans{a}$,
\item \label{prf:cond3}whenever $p \Trans{a} p'$\ and $t \trans{a} t'$, $p' \in \rhomust(X_{t'})$, i.e. $p' \mustsatisfy t'$.
\end{enumerate}

Conditions (\ref{prf:cond1}) and (\ref{prf:cond2}) are met since $p \in \sem{\Acc{\{a \;|\; t \trans{a}}}$ and $t \trans{a}$\ for some $a \in Act$, while (\ref{prf:cond3}) is true because of $p \in \sem{\bigwedge_{a, t':\; t \trans{a}t'}[a]X_{t'}}$.\\\\
To prove that $p \in \rhomust(X_t)$\ we have to show that every computation of $p\;|\;t$\ is successful. To this end, consider an arbitrary computation of $p\;|\; t$; condition (\ref{prf:cond2}) ensures that such a computation cannot have the finite form
\begin{equation}
\label{eq:nonmaximalcomp}
p \barra t \shortrightarrow p_1 \barra t \shortrightarrow \cdots p_k \barra t \shortrightarrow p_{k+1} \barra t \shortrightarrow \cdots \shortrightarrow p_n \barra t
\end{equation}

For such a computation we have that $p_n \Trans{\tau} p'$, and there exists $p''$\ with $p' \trans{a} p''$\ for some action $a$\ and test $t'$\ such that $t \trans{a} t'$. Therefore we have a computation prefix of the form
\[
p \barra t \shortrightarrow p_1 \barra t \shortrightarrow \cdots p_n \barra t \shortrightarrow \cdots \shortrightarrow p' \barra t \shortrightarrow p'' \barra t',
\]
hence the maximality of computation \eqref{eq:nonmaximalcomp}\ does not hold.\\

Further, condition (\ref{prf:cond1})\ ensures that a computation of $p \barra t$\ cannot have the form
\[
p \barra t \shortrightarrow p_1 \barra t \shortrightarrow \cdots \shortrightarrow  p_k \barra t \shortrightarrow p_{k+1} \barra t \shortrightarrow \cdots
\]

Therefore all computations of $p \barra t$\ have the form
\[
p \barra t \shortrightarrow p_1 \barra t \shortrightarrow \cdots \shortrightarrow p_n \barra t \shortrightarrow p' \barra t'
\]

with $p' \mustsatisfy t'$\ by condition (\ref{prf:cond3}); then for each computation of $p \barra t$ there exist $p'', t''$\ such that 
\[
p \barra t \shortrightarrow \cdots \shortrightarrow p' \barra t' \shortrightarrow \cdots \shortrightarrow p'' \barra t'',
\]

and $t''\trans{\omega}$. Hence, every computation from $p \barra t$\ is successful.
\end{proof}
\begin{prop}
\label{thm:minsubmust}
Assume the LTS of processes is branching finite. For every $ t \in T$,  $\rhomust(X_t) \subseteq \rhomin(X_t)$.
\end{prop}

\begin{proof}
We have to show $p \mustsatisfy t$\ implies $p \in \sem{\phi_t}$.\\
Suppose $p \mustsatisfy t$; since we are assuming that the set $T$, 
as well as the set $S$, contains only finite branching tests (processes), 
That is, the maximal length of a successful computation fragment $|p, t|$\ is defined and finite 
by Theorem \ref{thm:bfexp}.\\
Recall that $\phi_t = \slfp t {\overline{X_T}}{\overline{\varphi_T}}$. 
We proceed by induction on $k = |p, t|$ to show that 
$p \mustsatisfy t$ implies $p \in \sem{\varphi_t}\rhomin$; then the result 
$p \in \sem{\phi_t}$ is obtained by applying the Fixpoint Property \ref{thm:fixpointprop}(\ref{thm:fixprop}).
\begin{itemize}
\item $k = 0$: In this case, $t \trans{\omega}$, and hence for all $p \in S$\ we have $ p \mustsatisfy t$. 
Moreover, $\varphi_t = \ttt$, and hence for all $p \in S\; p \in \sem{\phi_t}\rhomin$,
\item $k > 0$. There are several cases to consider, according to the structure of the test $t$:
\begin{enumerate}
\item $t \nottrans{\omega}, t \nottrans{\tau}, t \longrightarrow$: we first show that $p \in \sem{\Acc {\{a | t \trans{a}}} \rhomin$.\\
Since $p \mustsatisfy t$, we have $p \Downarrow$. Consider a computation fragment of the form
\[
p \barra t \shortrightarrow \cdots \shortrightarrow p^n \barra t
\]

As $p \Downarrow$, we require that all computations rooted in $p^n \barra t$\ will eventually contain a term of the form $p^k \barra t'$, where $t' \neq t$. Further, as $t \nottrans{\tau}$, such a test should follow from a synchronisation between $p^{k-1}$\ and $t$. We have that then that, whenever $p\Trans{\tau} p^n$, there exists an action $a$\ such that $t \trans{a} t'$\ and $p^n \Trans{a} p^k$, which combined with the constraint $p \Downarrow$\ is equivalent to $p \in \sem{\Acc {\{a | t \trans{a}}}$.\\
We also have to show that $p \in \sem{[a]X_{t'}} \rhomin$. Let $p\trans{a}p'$. Then $p \mustsatisfy t$\ implies $p' \mustsatisfy t'$. Moreover, we have $|p', t'| < k$. By inductive hypothesis, we have that $p' \in \sem{\phi_{t'}}$, that is $p' \in \rhomin(X_{t'})$. Then the result $p \in \sem{[a]X_{t'}} \rhomin$\ holds.

\item $t \nottrans{\omega}, t \trans{\tau}$: A similar analysis as in the case above can be carried out.
\end{enumerate}
\end{itemize}
\end{proof}

Combining these two propositions we get our second result. Let us say that a test $t$ 
from a LTS of tests $\mathcal{T} = \langle T, Act_{\tau}^{\omega}, \rightarrow\rangle$ 
is finitary if the derived LTS consisting of all states in $\mathcal{T}$ accessible from $t$ 
is finite state and finite branching.
\begin{thm}
\label{thm:musttest}
Assuming the LTS of processes is finite branching, every finitary test $t$ is \emph{must}-representable. 
\end{thm}
\begin{proof}
  Consider any test $t$. We can apply Definition~\ref{def:tests} to the 
finite LTS of tests reachable from $t$ to obtain a formula $\phi_t$\ which 
\emph{must}-represents test $t$. Notice that this formula is not contained 
in $\rechml$, as it uses simultaneous least fixpoints. However, by Theorem 
\ref{thm:becik}\ there exists a formula $\phimust t \in \rechml$\ such 
that $\sem{\phi_t} = \sem{\phimust t}$, thus $t$\ is 
\emph{must}-representable. Further, since each operator used in Definition 
\ref{def:tests} to define $\varphi_t$\ belongs to \musthml, it is assured 
that $\phimust t \in \musthml$.
\end{proof}
As  a Corollary we are able to show that \musthml is actually the largest 
language (up to logical equivalences) of \emph{must}-testable formulae.
\begin{corollary}\label{cor:mustlargest}
Suppose $\phi$ is a formula in \rechml which is \emph{must}-testable. Then 
there exists some $\psi$ in $\musthml$ which is logically equivalent to it.
\end{corollary}

%\ifx\proofs\yes
\begin{proof}
Suppose $\phi$\ is \emph{must}-testable. By Theorem \ref{thm:musthml} 
there exists a finite test $t = \Tmust \phi$\ which \emph{must}-represents $\phi$. 
Further, by theorem \ref{thm:musttest}\ there exists a formula $\psi = 
\phimust {t} \in \musthml$\ which \emph{must}-tests for $t$. Therefore
\[
p \in \sem{\phi} \Leftrightarrow p \mustsatisfy \Tmust \phi \Leftrightarrow p \in \sem{\psi}
\]
\end{proof}

\section{The may case}\label{sec:may}

We now turn to the characterisation of the \maysatisfy testing relation in terms of \rechml formulae.\\
Notice that the nature of the \maysatisfy testing relation is different 
from that of the \mustsatisfy one; here an experiment 
composed of a process $s$ and a state $t$ is required to have only one successful computation to ensure 
that $s \maysatisfy t$ holds. As a consequence, when considering the \maysatisfy testing relation, we will not 
need to reason about all the computations generated by an experiment; in other words, it will be no 
longer necessary to reason on the maximal length of a successful computation, therefore the assumption 
that the LTS of processes to be tested contains only finitely branching states can be dropped. However, 
we still need to assume that the LTS of tests to be considered is finitely branching; informally 
speaking this is because a test is \emph{may}-represented by a disjunction of formulae, one 
for each of its branches. Therefore, as we do not allow infinite disjunction in our version of 
\rechml, we need to focus only to LTS of finitely branching tests.\\

First we will prove that each formula in \mayhml \emph{may}-represents 
some test $t$ in grammar \eqref{eq:tests}; then we show 
that if the LTS generated by a test $t$\ is finitely branching and finite state, 
then there exists a formula $\phi$\ which \emph{may}-represents $t$. 
In this case we do not require for the 
LTS of processes to be branching finite.\\

To prove that the power of tests defined in grammar \ref{eq:tests}\ can be captured (with respect to 
the \maysatisfy testing relation) by the language \mayhml, we define the concept of
\emph{weak satisfaction relation}; this is obtained as the dual version of 
the weak satisfaction relation relation defined in \cite{aceto}.

\begin{defi}
\label{def:wsatrel}
Let $R \subseteq S \times \mayhml$. Then $R$\ is a weak satisfaction relation if, and only if, it satisfies 
the following implications:
\begin{eqnarray*}
(R\; \ttt) &=& S\\
(R\; \fff) &=& \emptyset\\
(R\; \dmnd \alpha \phi) &\supseteq& \dmnd{\cdot\alpha\cdot}(R\; \phi)\\
(R\; \phi_1 \vee \phi_2) &\supseteq& \dmnd{\cdot\tau\cdot} [(R\; \phi_1) \cup (R\; \phi_2)]\\
(R\; \lfp X \phi) &\supseteq& \dmnd{\cdot\tau\cdot}(R\; \phi\{\lfp X \phi /X \})
\end{eqnarray*}
\qed
\end{defi}

Informally speaking, given a weak satisfaction relation $R$, it is possible 
to determine whether $s \in (R\;\phi)$ for some $s\in S$, $\phi \in \mayhml$ 
by looking at the set of the $\tau$-derivatives of $s$, rather than at the 
single state itself.\\
The satisfaction relation $\models$, when restricted to \mayhml, is a 
weak satisfaction relation. This is because for any $\phi \in \mayhml$ 
we have $\sem{\phi} = \sem{\dmnd\tau \phi}$.

\begin{lem}
\label{prop:mayhmltauclosed}
Let $p \in S$, $\phi \in \mayhml$. Then $p \models \phi$ if and 
only if there exists $p' : p \Trans{\tau} p'$\ and $p' \models \phi$.
\end{lem}

\begin{proof}
For the only if implication notice that for all $p \in S$\ it holds $p\Trans{\tau} p$.\\
For the only if implication, notice that the semantics of \mayhml is defined 
on weak actions, and that $\sem{\dmnd \alpha \phi} = \sem{\dmnd \tau \dmnd \alpha \phi}$.
\end{proof}
\begin{prop}
 The relation $\models$ is a weak satisfaction relation.
\end{prop}
\begin{proof}
 By Lemma \ref{prop:mayhmltauclosed}\ 
 and the definition of $\sem\cdot$\ we have the following implications:
\begin{eqnarray*}
(\models \ttt) &=& S\\
(\models \fff) &=& \emptyset\\
(\models \dmnd \alpha \phi) &=& \dmnd{\cdot\alpha\cdot}(\models\phi)\\
(\models \phi_1 \vee \phi_2) &=& (\models \phi_1) \cup \models(\phi_2)\\
&=&\dmnd{\cdot\tau\cdot}[(\models\phi_1) \cup (\models\phi_2)\\
(\models \lfp X \phi) &=& (\models \phi\{\lfp X \phi/X\})\\
&=& \dmnd{\cdot\tau\cdot}(\models \phi\{\lfp X \phi/X\})
\end{eqnarray*}
Corollary \ref{cor:minsubst} has been applied in the case of a least fixed point formula.
\end{proof}

Further, we have that $\models$ is the smallest weak satisfaction relation. 
To prove this statement we will use the same techniques used in Section 
\ref{sec:must}; that is, first we will show that $\mayhml$ has a 
continuous interpretation in the complete lattice $(2^S, \subseteq)$. 
The only non trivial case here consists in proving the continuity of 
the $\dmnd{\cdot\tau\cdot}$ operator; this is a direct consequence of 
the following results, which states that such an operator is distributive 
over countable sets chosen in $2^S$.

\begin{prop}
 Let $P_i, i \in I$ be a countable set of elements in $2^S$. Then
\[
 \dmnd{\cdot\alpha\cdot} \bigcup_{i \in I} P_i = \bigcup_{i \in I} \dmnd{\cdot\alpha\cdot}P_i
\]
\end{prop}

\begin{proof}
 It is trivial to show that 
\[
 \bigcup_{i \in I} \dmnd{\cdot\alpha\cdot} P_i \subseteq \dmnd{\cdot\alpha\cdot}\bigcup_{i \in I} P_i.
\]

For the opposite inclusion, suppose $s \in \dmnd{\cdot\alpha\cdot}\bigcup_{i \in I} P_i$; 
then there exists $s'$ such that $s \Trans{\alpha} s', s' \in \bigcup_{i \in I} P_i$.
That is, $s' \in P_j$ for some $j \in I$; since $s \Trans{\alpha} s'$, 
by definition $s \in \dmnd{\cdot\alpha\cdot} P_j$, and therefore 
$s \in \bigcup_{i \in I} \dmnd{\cdot\alpha\cdot}P_i$.
\end{proof}

Given a formula $\phi \in \mayhml$, it is possible to define a chain 
of recursion free formulae $\phi^0, \phi^1,\cdots$ which converge to $\phi$ 
itself. This definition is similar in style to that of Definition 
\ref{def:mustapprox}.
\begin{defi}[Formulae approximations]
For each formula $\phi$\ in \mayhml define
\begin{center}
\begin{eqnarray*}
\phi^0 &\triangleq& \fff\\
\ttt^{(k+1)} &\triangleq& \ttt\\
\fff^{(k+1)} &\triangleq &\fff\\
(\dmnd\alpha\phi)^{(k+1)} &\triangleq& \dmnd\alpha(\phi)^{(k+1)}\\
(\phi_1 \vee \phi_2)^{(k+1)} &\triangleq& \phi_1^{(k+1)} \vee \phi_2^{(k+1)}\\
(\lfp X \phi)^{(k+1)} &\triangleq& (\phi\{min(X, \phi)/X\})^k
\end{eqnarray*}\qed
\end{center}
\label{def:mayapprox}
\end{defi}
\begin{prop}
\label{cor:maycontinuity}
\[
\bigcup_{k\geq 0} \sem{\phi^k} = \sem{\phi}
\]\qed
\end{prop}

Chains of approximations of formulae in \mayhml can be exploited to show that 
$\models$ is indeed the smallest weak satisfaction relation.
\begin{prop}
 Let $R$ be a weak satisfaction relation. Then, for any 
$s \in S$ and $\phi \in \mayhml$, $s \models \phi$ implies 
$s\;R\;\phi$.
\label{prop:modsmallest}
\end{prop}
\begin{proof}
 The proof is similar in style to that of Proposition 
\ref{prop:satisfaction}. If $s \models \phi$ then by 
Corollary \ref{cor:maycontinuity} we have that
$s \models \phi^k$ for some $k \geq 0$. By performing 
an induction on $k$, we show that $s\; R\; \phi$.
For $k=0$ the statement is vacuous; assume then 
that the statement is true for a generic $k$, 
and consider the formula $\phi^{k+1}$; we will only check the 
case $\phi = \lfp X \psi$.\\
If $s \models (\lfp X \psi)^{k+1}$ then by Definition 
$s \models (\psi\{\lfp X \psi / X\})^k$. 
By Lemma \ref{prop:mayhmltauclosed} 
$s \models \dmnd \tau (\psi\{\lfp X \psi / X\})^k$, 
which is equivalent to 
$s \models \dmnd (\tau \psi\{\lfp X \psi / X\})^k$. 
Now, by inductive hypothesis 
$s \;R\; \dmnd (\tau \psi\{\lfp X \psi / X\})$, 
or equivalently $s \Trans{\tau} s'$ with 
$s' \;R\; (\tau \psi\{\lfp X \psi / X\})$; then 
by Definition \ref{def:wsatrel} we have 
$s \;R\; \lfp X \psi$.
\end{proof}

We are now ready to show that each formula of \mayhml \emph{may}-represents some test $t$.\\
For each formula $\phi$\ in Grammar \eqref{eq:mayhml}, the test $\Tmay \phi$\ is defined as below:
\begin{eqnarray*}
\Tmay \ttt &=& \omega.0\\
\Tmay \fff &=& 0\\
\Tmay X &=& X\\
\Tmay {\phi_1 \vee \phi_2} &=& \tau.\Tmay {\phi_1} + \tau.\Tmay{\phi_2}\\
\Tmay {\dmnd \alpha \phi} &=& \alpha.\Tmay \phi\\
\Tmay {\lfp X \phi} &=& \mu X.\Tmay{\phi}
\end{eqnarray*}

We will need the following property for tests:
\begin{prop}
 Let $\phi, \psi$ be two formulae in Grammar \eqref{eq:mayhml}, and 
suppose $\psi$ is a closed formula. Then 
\[
 \Tmay{\phi}\{\Tmay\psi/X\} = \Tmay{\phi\{\psi/X\}}
\]
\label{prop:testsubst}
\end{prop}
\begin{proof}
 By induction on the structure of $\phi$.
\end{proof}

\begin{prop}
\label{prop:maywsr}
The relation $\Rmay = \{\;(s, \phi) \barra s \maysatisfy \Tmay \phi\}$\ is a weak satisfaction relation.
\end{prop}
\begin{proof}
We prove that $\Rmay$\ satisfies the constraints of Definition \ref{def:wsatrel}.
\begin{itemize}
\item $\Tmay \ttt = \omega.0$. It is trivial to check that 
each process in $S$\ \maysatisfy such a test.
\item $\Tmay \fff = 0$. Again, it is straightforward to show 
that for no process $p \in S$\ we have $p \maysatisfy \Tmay \fff$.
\item Suppose $p \Trans{a} p'$, and $p' \Rmay \phi$. Then, we have the computation prefix
\[
p \barra \alpha.\Tmay \phi \shortrightarrow \cdots \shortrightarrow p'' \barra \alpha.\Tmay \phi \shortrightarrow p' \barra \Tmay \phi\footnote{where $p'' = p'$\ in the case $\alpha = \tau$}.
\]

Since $p' \maysatisfy \Tmay \phi$ by the definition of $\Rmay$, the experiment $p \barra \Tmay {\dmnd a \phi}$\ has a successful computation, hence $p \Rmay \dmnd{\alpha}\phi$.
\item Suppose $p \Trans{\tau} p'$, and $p' \Rmay \phi_1$. Given an arbitrary formula $\phi_2$, consider the experiment\\
$p \barra \tau.\Tmay{\phi_1} + \tau.\Tmay{\phi_2}$, which has the computation fragment
\[
p \barra \tau.\Tmay{\phi_1} + \tau.\Tmay{\phi_2} \shortrightarrow p \barra \Tmay{\phi_1} \shortrightarrow \cdots \shortrightarrow p' \barra \Tmay{\phi_1}
\]

As $p' \maysatisfy \Tmay{\phi_1}$, we have $p \maysatisfy \Tmay{\phi_1 \vee \phi_2}$.

\item Suppose $p \Trans{\tau} p'$, with $p' \Rmay \psi \{\lfp X \psi/X\}$; we have 
$\Tmay{\lfp X \psi} = \mu X.\Tmay{\psi}$. In this case we have the computation
\[
p \barra \mu X.\Tmay{\psi}\shortrightarrow \cdots \shortrightarrow p' \barra \mu X.\Tmay{\psi} \shortrightarrow p' \barra \Tmay{\psi}\{\mu X.\psi/X\},
\]
where $\Tmay{\psi}\{\mu X.\psi/X\} = \Tmay{\psi\{\lfp X \psi/X\}}$ by Proposition \ref{prop:testsubst},
and hence $p \Rmay \lfp X \psi$.
\end{itemize}
\end{proof}

\begin{prop}
\label{prop:maylwsr}
Let $p \in S$ and let $\phi \in \mayhml$. If $p \maysatisfy \Tmay \phi$\ then $p \models \phi$.
\end{prop}
\begin{proof}
Assume $p \maysatisfy \Tmay \phi$. We proceed by induction on the 
minimal length of a successful prefix of a computation, denoted 
$|p, \Tmay \phi|$\ with an abuse of notation, 
to show that $p \models \phi$.
\begin{itemize}
\item $|p, \Tmay \phi| = 0$. Then we may infer $\Tmay \phi \trans{\omega}$\ hence $\phi \equiv \ttt$. 
In this case, for each $p\in S$\ it holds. $p \maysatisfy \Tmay \phi$, and $\forall p \in S. p \models \ttt$.
\item $|p, \Tmay \phi| = k+1$. Assume the statement holds for $k$, and consider the prefix 
\[
p | \Tmay \phi \shortrightarrow p' | t'
\]

of a minimal successful computation.\\ We distinguish several cases:
\begin{enumerate}[(a)]
\item $p \trans{\tau} p', t' \equiv \Tmay \phi$. Then by inductive hypothesis $p' \models \phi$, 
and by Lemma \ref{prop:mayhmltauclosed}\ we have $p \models \phi$.
\item $p = p', \Tmay \phi \trans{\tau} t'$: in this case there are tree possibilities.
\begin{itemize}
\item $\phi = \lfp X \psi$\ for some $\psi$. Hence $t' \equiv \Tmay \psi \{\Tmay \phi/X\}$, 
which is $t' \equiv \Tmay {\psi \{\phi/X\}}$. Again, by induction we have 
$p \models \psi\{\phi/X\}$, and hence $p \models \phi$.
\item $\phi = \phi_1 \vee \phi_2$. Without loss of generality 
we may infer $t' \equiv \Tmay {\phi_1}$. By Inductive hypothesis 
we have $p \models \phi_1$, hence $p \models \phi_1 \vee \phi_2$.
\item $\phi = \dmnd\tau \psi$ for some $\psi$. In this case we have 
$t' = \Tmay\psi$; by the inductive hypothesis it holds $p \models \psi$. 
Therefore, by Lemma \ref{prop:mayhmltauclosed} $p \models \dmnd\tau \psi$.
\end{itemize}
\item $p \trans{a} p', \Tmay \phi \trans{a} t'$. In this case we have 
$\phi = \dmnd \alpha \psi$, and hence $t' \equiv \Tmay \psi$. 
Then, by using the inductive hypothesis again, we have $p \models \dmnd a \phi$.
\end{enumerate}
\end{itemize}
\end{proof}

\begin{thm}
\label{thm:mayhml}
Let $\phi \in \mayhml$, $p \in S$. Then $p \models \phi$\ if and only if  $p \maysatisfy \Tmay \phi$.
\end{thm}
\begin{proof}
Analogous to the proof of Theorem \ref{thm:musthml}
\end{proof}

Next, we show that if the LTS of tests generated by a test is finite state, then each test 
$t$ is \emph{may}-represented by a \mayhml formula $\phimay t$.\\
First, assume to have a test indexed set of test variables $\{X_t\}$. Then, for each test $t$\ define the formula $\phi_t$\ as
\begin{eqnarray*}
\varphi_t &= \ttt &\mbox {if }t\trans{\omega}\\
\varphi_t &= \fff &\mbox {if }t \nottrans{\;}\\
%\phi_t &= \displaystyle{\bigvee_{t': t \trans{a} t'}} \dmnd {a} X_{t'} \vee \displaystyle{\bigvee_{t': t \trans{\tau} t'}} X_{t'}
\varphi_t &= \displaystyle{\bigvee_{\alpha, t': t \trans{\alpha} t'}} \dmnd{\alpha} X_{t'} & \mbox{if } t \nottrans{\omega}, t\trans{\;}
\end{eqnarray*}

and take $\phimay t$\ to be the $\rechml^+$\ formula $\min_t({\overline{X_T}}, {\overline{\varphi_T}})$.\\
Next we define the following environments:
\begin{eqnarray*}
\rhomin(X_t) &=& \sem{\phimay t}\\
\rhomay(X_t) &=& \{ p \barra p \maysatisfy t\}
\end{eqnarray*}

In the same style as Section \ref{sec:must}, we will prove that the two environments above coincide.
\begin{prop}
\label{prop:minsubmay}
For each test $t, \rhomin(X_t) \subseteq \rhomay(X_t)$.
\end{prop}
\begin{proof}
Suppose the LTS generated by a test $t$\ is finite state and finite branching. 
We just need to show that 
$\sem{\varphi_t} \rhomust \subseteq \rhomust(X_t)$: 
then we can apply the \textit{minimal fixpoint property}, 
Theorem \ref{thm:fixpointprop} (\ref{thm:minfixprop}), 
to conclude 
\[
\rhomin(X_t) = \sem{\slfp t {\overline{X_T}}{\overline{\phi_T}}} 
\subseteq \rhomust(X_T).
\]
The proof is carried out by performing a case 
analysis on $t$.
\begin{itemize}
\item $t \trans{\omega}$. In this case we have $\rhomay(X_t) = S$, so the statement trivially holds.
\item $t \nottrans{\;}$. W have $\phi_t = \fff$, hence $\sem{\phi_t} \rhomay = \emptyset$. Again, the statement is trivial.
\item $t \nottrans{\omega}, t \trans{\;}$. 
Suppose $p \in \sem{\phi}\rhomay$. We have that there exists at least one action 
$\alpha$\ such that $t \trans{\alpha} t'$; thus there exists a process 
$p'$\ such that $p \Trans{\alpha} p'$\ and $p' \maysatisfy t'$ (in the case 
$\alpha = \tau$ choose $p' = p$). Hence we have the computation fragment
\[
p \barra t \shortrightarrow \cdots \shortrightarrow p'' \barra t \shortrightarrow p' \barra t',
\]
so that $p \maysatisfy t$.
\end{itemize}
\end{proof} 

\begin{prop}
\label{prop:maysubmin}
For each test $t, \rhomay(X_t) \subseteq \rhomin(X_t)$.
\end{prop}

\begin{proof}
Again, assume the LTS generated by a test $t$\ is finite state.
Let $p$\ be a process such that $p \maysatisfy t$. 
We proceed by induction on the minimal length of a successful computation prefix $|p, t|$\ 
to show that $p \maysatisfy t$ implies $p \in \sem{\varphi_t}\rhomin$; then the result 
$p \in \sem{\phi_t}$ is obtained by applying the Fixpoint Property \ref{thm:fixpointprop}(\ref{thm:fixprop}).
\begin{itemize}
\item $|p, t| = 0$. In this case we have $t \trans{\omega}$. By definition, $\phi_t = \ttt$, so that we have $\sem{\phi_t}\rhomin = S$. This case is trivial.
\item $|p, t| > 0$. Let
\[
p \barra t \shortrightarrow p' \barra t' \shortrightarrow \cdots \shortrightarrow p_n \barra t_n
\]
be a successful computation prefix of length $|p, t|$. 
We distinguish several cases according to the structure of the 
computation. Since $p' \maysatisfy t'$ and $|p',t'|<|p,t|$, 
in each case we have $p' \in \sem{\varphi_{t'}}\rhomin$\ by inductive hypothesis.
\begin{itemize}
\item $p = p'$, $t \trans{\tau} t'$; we have 
$p \in \sem{X_t}\rhomin = \sem{\dmnd{\tau}\phi_{t'}}\rhomin$. 
Then $p \in \sem{\bigvee_{\alpha, t':t\trans{\alpha}t'}\dmnd{\tau}X_{t'}}\rhomin$.
\item $p \trans{\tau} p'$, $t = t'$; we have 
$p' \in \sem{X_t}\rhomin$, and therefore 
$p \in \sem{X_t}\rhomin$ by Lemma \ref{prop:mayhmltauclosed}.
\item $p \trans{a} p'$, $t \trans{a} t'$; 
in this case $p \in \sem{\dmnd{a} X_{t'}}\rhomin$, and hence $p \in \sem{\phi_t}\rhomin$.
\end{itemize}
\end{itemize}
\end{proof}

Propositions \ref{prop:minsubmay} and \ref{prop:maysubmin} can be 
combined to obtain the following result:

\begin{thm}
\label{thm:maytest}
 Every finitary test $t$ is \emph{may}-representable.\qed
\end{thm}

\begin{corollary}\label{cor:maylargest}
Suppose $\phi$ is a formula in \rechml which is \emph{may}-testable. Then 
there exists some $\psi$ in $\mayhml$ which is logically equivalent to it.
\end{corollary}

\begin{proof}
Suppose $\phi$\ is \emph{may}-testable. By theorem 
\ref{thm:mayhml} there exists a finite test 
$t = \Tmay \phi$\ which \emph{may}-represents $\phi$. 
Further, by Theorem \ref{thm:maytest}\ there exists a 
formula $\psi = \phimay {t} \in \mayhml$\ which \emph{may}-tests for $t$. Therefore
\[
p \in \sem{\phi} \Leftrightarrow p \maysatisfy \Tmay \phi \Leftrightarrow p \in \sem{\psi}
\]
\end{proof}

\chapter{Conclusions}\label{sec:end}

We have investigated the relationship between properties of processes as expressed 
in a recursive version of Hennessy-Milner logic, \rechml, and \emph{extensional} tests as 
defined in \cite{dhn}. In particular we have shown that both \emph{may} and \emph{must}
tests can be captured in the logic, and we have isolated logically complete sub-languages
of \rechml which can be captured by \emph{may} testing and \emph{must} testing. One 
consequence of these results is that the \emph{may} and \emph{must} testing preorders
of \cite{dhn} are determined by the logical properties in these sub-languages \mayhml and
\musthml respectively.\\

However these results come at the price of modifying the satisfaction relation; 
to satisfy a box formula a process is required to converge. One consequence of this 
change is that the language \rechml no longer characterises the standard notion
of \emph{weak bisimulation equivalence}, as this equivalence is insensitive to
divergence. But there are variations on \emph{bisimulation equivalence} which do
take divergence into account; see for example \cite{walker,cbl}.\\

The research reported here was initiated after reading \cite{aceto};
there a notion of testing was used which is different from both
\emph{may} and \emph{must} testing. They define $s$ \emph{passes} the
test $t$ whenever no computation from $s \;|\; t$ can perform the
success action $\omega$, and give a sub-language which characterises this form of testing. 
It is easy to check that $s$ \emph{passes} $t$ if and only if, in our terminology, 
$s$ \emph{may} $t$ is not true. So their notion of testing is dual to \emph{may} testing,
and therefore, not surprisingly, our results on \emph{may} testing are simply dual versions
of theirs.\\

We have concentrated on properties associated with essentially two
behavioural theories, \emph{weak bisimulation equivalence} and
\emph{testing}. However there are a large number of other behavioural theories; 
see \cite{rob} for an extensive survey, including their characterisation in terms of
\emph{observational} properties.
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\begin{abstract}
Process behaviour is often defined either in terms of the tests they 
satisfy, or in terms of the logical properties they enjoy. Here we compare these
two approaches, using \emph{extensional testing} in the style of
DeNicola, Hennessy, and a recursive version of the property logic HML.

We first characterise subsets of the property logic which can be captured by tests. 
Then we show that those subsets adequately represent the power of tests.
\end{abstract}
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\chapter{Introduction}
It is very natural to use properties to determine process behaviour;
two processes are deemed to be behaviourally equivalent, $p
\approxprop q$ unless there is a property enjoyed by one and not the
other. Indeed this is often used as a justification for the use of the
well-known \emph{bisimulation equivalence} between processes,
\cite{ccs}. As a property language one can use the modal language
commonly referred to as \textit{Hennessy Milner Logic} (HML), 
which describes the ability of processes to repeatedly interact 
with each other by performing actions.  
Then, in an appropriate setting, it can be shown that two processes are
\emph{bisimulation equivalent}  unless there is some
property $\phi$ such that $p$ enjoys $\phi$ and $q$ does not, or
conversely $q$ enjoys $\phi$ and not $p$, \cite{ccs}; that is the
\emph{bisimulation equivalence} coincides with  $\approxprop$.\\

An alternative approach to process behaviour is based on tests,
\cite{dhn}.  Intuitively two processes are \emph{testing equivalent},
$p \approxtest q$, relative to a set of tests $T$ if $p$ and $q$ pass
exactly the same set of tests from $T$. Much here depends of course on
details, such as the nature of tests, how they are applied and how
they succeed. Indeed it has been shown, \cite{abramsky}, that if one
is sufficiently general with this detail then one can design a
scenario in which the property based view $p \approxprop q$ coincides
with the testing view $p \approxtest q$.\\

A much more restricted view of testing was proposed in \cite{dhn},
where observers have very limited ability to manipulate the processes
under test; informally processes are conceived as completely
independent entities which may or may not react to testing requests;
more importantly the application of a test to a process simply
consists of a run to completion of the process in a \emph{test
  harness}. Because processes are in general nondeterministic,
formally this leads to two testing based equivalences, $ p \approxmay
q$ and $p \approxmust q$; the latter is determined by the set of tests
a process guarantees to pass, written $p \mustsatisfy t$,
while the former by those it is possible to
pass, $p \maysatisfy t$.  The \emph{may} equivalence provides a basis for the so-called
trace theory of\\ processes \cite{csp} , while the \emph{must} equivalence
can be used to justify the various \emph{failures} denotational models
used in the theory of CSP, \cite{csp,olderog,rocco}.\\

We take these two different approaches to
process behaviour, properties versus tests, for granted. Intuitively the first leads to a
branching theory while the latter, in both its variations, leads to a
linear theory; see \cite{vardi} for a modern discussion of this
dichotomy.  Instead the purpose of this paper is to understand more
fully the difference in approach; we investigate the difference in power
between the use of properties as expressed in the modal language HML,
and the use of tests.\\

%A priori properties, at least those expressed in HML, and tests are orthogonal. 
%But
The relationship between properties and tests was first
investigated in \cite{aceto} for a recursive version of HML, which we will 
refer to as \rechml, for a non-standard notion of testing. Here we revisit 
this question but this time for the more standard notions of \emph{may}
and \emph{must} testing mentioned above.\\

To explain our results, at least intuitively, let us introduce some
informal notation; formal definitions will be given later in the paper.
Suppose we have a property $\phi$ and a test $t$ such that
\begin{quote}
  for every process $p$,\;\; $p$ satisfies $\phi$ if and only if $p$ \maysatisfy\ 
  the test $t$.
\end{quote}
Then we say the formula $\phi$ \emph{may}-represents the test $t$.
We use similar notation with respect to \emph{must} testing. 
Our first result shows that
the power of tests can be captured by properties; for every test $t$:
\begin{enumerate}[(i)]
\item 
there is a formula $\phimay{t}$ which \emph{may}-represents $t$; see Theorem~\ref{thm:maytest},
%$p \maysatisfy t$ if and only if  $p$ satisfies the formula 
%$\phimay{T}$

\item 
there is a formula $\phimust{t}$ which \emph{must}-represents $t$; see Theorem~\ref{thm:musttest}.
% $p \mustsatisfy t$ if and only if  $p$ satisfies the formula 
% $\phimust{t}$
\end{enumerate}

Properties, or at least those expressed in \rechml, are more
discriminating than tests, and so one would not expect the converse to hold.
But we can give simple descriptions of subsets of \rechml, called 
\mayhml and \musthml respectively, with the following properties:
\begin{enumerate}[(a)]
\item every $\phi \in \mayhml$ \emph{may}-represents some   test $\Tmay{\phi}$; see Theorem~\ref{thm:mayhml}

\item every $\phi \in \musthml$ \emph{must}-represents  some  test $\Tmust{\phi}$; see Theorem~\ref{thm:musthml}

\end{enumerate}

Moreover because the formulae $\phimay{t},$\;$\phimust{t}$ given in (i),
(ii) above are in \mayhml,\\ \musthml respectively, these sub-languages
of \rechml have a pleasing completeness property. For example let
$\phi$ be any formula from \rechml which can be represented by some
\emph{must} test $t$; that is $p$ satisfies $\phi$ if and only if $p
\mustsatisfy t$. Then up to logical equivalence the formula $\phi$ is
guaranteed to be already in the sub-language \musthml; that is there is
a formula $\psi \in \musthml$ which is logically equivalent to
$\phi$. The language \mayhml has a similar completeness property for
\emph{may} testing.\\

We now give a brief overview of the remainder of the paper.
In Section \ref{sec:background} we recall some basic definitions from 
concurrency theory. These are required to state our results precisely.
In Section \ref{sec:recursivehml} we present the modal logics that 
will be used to express properties of concurrent systems.
In Section \ref{sec:testing} we develop two testing frameworks testing 
frameworks, which are exactly those described in \cite{dhn}.\\
We then set up the formal definition of the question being addressed in 
the paper in Section \ref{sec:tf}. In Section \ref{sec:must} we analyse such a 
question when dealing with the must testing relation, while in Section \ref{sec:may} 
we deal with the may case.\\
Finally, we state our Conclusions in Section \ref{sec:end}.\\
We assume the reader has no previous knowledge in the field; that is, 
basic definitions are explained in detail, often providing illuminating examples.

\chapter{Background}
\section{Modeling Concurrent Systems}
\label{sec:background}
The first step that has to be accomplished in order to reason formally 
about concurrent systems is to provide a mathematical model which allows to 
give a formal description of their behaviour.\\

At a descriptive level, we can think of systems as devices which can 
access different states; for example, if we consider a personal computer 
the set of states it can access coincides with the set of all its 
memory configurations. Further, concurrent systems can usually interact 
with the environment that surrounds them, by performing some kind of activity 
which can be detected by a component which is external to the system, or by 
receiving inputs from such a component. In general we can assume there is 
a set of actions that allows the system to interact with the 
external environment. We expect that the execution of one of those actions 
will result in an evolution of the state of the system. If we consider again 
the personal computer example, then the external environment can be a user 
typing the name of a program to be executed on the keyboard; 
when the enter key is pressed, the command will be sent to the computer. 
On the other hand, the computer will receive the name of the program to be 
executed and will load the instructions of such a program in its memory, thereby 
causing an evolution of the system state.\\

Finally, it is also the case that the state of a system evolves even when 
there is no interaction with the external environment; in other words, 
we must take into account the possibility for unobservable activities 
to be performed by a system. In the computer example above, once the 
program code has been loaded into the memory, instructions will start 
to be executed. Each time an instruction is executed, the content of 
the computer's memory is updated. However, this activity is the result 
of an internal computation which cannot be directly detected by any user 
which is interacting with the computer.\\

This discussion suggests that a possible mathematical description of a 
concurrent system should include 
\begin{itemize}
 \item its set of states,
 \item the set of actions it can perform to interact with a component 
external to the system,
 \item a special action which denotes unobservable ability
 \item a description of the evolution of the system states when some 
 action (either observable or unobservable) is performed.
\end{itemize}
The mathematical model used to represent such information takes the 
name of \textit{labeled transition system} (LTS).

\begin{defi}[Labeled transition System]
A LTS over a set of actions $Act$\ is a triple $\mathcal{L} = \langle S,\; Act_{\tau},\; \longrightarrow \rangle$\ where:
\begin{itemize}
\item $S$\ is a countable set of states
\item $Act_{\tau} = Act \cup \{\tau\}$\ is a countable set of actions,
where $\tau$ does not occur in $Act$
\item $\longrightarrow \subseteq S \times Act_{\tau} \times S$\ is a transition relation.
\end{itemize}
The special action $\tau$ denotes unobservable or internal activity.\\
We use $a, b, \cdots$\ to range over the set  of external actions $Act$, and $\alpha,
\beta, \cdots$\ to range over  $Act_\tau$.
The standard notation $s \trans{\alpha} s'$\ will be used in lieu of $(s,\alpha,s') \in \longrightarrow$. 
States of a LTS $\mathcal{L}$\ will also be referred to as (term)
\textit{processes} and ranged over by $s,\,s',p,\;q$.\qed
\end{defi}

First we look at an example of LTS which is standard in all 
concurrency theory.
 \begin{table}[h]
  \centering
       \begin{ltspic}{2.8cm}
        \node[state]   (A)                      {wait};
        \node[state]   (B)  [below of=A]        {select};
        \node[state]   (C)  [below left of=B]   {\footnotesize{do coffee}};
        \node[state]   (D)  [below right of=B]  {\footnotesize{~~do tea~~~}};

        \path (A)      edge              node{coin}           (B)
              (B)      edge              node{coffee}         (C)
                       edge              node{tea}            (D)
              (C)      edge[bend left]   node[left]{$\tau$}   (A)
              (D)      edge[bend right]  node[right]{$\tau$}  (A);
      \end{ltspic}
   \caption{LTS for the vending machine: graphical representation}
   \label{lts:vm}
 \end{table}
\begin{example}
\label{ex:vm}
 Suppose we want to model a vending machine which can provide 
 a customer either coffee or tea. The vending machine is initially 
 waiting for a customer to insert a coin. When this event occurs, 
 the vending machine enables two selection buttons, respectively for 
 coffee and tea, and waits for the customer to choose one of them. 
 Once the selection button has been pressed, the vending machine will 
 start producing the selected beverage; when this process has finished, 
 the vending machine will perform an unobservable action to return in 
 the initial state.

 The set of states of the vending machine can then be defined as 
 $\{\mbox{wait}, \mbox{select}, \mbox{do coffee}, \mbox{do tea}\}$, 
 while the set of external actions it can perform can be defined 
 as\\
 $\{\mbox{coin}, \mbox{coffee}, \mbox{tea}\}$.\\
 Finally, we can model the behaviour of the vending machine by 
 building the transition relation for the above sets of states and 
 actions. The relation $\trans{\;}$\ for the vending machine is then 
 given by 
 \begin{eqnarray*}
  \mbox{wait} &\trans{\mbox{coin}}& \mbox{select}\\
  \mbox{select} &\trans{\mbox{coffee}}& \mbox{do coffee}\\
  \mbox{select} &\trans{\mbox{tea}}& \mbox{do tea}\\
  \mbox{do coffee} &\trans{\tau}& \mbox{wait}\\
  \mbox{do tea} &\trans{\tau}& \mbox{wait}
 \end{eqnarray*}\qed
\end{example}

 Often it is useful to give a graphical representation of a LTS; 
 states are represented by balls labeled with the name of the 
 corresponding state. Whenever $p \trans{\alpha} q$\ for some 
 state $p, q$ and action $\alpha$, we draw a directed arrow 
 labeled with the name of the action $\alpha$\ from the ball 
 representing $p$\ to the ball representing $q$.
 The graphical representation of the LTS for the coffee vending 
 machine illustrated in Example \ref{lts:vm} is given in Table 
 \ref{lts:vm}.\\

Let us recall some standard notation associated with LTSs. We write
$s \trans{\alpha}$\ if there exists some $s'$\ such that $s
\trans{\alpha} s'$, $s \longrightarrow$\ if there exists $\alpha \in
Act_{\tau}$\ such that $s \trans{\alpha}$, and $s \nottrans{\alpha}$, $s
\nottrans{\;}$\ for their respective negations. We use $\Succ{\alpha, s}$ to
denote the set $\{s' | s \trans{\alpha} s'\}$, and $\Succ{s}$ for 
$\bigcup_{\alpha \in Act_{\tau}} \Succ{\alpha, s}$. 
If $\Succ{s}$ is finite for every state $s \in S$ the LTS is said to be \textit{finite
  branching}.  Finally, a state $s$\ diverges, denoted $s \Uparrow$,
if there is an infinite path of internal moves 
\[
s \trans{\tau} s_1 \trans{\tau} \cdots \trans{\tau} s_{n} \trans{\tau} s_{n+1} \trans{\tau} \cdots
\]
while it converges, denoted $s \Downarrow$, otherwise.
\begin{table}[t]
\centering
\begin{ltspic}{1.8cm}
        \node[state]   (A)                       {$s_0$};
        \node[state]   (B)  [below right of=A]   {$s_1$};
        \node[state]   (C)  [above right of=A]   {$s_2$};
        \node[state]   (D)  [right of=C]         {$s_3$};
        
        \path (A)      edge [loop above]  node{$\tau$}        (A)
                       edge               node{$a$}           (B)
                       edge               node{$b$}           (C)
              (C)      edge               node{$a$}           (D);
\end{ltspic}
\caption{a very simple LTS}
\label{lts:ex2}
\end{table}
\begin{example}
Consider the LTS depicted in Table \ref{lts:ex2}.
In this case we have $s_0 \trans{a}$, since $s_0 \trans{a} s_1$. Moreover 
it holds $s_0 \trans{b}$, as $s_0 \trans{b} s_2$. It is also the case 
that $s_0 \trans{\;}$ for there exists an action $\alpha$ (either 
$a$ or $b$) such that $s \trans{\alpha}$. For state $s_0$\ we find 
that $\Succ{a, s_0} = \{s_1\}, \Succ{b, s_0} = \{s_2\}$, and thereby 
$\Succ{s_0} = \{s_1, s_2\}$. Finally, notice that it is possible 
to produce an infinite path rooted in $s_0$ whose form is
\[
s_0 \trans{\tau} s_0 \trans{\tau} \cdots \trans{\tau} s_0 \trans{\tau} \cdots
\]
so that $s_0 \Uparrow$.\\
If we repeat this procedure for state $s_2$ we now find that it is 
also the case that $s_2 \trans{a}$, as $s_2 \trans{a} s_3$; further 
we can compute $\Succ{a, s_2}$ to find out that such a set is 
exactly $\{s_3\}$. However, for state $s_2$\ there exists no state $s$
such that $s_2 \trans{b} s$. Indeed, $\Succ{b, s_2} = \emptyset$; in 
this case we infer that $s_2 \nottrans{b}$. Finally, since $s_2 \trans{a}$ 
we obtain that $s_2 \trans{\;}$. It is trivial to notice that $s_2 \Downarrow$, 
as it cannot perform any internal transition $\trans{\tau}$.\\
Finally, let us look at state $s_3$. It is easy to notice that both for 
actions $a$ and $b$ we have $s \nottrans{a}$\ and $s\nottrans{b}$. Therefore, 
since there is no action that such a state can perform, we conclude that 
$s_3 \nottrans{\;}$. For such a state we have in fact $\Succ{s_3} = \emptyset$. 
Again, it is the case that $s_3 \Downarrow$. All the states in the LTS of 
Table \ref{lts:ex2} have a finite number of derivatives, so that they are 
all finite branching.\qed
\end{example}
\begin{example}
 \begin{table}
   \centering
          \begin{ltspic}{2.0cm}
        
            \node[state]  (A)                                                    {$s$};
            \node[state]  (B)  [right of=A, draw=white, fill=white, text=black]  {$\vdots$};
            \node[state]  (C)  [above of=B]                                      {$s_2$};
            \node[state]  (D)  [above of=C]                                      {$s_1$};
            \node[state]  (E)  [below of=B]                                      {$s_{n}$};
            \node[state]  (F)  [below of=E]                                      {$s_{n}$};
            \node[state]  (G)  [below of=F, draw=white, fill=white, text=black]  {$\vdots$};
            

            \path  (A)  edge  [bend left]   node[right]{$\alpha_2$}      (C)
                        edge  [bend left]   node[left]{$\alpha_1$}       (D)
                        edge  [bend right]  node[right]{$\alpha_{n}$}    (E)
                        edge  [bend right]  node[right]{$\alpha_{n+1}$}  (F);
          \end{ltspic}
   \caption{LTS with a non finite branching state}
   \label{lts:nbf}
 \end{table}
Look at state $s$\ in picture \ref{lts:nbf}. The set of successors of such a state 
is $\{s_1, s_2, \cdots, s_n, s_{n+1}, \cdots\}$, which is countable. Therefore,
we have that such a state is not branching finite.\qed
\end{example}

When analysing the behaviour of a system by giving its description as a LTS, 
it is often the case that we are interested in those activities which can be detected 
by the external environment. This give rise to the standard notation for weak 
actions $\Trans{\alpha}$. Intuitively speaking, if a system performs an unobservable 
activity which causes it to evolve from a state $s$ to a state $s'$, and then it 
performs another unobservable ability which makes it evolve from $s'$ to $s''$, then 
the result of these two activities can still be considered as some activity that 
cannot be detected by the environment. Formally, we say that 
$s \Trans{\tau} s''$. This procedure applies to arbitrary long sequences of 
unobservable activities, so that we say that $s \Trans{\tau} s'$ whenever 
it is the case that $s \transarrow{\tau} s'$, where we recall that 
$\transarrow{\tau}$ is the reflexive transitive closure of $\trans{\tau}$.\\

Further, consider the case when a system performs an arbitrary sequence 
of unobservable activities; then it performs another activity, represented in 
a LTS by action $a$, which can be detected by the external environment, and 
finally it performs another arbitrary sequence of unobservable activities. 
Again, this can be considered as an unique activity of the system where the 
only visible action that has been performed is $a$. Formally, for a given 
LTS we say that $s \Trans{a} s'$\ if and only if there exist $s_1, s_2$ 
such that $s \Trans{\tau} s_1 \trans{\tau} s_2 \Trans{\tau} s'$.
\begin{example}
\begin{table}[h]
\centering
 \begin{ltspic}{1.5cm}
        \node[state]   (A)                       {$s_0$};
        \node[state]   (B)  [right of=A]         {$s_1$};
        \node[state]   (C)  [right of=B]         {$s_2$};
        \node[state]   (D)  [right of=C]         {$s_3$};
        \node[state]   (E)  [right of=D]         {$s_4$};
        
        \path (A)      edge               node{$\tau$}        (B)
              (B)      edge               node{$a$}           (C)
              (C)      edge               node{$\tau$}        (D)
              (D)      edge               node{$\tau$}        (E);
 
 \end{ltspic}
 \caption{Another simple LTS}
 \label{lts:ex3}
\end{table}
Look at the LTS depicted in Table \ref{lts:ex3}. Since $s_0 \trans{\tau} s_1$, we 
have that $s_0 \Trans{\tau} s_1$. Analogously, we obtain that $s_2 \Trans{\tau} s_4$, 
for $s_2 \trans{\tau} s_3 \trans{\tau} s_4$. Finally, since $s_1 \Trans{\tau} s_2 
\trans{a} s_2 \Trans{\tau} s_4$ we obtain $s_0 \Trans{\tau} s_4$. A similar 
procedure shows that $s_0 \Trans{\tau} s_3$\ also.\qed
\end{example}

When $s \Trans{\alpha} s'$\ we say that $s'$ is an 
$\alpha$-derivative of $s$.
The associated notation  $s\, \Trans{\alpha}$,  
$s \Longrightarrow$, $s \notTrans{\alpha}$\ 
and $s \notTrans{\;}$\ have the obvious definitions.\\

As we are dealing with systems which 
can communicate with the external environment, it is often the 
case that we want to analyse the behaviour of a system when it 
is put in composition with another one. If both of them are 
represented as LTSs, then we expect to model their composition 
as a LTS as well. Formally we can define a parallel composition 
operator as follows:
\begin{defi}[Parallel composition]
\label{def:pcomp}
Let $\mathcal{L}_1 = \langle S_1,\; Act^{1}_{\tau},\; 
\longrightarrow\rangle$,\\ $\mathcal{L}_2 = \langle S_2,\;
 Act_{\tau}^2,\; \longrightarrow \rangle$ be LTSs.
The parallel composition of $\mathcal{L}_1$\ and $\mathcal{L}_2$\
 is a LTS $\mathcal{L}_1 | \mathcal{L}_2 =\; 
\langle S_1 \times S_2,\; \{\tau\}, \longrightarrow \rangle$, where
$\longrightarrow$\ is defined by the following SOS rules:
\begin{center}
\begin{tabular}{ccc}
\begin{prooftree}
s \trans{\tau} s'
\justifies
s | t \trans{\tau} s' | t
\end{prooftree}
&
\begin{prooftree}
t \trans{\tau} t'
\justifies
s | t \trans{\tau} s | t'
\end{prooftree}
&
\begin{prooftree}
s \trans{a} s' \quad t \trans{a}_2 t'
\justifies
s | t \trans{\tau} s' | t'
\end{prooftree}
\end{tabular}
\end{center}
$s | t$\ is used as a conventional notation for $(s, t)$.\qed
\end{defi}

The first two rules models the possibility for each component of a LTS to
perform their internal actions independently from the other one. This is needed, 
as internal activities of a component cannot be detected by the other one.
The third rule corresponds to a synchronization between the two components 
upon performing the same action; such a synchronization will result in an
internal activity which cannot be detected by an external environment.\\

Notice that the parallel composition operator we introduced does not allow 
any external action for the composition of two LTSs. This is non standard 
with respect to other definitions of parallel composition that can be found 
in Concurrency Theory literature; however, this choice will allow a simple 
presentation of extensional testing, which is covered in Section \ref{sec:testing}.\\

\begin{example}
Consider again the vending machine whose LTS is depicted in Table \ref{lts:vm}. Suppose 
a customer wants to interact with the vending machine to obtain a coffee. The 
customer will then insert a coin into the vending machine, then he will press the 
coffee button. The LTS that models a customer is straightforward and is depicted 
in Table \ref{lts:cust}. We can then apply Definition \ref{def:pcomp} to obtain 
the LTS which models the interaction between the vending machine and the customer. 
The LTS for the new composed system is given in Table \ref{lts:comp}; there 
$w, s$ and $c$ are used as abbreviations for states wait, select and 
do coffee respectively.\qed
\end{example}

\begin{table}[h]
\centering
\begin{ltspic}{2.0cm}
  \node[state]            (A)                                       {$t_0$};
  \node[state]            (B)  [right of=A]                         {$t_1$};
  \node[state,accepting]  (C)  [right of=B]  {$t_2$};
                
  \path                   (A)  edge  node{coin}    (B)
                          (B)  edge  node{coffee}  (C);
  \end{ltspic}
 \caption{LTS for a customer of the vending machine}
 \label{lts:cust}
\end{table}
\begin{table}[h]
\centering
        \begin{ltspic}{2.0cm}
          
          \node[state]  (A)                {$w \lvert t_0$};
          \node[state]  (B)  [right of=A]  {$s \lvert t_1$};
          \node[state]  (C)  [right of=B]  {$c \lvert t_2$};
          \node[state]  (D)  [right of=C]  {$w \lvert t_2$};

          \path         (A)  edge          node{$\tau$}  (B)
                        (B)  edge          node{$\tau$}  (C)
                        (C)  edge          node{$\tau$}  (D);
        \end{ltspic}
 \caption{composition between the vending machine and the customer}
 \label{lts:comp}
\end{table}
\section{Formalising Properties: Recursive HML}
\label{sec:recursivehml}
The next topic we address concerns how to express properties of 
interest for an LTS. To this end, we need to define both a formal 
language for the formulae which will be used to express properties, 
and an interpretation function that defines the set of states 
of a LTS that satisfies a given formula.\\

The \textbf{Hennessy Milner Logic} (HML) \cite{hml} has proven to 
be a very expressive property language based on a minimal set of modalities to 
capture the actions a process can perform, and what the effects of performing such 
actions are. Here we use a variant in which the interpretation depends on
the weak actions of a LTS.

\begin{defi}[Syntax of \rechml]
Let $Var$\ be a countable set of variables.
The language \rechml is defined as the set of 
closed formulae generated by the following grammar:
\begin{eqnarray*}
\phi &\is& \ttt \barra \fff \barra X \barra \Acc A \barra \dmnd{\alpha}\phi \barra [\alpha]\phi \barra\\ 
&\barra& \phi_1 \vee \phi_2 \barra \phi_1 \wedge \phi_2 \barra \lfp{X}{\phi} \barra \gfp{X}{\phi}
\end{eqnarray*}
Here $X$\ is chosen from the countable set of variables $Var$.
The operators $\lfp X{\phi}$, $\gfp X {\phi}$ act as binders for variables and we have the
standard notions of free and bound variables, and associated binding sensitive
substitution of formulae for variables.\qed
\end{defi}

Let us recall the informal meaning of \rechml operators. A formula 
of the form $\dmnd \alpha \phi$\ expresses the need for a process to have an 
$\alpha$-derivative which satisfies formula $\phi$, while formula $[\alpha]\phi$\ 
expresses the need for all $\alpha$-derivatives (if any) of a converging process to satisfy formula 
$\phi$.\\
Formula $\Acc A$\ is defined when $A$\ is a finite subset of $Act$, and is satisfied exactly 
by those converging processes for which each $\tau$\ derivative 
has at least an $a$-derivative for some $a \in Act$.
The formulae $\lfp X \phi$\ and $\gfp X \phi$ allow 
the description of recursive properties, respectively being
the least and largest solution of the equation $X = \phi$\ 
over the powerset domain of the state space.\\

Formally, given a LTS $\langle S, Act_{\tau}, \longrightarrow \rangle$, 
we interpret each (closed) formula
as a subset of $2^S$. The set $2^s$ is a complete lattice and the
semantics  is determined by interpreting each operator in the language as 
a monotonic operator over this complete lattice. The binary operators 
$\vee,\;\wedge$ are interpreted as set theoretic union and intersection
respectively while the unary operators are interpreted as follows:
\begin{align*}
  \dmnd{\cdot\alpha\cdot}P = &\;\setof{s}
            { s\Trans{\alpha} s' \mbox{ for some } s' \in P}\\
 \bbox{\cdot\alpha\cdot}P =&\; \setof{s}
        {s\Downarrow, \text{ and } s\Trans{\alpha} s' \mbox{ implies } s' \in P}
\end{align*}
where $P$ ranges over subsets of $2^S$.\\

Open formulae in \rechml can be interpreted by specifying, 
for each variable $X$, the set of states for which 
the atomic formula $X$\ is satisfied.
Such a mapping from $Var$\ to $2^S$\ is called environment.
Let $\mbox{Env}$\ be the set of environments,
mappings $\rho: \mbox{Var} \rightarrow 2^S$.  A formula $\phi$\ of
$\rechml$ will be interpreted as a function $\sem{\phi}: \env \rightarrow 2^S$. 
We will use the standard notation $\rho[X \mapsto P]$\ to refer to the 
environment $\rho'$\ such that $\rho'(X) = P$\ and $\rho'(Y) = \rho(Y)$\ for 
all variables $Y$\ such that $X \neq Y$.\\
The definition of the interpretation $\sem{\cdot}$\ is given in Table
\ref{tab:interpr}.\\

The interpretation of a formula $\lfp X \phi$\ in the  
environment $\rho$ is defined as the smallest pre fixpoint 
of a monotonic functional 
$\mathcal{F}_{\phi}^{\rho}: 2^S \rightarrow 2^S$ such that\\
$\mathcal{F}_{\phi}^{\rho}(P) = \sem{\phi}\rho[X \mapsto P]$. 
When dealing with closed formulae, Tarski's fixed point Theorem 
\cite{becik} ensures that such a set coincides with the least 
solution of the equation $X = \phi$, as described in our informal 
explanation of the meaning of \rechml formulae. A similar argument 
applies to formulae of the form $\gfp X \phi$, whose interpretation 
in an environment $\rho$\ is defined as the greatest post fixpoint 
of the monotonic functional considered above. We defer the proof 
of Tarski's fixed point Theorem until the end of the section, for it is first 
necessary to prove some simple properties enjoyed by language 
\rechml.\\

When referring to the interpretation of a closed formula $\phi \in
\rechml$, we will omit the environment application, and  sometimes 
use the standard notation $p \models \phi$ for $p \in \sem{\phi}$.
\begin{example}
Consider a LTS with a single state $p$\ and a unique transition $p \trans{b} p$.
Let us analyse whether or not state $s$ satisfies the properties 
$\lfp {X} {\bbox a \fff \wedge \bbox b X}$ and
$\gfp {X} {\bbox a \fff \wedge \bbox b X}$.\\
To do this, we apply directly the interpretation of \rechml formulae 
given in Table \ref{tab:interpr}.
For the first formula, consider the empty set $\emptyset$. 
It is simple to show that\\
$\sem{\bbox a \fff \wedge \bbox b X}[X \mapsto \emptyset]
\subseteq \emptyset$. The calculation is carried out below:
\begin{eqnarray*}
 \sem{\bbox a \fff \wedge \bbox b X}[X \mapsto \emptyset] &=& 
\sem{\bbox a \fff}[X \mapsto \emptyset] \cap \sem{\bbox b X}[X \mapsto \emptyset]\\
&=& \bbox{\cdot a \cdot}(\sem{\fff}[X \mapsto \emptyset]) \cap \bbox{\cdot b \cdot}\sem{X}[X \mapsto \emptyset]\\
&=& \bbox{\cdot a \cdot}\emptyset \cap \bbox{\cdot b \cdot} \emptyset\\
&=& \{s \in S | s \Downarrow, s \notTrans{a}\} \cap \{ s \in S | s \Downarrow, s \notTrans{b}\}\\
&=& \{p\} \cap \emptyset\; =\; \emptyset
\end{eqnarray*}
Therefore $\emptyset \in \{ P \;|\; \sem{\phi}\rho[X \mapsto P] \subseteq P\}$, or 
equivalently $\sem{\lfp X {\bbox a \fff \wedge \bbox b X}} \subseteq \emptyset$. As 
$\emptyset$ is the least element of the complete lattice $\{\emptyset, \{p\}\}$ we have 
that the inclusion above is actually an equality. Thus $p \not\models 
\lfp X {\bbox a \fff \wedge \bbox b X}$.\\
Next consider formula $\gfp {X} {\bbox a \fff \wedge \bbox b X}$. In this case we show that 
$\{p\} \subseteq \sem{\bbox a \fff \wedge \bbox b X}[X \mapsto \{p\}]$, 
and therefore (being $\{p\}$ the greatest element in the complete lattice 
$\{\emptyset, \{p\}\}$) we have that $\sem{\gfp {X} {\bbox a \fff \wedge \bbox b X}} 
= \{p\}$, i.e. $p \models \gfp {X} {\bbox a \fff \wedge \bbox b X}$. Again, 
the whole calculation is carried out below.
\begin{eqnarray*}
  \sem{\bbox a \fff \wedge \bbox b X}[X \mapsto \{p\}] &=&
  \bbox{\cdot a \cdot} \emptyset \cap \bbox{\cdot b \cdot}\{p\}\\
  &=& \{s \in S \,|\, s \Downarrow, s \notTrans{a}\} \cap \{s \in S \,|\, s \Downarrow, \forall s': s \Trans{b} s'.\, s'\in \{p\}\;\}\\
  &=& \{p\} \cap \{p\}\\
  &=&\{p\}
\end{eqnarray*}\qed

\end{example}
\begin{table}[t]%[ht]
\begin{eqnarray*}
\sem{\ttt}\rho &\triangleq& S\\
\sem{\fff}\rho &\triangleq& \emptyset\\
\sem{X}\rho &\triangleq& \rho(X)\\
\sem{\Acc A}\rho &\triangleq& \{ s | s \Downarrow, s \Trans{\tau} s' \mbox{ implies } \exists a \in A.s' \Trans{a} \}\\
\sem{\dmnd{\alpha} \phi}\rho &\triangleq& \dmnd{\cdot\alpha\cdot} (\sem{\phi}\rho)\\
\sem{\bbox{\alpha} \phi}\rho &\triangleq& \bbox{\cdot\alpha\cdot} (\sem{\phi}\rho)\\
\sem{\phi_1 \vee \phi_2}\rho &\triangleq& \sem{\phi_1}\rho \cup \sem{\phi_2}\rho\\
\sem{\phi_1 \wedge \phi_2} \rho &\triangleq& \sem{\phi_1}\rho \cap \sem{\phi_2}\rho\\
\sem{\lfp X \phi}\rho &\triangleq& \bigcap \{ P \;|\; \sem{\phi}\rho[X \mapsto P] \subseteq P\}\\
\sem{\gfp X \phi}\rho &\triangleq& \bigcup \{ P \;|\; P \subseteq \sem{\phi}\rho[X \mapsto P]\}
\end{eqnarray*}
\caption{Interpretation of \rechml}
\label{tab:interpr}
\end{table}
Our version of HML is non-standard, as we have added a convergence requirement for 
the interpretation of the box operator $\bbox{\alpha}$.
The intuition here is that, as in the \emph{failures model} of CSP \cite{csp}, divergence represents
\emph{underdefinedness}.  So if a process does not converge all of its
capabilities have not yet been determined; therefore one can not quantify over all
of its $\alpha$ derivatives, as the totality of this set has not yet been determined.\\

Further, the operator $\Acc\cdot$\ is also non-standard. It has been introduced 
for the sake of simplicity, as it will be useful later; in fact it does not add any 
expressive power to the logic, since for each finite set $A \subseteq Act$\ the formula 
$\Acc A$\ is logically equivalent to 
\[
 [\tau](\bigvee_{a \in A} \dmnd a \ttt).
\]

As usual, we will write $\phi\{\psi/X\}$\ to denote the formula $\phi$\ where all 
the free occurrences of the variable $X$\ are replaced with $\psi$. 
We will use the congruence symbol $\equiv$\ for syntactic equivalence.\\

Next, we show some useful properties which relate syntactic substitution 
in \rechml formulae with environments. These lemmas are particularly 
useful when dealing with recursive formula of the form $\lfp X \phi$\ 
and $\gfp X \phi$.
\begin{prop}\qquad
\label{prop:syntlemma}
\begin{enumerate}[(i)]
\item Let $\phi, \psi$\ be formulae such that $Y$\ does not occur 
free in $\psi$, let $\rho$\ be an environment and $P \subseteq 2^S$. 
Then
\[
\sem{\phi}\rho[X \mapsto \sem{\psi} \rho][Y \mapsto P] = 
\sem{\phi}\rho[Y \mapsto P][X \mapsto \sem{\psi}\rho[Y \mapsto P]\,]
\]
\label{prop:substlemma}
\item Let $\phi, \psi \in \rechml$, and $\rho$\ be an environment: then 
\[
\sem{\phi\{\psi/X\}}\rho = \sem{\phi}\rho[X \mapsto \sem{\psi}\rho].
\]
\label{prop:envlemma}
\end{enumerate}
\end{prop}
\begin{proof}
Both proofs can be performed by induction on the structure of the 
formula $\phi$. For (\ref{prop:substlemma}) three different sub 
cases should be handled when dealing with the case $\phi \equiv Z$ 
(namely $Z \equiv X;\; Z\equiv Y$\ and $Z \not\equiv X, Z \not\equiv Y$).\\ 
For (\ref{prop:envlemma}) we will only outline the details for the case 
$\phi \equiv \lfp Y {\phi_1}$: 
in this case we need to prove 
\[
 \sem{\lfp Y {\phi_1}\{\psi/X\}}\rho = \sem{\lfp Y {\phi_1}}\rho[X \mapsto \sem{\psi}\rho].
\]
By $\alpha$-renaming we can choose $Y$ to be a fresh variable, that is $Y \not\equiv X$ and 
$Y$ does not appear free in $\psi$.\\
Since $Y \not\equiv X$ we have that  $\lfp Y {\phi_1}\{\psi/X\} 
\equiv \lfp Y {\phi_1\{\psi/X\}}$. By inductive hypothesis we have
\[
\sem{\phi_1\{\psi/X\}}\rho = \sem{\phi_1}\rho[X \mapsto \sem{\psi}\rho]
\]
and, therefore,
\begin{eqnarray*}
\sem{\lfp Y {\phi_1\{\psi/X\}}}\rho &=& 
\bigcap \{P : \sem{\phi_1\{\psi/X\}}\rho[Y \mapsto P] \subseteq P\}\\
&\iheq& \bigcap \{P : \sem{\phi_1}\rho[Y\mapsto P][X 
\mapsto \sem{\psi}\rho[Y\mapsto P]] \subseteq P\}\\
&\stackrel{(\scriptstyle{\ref{prop:substlemma}})}{=}& 
\bigcap \{P : \sem{\phi_1}\rho[X\mapsto \sem{\psi}\rho][Y \mapsto P] 
\subseteq P\}\\
&=& \sem{\lfp Y {\phi_1}}\rho[X \mapsto \sem{\psi}\rho],
\end{eqnarray*}
where \ref{prop:substlemma} can be applied as $Y$ does not appear free in $\psi$.
\end{proof}

The language \rechml can be extended conservatively by adding
simultaneous fixpoints, leading to the language $\rechml^+$.  Given a sequence of variables
$(\overline{X})$ of length $n > 0$, and a sequence of formulae
$\overline{\phi}$\ of the same length, we allow the formula $min_i(\overline{X},
\overline{\phi})$ for $1 \leq i \leq n$, where the only variables allowed to
occur in each $\phi_i$ are those in $(\overline{X})$. This formula
will be interpreted as the $i$-th projection of the simultaneous
fixpoint formula.
\begin{defi}[Interpretation of simultaneous fixpoints]
  Let $\overline{X}$\ and $\overline{\phi}$\ respectively be sequences
  of variables and formulae of length $n$.
\begin{eqnarray*}
  \sem{\lfp {\overline{X}}{\overline{\phi}}}\rho &\triangleq& \bigcap 
 \{ \overline{P} \;|\; \sem{\phi_i}\rho[\overline{X}\mapsto\overline{P}]\subseteq 
  P_i \; \forall 1 \leq i \leq n\}\\
  \sem{\slfp i {\overline{X}}{\overline{\phi}}}\rho 
  &\triangleq& \pi_i(\sem{\lfp{\overline{X}}{\overline{\phi}}}\rho)
\end{eqnarray*}
where $\pi_i$\ is the $i$-th projection operator, and intersection over 
vectors of sets is defined to be the point wise intersection:
\[
\langle P_1, \cdots, P_n \rangle \cap \langle Q_1, \cdots, Q_n\rangle = \langle P_1 \cap Q_1, \cdots, P_n \cap Q_n\rangle
\]
\qed
\end{defi}

Intuitively, an interpretation $\sem{\lfp {\overline{X}} {\overline{\phi}}}$, where 
$\overline{X} = \langle X_1,\cdots,X_n\rangle$\ and 
$\overline{\phi} = \langle \phi_1, \cdots, \phi_n \rangle$, is the least solution 
(over the set of vectors of length $n$ over $2^S$) of the equation system whose form is
\begin{eqnarray*}
X_1 &=& \phi_1\\
&\vdots&\\
X_n &=& \phi_n.
\end{eqnarray*}

If the formula $\lfp {\overline{X}} {\overline{\phi}}$ is open, then 
its interpretation in environment $\rho$, $\sem{\lfp {\overline{X}} {\overline{\phi}}}\rho$, 
can be thought as the least solution of the system of equations above extended, 
for every variable $Y$ which appears free in the formula, 
with an equation of the form $Y = \rho(Y)$.\\
The interpretation of a formula of the form 
$\slfp i {\overline{X}} {\overline{\phi}}$ in environment 
$\rho$ is the $i$-th projection of the vector obtained as the 
least solution of the system of equations above; that is 
\[
\sem{\slfp i {\overline{X}} {\overline{\phi}}}\rho = 
\pi_i(\,\sem{\lfp {\overline{X}} {\overline{\phi}}}\rho\,). 
\]
Let $\overline{P} = \langle P_1, 
\cdots, P_n\rangle$\ be the least solution for a system of equations as above. 
The following theorem states that, for each index $i$, there exists an 
equation $X = \psi$\ such that its least solution coincides with $P_i$.

\begin{thm}[(Bek\'ic)]
\label{thm:becik}\qquad
\begin{enumerate}[(i)]
\item
Let $\overline{X} = \langle X_1,\; X_2 \rangle$\ and 
$\overline{\phi} = \langle \phi_1,\; \phi_2\rangle$. Then, 
for any environment $\rho$, 
\begin{eqnarray*}
\sem{min_1(\overline{X}, \; \overline{\phi})}\rho &=& 
\sem{\lfp {X_1} {\phi_1\{ \lfp{X_2}{\phi_2}/X_2\}}}\rho\\
\sem{min_2(\overline{X}, \; \overline{\phi})}\rho &=& 
\sem{\lfp {X_2} {\phi_2\{ \lfp{X_1}{\phi_1}/X_1\}}}\rho
\end{eqnarray*}
\label{prop:becik2}
\item For each formula $\phi \in \rechml^+$\ there is a formula 
$\psi \in \rechml$\ such that $\sem \phi = \sem \psi$.
\end{enumerate}
\end{thm}
\begin{proof}
\begin{enumerate}[(i)]
\item By straightforward calculations: we will show only the 
case for $\slfp 1 {\overline{X}} {\overline{\phi}}$, as the other one is obtained by symmetry:
\begin{eqnarray*}
&\sem{\lfp {X_1} {\phi_1\{\lfp {X_2}{\phi_2}/X_2\}}}\rho &=\\
&\bigcap \{P:\ \sem{\phi_1\{\lfp {X_2}{\phi_2}/X_2\}}\rho[X \mapsto P] 
\subseteq P\}&\stackrel{\mbox{\ref{prop:syntlemma}}}{=}\\
&\bigcap\{P: \sem{\phi_1}\rho[X_1 \mapsto P]
[X_2 \mapsto \sem{\lfp {X_2}{\phi_2}}\rho[X_1 \mapsto P]] \subseteq P\}&=\\
&\bigcap \{P: \sem{\phi_1}\rho[X_1 \mapsto P]
[X_2 \mapsto \bigcap Q: \sem{\phi_2}\rho[X_1 \mapsto P][X_2 \mapsto Q] 
\subseteq Q\}] \subseteq P\}&=\\
&\pi_1 (\bigcap \{ \langle P, Q \rangle: \sem{\phi_2}\rho[X_1 \mapsto P]
[X_2 \mapsto Q] \subseteq Q, \sem{\phi_1}\rho[X_1 \mapsto P]
[X_2 \mapsto Q] \subseteq P\})&
\end{eqnarray*}
\item Let $n \geq 2$, and let $\phi = \slfp i {\overline{X}} {\overline{\phi}}$\ be a 
(possibly open) simultaneous fixpoint formula with 
$\overline{X} = \langle X_1, \cdots, X_n\rangle$ and 
$\overline{\phi} = \langle \phi_1,\cdots,\phi_n\rangle$.\\ 
Without loss of generality, assume $i < n$, as if $i = n$ it is possible to 
order the vectors of variables and formulae in a consistent way.\\
Consider the formula
\[
 \psi = \slfp i {\langle X_1, \cdots, X_{n-1}\rangle} 
{\langle \phi_1\{\lfp {\phi_{n}} {X_n}/X_n\}, 
\cdots, \phi_{n-1}\{\lfp{\phi_n}{X_n}/X_n\}\rangle},
\]
which is a simultaneous fixpoint formula defined 
over a vector of variables of length $n-1$. In the 
same style of \ref{prop:becik2} it is possible 
to show that, for any environment $\rho$, 
it holds $\sem{\phi}\rho = \sem{\psi}\rho$. Further, 
it is straightforward to notice that the 
free variables of $\phi$ are the same of $\psi$.
We can therefore iterate this procedure 
until obtaining a fixpoint formula 
of the form $\lfp {X} {\varphi}$; if the 
original formula $\phi$ is closed, and therefore 
included in $\rechml^+$, then $\lfp {X} {\varphi}$ 
will also be closed, so that it will belong to 
\rechml.
\end{enumerate}
\end{proof}
The properties of these simultaneous least fixpoints which we will require are
summarised in the following theorem:
\begin{thm}[Fixpoint properties]\qquad
\label{thm:fixpointprop}
  \begin{enumerate}[(i)]
  \item 
\label{thm:minfixprop}
Let $(\overline{P})$\ be a vector of sets from $2^S$\ satisfying
$
\sem{\phi_i} \rho[\overline{X} \mapsto \overline{P}] \subseteq P_i
$ for every $1 \leq i \leq n$.
Then 
$
\sem{min_i(\overline{X}, \overline{\phi})} \rho \subseteq P_i
$
\item
\label{thm:fixprop}
Given an environment $\rho$, let $\rhomin$\ be the environment satisfying
$
\rhomin(X_i) = \sem{min_i(\overline{X}, \overline{\phi})} \rho.
$
Then
$
\sem{min_i(\overline{X}, \overline{\phi})}\rho = \sem{\phi_i} \rhomin.
$
 \end{enumerate}
\end{thm}
\begin{proof}\qquad
\begin{enumerate}[(i)]
\item This follows from the definition of 
$\sem{\lfp {\overline{X}} {\overline{\phi}}}$. Let $\overline{P}$ 
be a vector of sets from $2^S$\ such that\\
$\sem{\phi_i} \rho[\overline{X} \mapsto \overline{P}] \subseteq P_i$. 
Then
\begin{eqnarray*}
\sem{\lfp {\overline{X}} {\overline{\phi}}}\rho &=& \bigcap 
\{ \overline{Q} \;|\; \sem{\phi_i}\rho[\overline{X}\mapsto\overline{Q}] 
\subseteq Q_i,\; 1\leq i \leq n\}\\
&=& \overline{P} \cap \bigcap \{ \overline{Q} \;|\; 
\sem{\phi_i}\rho[\overline{X}\mapsto\overline{Q}] \subseteq Q_i,
\; 1\leq i \leq n\}
\end{eqnarray*}
we have therefore that
\[
\sem{\slfp i {\overline{X}} {\overline{\phi}}} = 
P_i \cap  \pi_i (\bigcap \{ \overline{Q} \;|\; 
\sem{\phi_i}\rho[\overline{X}\mapsto\overline{Q}] 
\subseteq Q_i,\; 1\leq i \leq n\}) \subseteq Q_i
\]
\item Let $1 \leq i \leq n$. By the definition of 
$\sem{\slfp i {\overline{X}} {\overline{\phi}}}$\ 
it holds 
\begin{eqnarray*}
\sem{\phi_i}\rhomin&=& \sem{\phi_i}\rho[\overline{X} 
\mapsto \sem{\lfp {\overline{X}} {\overline{\phi}}}\rho ]\\
&\subseteq& \sem{\slfp i {\overline{X}} {\overline{\phi}}}\rho
\end{eqnarray*}

The inclusion shows that $\sem{\phi_i}\rhomin \subseteq 
\sem{\slfp i {\overline{X}} {\overline{\phi}}}\rho$. Moreover, 
since $\sem{\phi_i}\rhomin \subseteq \rhomin$, 
the converse inclusion follows from (\ref{thm:minfixprop}).
\end{enumerate}
\end{proof}

Theorem \ref{thm:fixpointprop} and Proposition \ref{prop:syntlemma} 
lead to this useful Corollary which enables us to reason about recursive 
properties using syntactic substitutions.
\begin{corollary}
\label{cor:minsubst}
Let $\phi \equiv \lfp X \psi$ be a formula in \rechml. Then $\phi$\ is 
logically equivalent to $\psi\{\lfp X \psi/X\}$, that is 
$\sem{\phi} = \sem{\psi\{\lfp X \psi/X\}}$.
\end{corollary}
\begin{proof}
Given a closed formula $\phi \equiv \lfp X \psi$\ and an arbitrary environment $\rho$, we have\\
$\sem{\lfp X \psi}\rho = \sem {\psi}\rho[X \mapsto \sem{\lfp X \psi}]$\ by an application of Theorem 
\ref{thm:fixpointprop}(\ref{thm:fixprop}). Further, $\sem{\psi}\rho[X \mapsto \sem{\lfp X \psi}] 
= \sem{\psi\{\lfp X \psi/X\}}$\ by Proposition \ref{prop:syntlemma}(\ref{prop:envlemma}).
\end{proof}

We conclude this section by giving a proof of Tarski's Fixpoint Theorem
for \rechml; we consider only formulae of the form $\lfp X \phi$, since 
we will not deal with greatest fixpoints in what follows. The proof can 
be easily extended to prove that, given a vector of variables $\overline{X}$ 
of length $n$, and a vector of formulae of length $\overline{\varphi}$ of 
the same length, then 
formula $\lfp{\overline{X}}{\overline{\phi}}$\ is the least solution 
of the system of equations $X_i = \phi_i$ for all $1 \leq i \leq n$.
\begin{thm}[\cite{becik}]
\label{thm:tarski}
Let $\phi \equiv \lfp X \psi$\ a formula in \rechml. Then $\sem{\phi}$\ is the least solution of the equation
\[
X = \psi
\]
\end{thm}
\begin{proof}

Corollary \ref{cor:minsubst}\ ensures that $\sem{\phi}$\ is a solution 
of the equation $X = \psi$. Moreover, let $P$\ be a solution 
to such an equation; we have
\[
\sem{\psi}[X \mapsto P] = P,
\]

therefore $P \in \{ P \;|\; \sem{\psi}[X \mapsto P] \subseteq P\}$. 
Now it is trivial to notice $\sem{\lfp X \psi} \subseteq P$.
\end{proof}

\section{Testing Concurrent Systems}
\label{sec:testing}
Another way to analyse the behaviour of a process is given by
testing.
Testing a process can be thought as an experiment in which another
process, called a test, detects the actions performed by such a process, reacting to them 
by allowing or forbidding the execution of a subset of observables. After 
observing the behaviour of the process, the test could decree that it satisfied some property 
for which it was designed for, thus reporting the success of the experiment through the execution 
of a special action $\omega$.\\

Formally speaking, a  test is a state from a LTS 
$\mathcal{T} = \langle T, Act^\omega_{\tau}, \longrightarrow \rangle$, 
where $ Act^\omega_{\tau} = Act_{\tau} \cup \{\omega\}$ and $\omega$ 
is an action not contained in $Act_{\tau}$. 

Given a LTS of processes $\mathcal{L} = \langle S, Act_{\tau}, \longrightarrow \rangle$, an experiment
consists of a pair $p \;|\; t$ from the  product LTS 
$(\mathcal{L}\barra\mathcal{T})$. We refer to a maximal path
of $p \;|\; t$
\begin{align*}
  p \;|\; t \trans{\tau} p_1 \;|\; t_1 \trans{\tau} \ldots \ldots 
     \trans{\tau} p_k \;|\; t_k \trans{\tau} \ldots
\end{align*}
as a \emph{computation}; it may be finite or infinite. It is successful if there 
exists some $n \geq 0$ such that $t_n \trans{\omega}$. 
It is important to notice here that a computation is successful it contains a configuration 
in which the test component can perform a $\omega$\ action; however, it is not required that 
such an action has to be actually executed.\\ 
As only $\tau$-actions can be performed in a computation, as well as in a computation prefixes, 
henceforth we will avoid to use the  symbol $\tau$ in computations.\\
Computations and successful computations lead to the definition of two well known \textit{testing relations}, \cite{dhn}:
\begin{defi}[May Satisfy, Must Satisfy] Assuming a LTS of processes and a LTS of tests, 
let $s$  and $t$ be a state and a test from such LTSs, respectively. We say
\begin{enumerate}[(a)]
\item $s \maysatisfy t$ if there exists a successful computation for the experiment 
$s \;|\; t$.
\item $s \mustsatisfy t$ if each computation of the experiment $s | t$\ is successful.\qed
\end{enumerate}
\end{defi}

Processes can now be compared in terms of the set of test that they may/must pass.\\
Before continuing our discussion about testing, let us illustrate the ideas behind 
testing relations with some useful example.
\begin{table}[h]
\centering
  \begin{minipage}{0.4\textwidth}
        \begin{ltspic}{2.0cm}
          \node[state]             (A)                                       {$s$};
          \node[state]             (B)  [above right of=A]                   {$s_1$};
          \node[state]             (C)  [below right of=A]                   {$s_2$};
          \node[state]             (D)  [right of=C]                         {$s_3$};
          \node[state]             (I)  [right of=D]                         {$s_4$};
          
          \path         (A)  edge                node{$b$}     (B)
                             edge                node{$b$}     (C)
                        (C)  edge                node{$c$}     (D)
                        (D)  edge                node{$a$}     (I);
        \end{ltspic}
      \caption{The tested LTS}
      \label{lts:tested}
  \end{minipage}
  \hspace{0.1\textwidth}
  \begin{minipage}{0.4\textwidth}
        \begin{ltspic}{2.0cm}
          \node[state]             (F)                                       {$t$};
          \node[state]             (E)  [left of=F]                          {$t_1$};
          \node[state]             (G)  [right of=F]                         {$t_2$};
          \node[state, accepting]  (H)  [below of=F, accepting where=below]  {$t_3$};

          \path         (E)  edge  [bend left]   node        {$\tau$}  (F)
                        (F)  edge                node        {$b$}     (E)
                             edge                node[swap]  {$c$}     (G)
                             edge                node        {$a$}     (H)
                        (G)  edge  [bend right]  node[swap]  {$\tau$}  (F);
        \end{ltspic}
      \caption{The test}
      \label{lts:test2}
   \end{minipage}
\end{table}

\begin{example}
Consider the process LTS in Table \ref{lts:tested} and the test LTS in 
Table \ref{lts:test2}. We can build the experiment $s \;\lvert\; t$\ 
to analyse whether the statements
\begin{itemize}
 \item $s \maysatisfy t$\ and 
 \item $s \mustsatisfy t$
\end{itemize}
hold. For the first one, we consider the computation
\[
 s \;\lvert\; t \shortrightarrow s_2 \;\lvert\; t_1 \shortrightarrow 
s_2 \;\lvert\; t \shortrightarrow s_3 \;\lvert\; t_2 \shortrightarrow 
s_3 \;\lvert\; t \shortrightarrow s_4 \;\lvert\; t_3.
\]

As $t_3\trans{\omega}$ we can conclude that this computation is 
successful, and hence $s \maysatisfy t$.
On the other hand, we can consider the path
\[
 s \;\lvert\; t \shortrightarrow s_1 \;\lvert\; t_1 \shortrightarrow 
 s_1 \;\lvert\; t.
\]
Such a path is maximal, and therefore it is also a computation. 
As there is no configuration in such a computation for which 
the test component can perform an $\omega$ action, we can 
conclude that it is not the case that $s \mustsatisfy t$.\qed
\end{example}

Later in the paper we will use a specific LTS of tests, whose states are all
the closed terms generated by the grammar
\begin{equation}
t \is 0 \barra \alpha.t \barra \omega.0 \barra  X \barra t_1 + t_2 \barra \mu X.t \; .
\label{eq:tests}
\end{equation}
Again in this language  $X$\ is bound in $\mu X.t$, and  the test $t\{t'/X\}$ 
denotes the test $t$ in which  each free occurrence of $X$ is replaced by $t'$.
The transition relation  defined by the following rules:\footnote{The 
rules use an abuse of notation, by considering $\alpha$\ as an action from 
$Act_{\tau} \cup {\omega}$\ rather than from $Act_{\tau}$.}
%\begin{center}
\begin{displaymath}
\begin{tabular}{llll}
\begin{prooftree}
\;
\justifies
\alpha.t \trans{\alpha} t
\end{prooftree}
&\qquad
\begin{prooftree}
t_1 \trans{\alpha} t_1'
\justifies
t_1 + t_2 \trans{\alpha} t_1'
\end{prooftree}
&\qquad
\begin{prooftree}
t_2 \trans{\alpha} t_2'
\justifies
t_1 + t_2 \trans{\alpha} t_2'
\end{prooftree}
%\\&&\\
&\qquad
\begin{prooftree}
\;
\justifies
\mu X.t \trans{\tau} t\{(\mu X.t)/X\}
\end{prooftree} %&\\&&
\end{tabular}
%\end{center}
\end{displaymath}

The last rule states that a test of the form $\mu X.t$\ can always perform a 
$\tau$-action before evolving in the test $t\{\mu X.t/X\}$. Further, since 
the transition relation is the smallest relation defined 
by the inference rule above, it is also the case that this is the only 
action that a recursive test can perform.\\
This treatment of recursive processes will allow us to prove properties 
of paths of recursive tests and experiments by performing an induction on their length.

Further, the following properties hold for a test $t$ in grammar \eqref{eq:tests}:
\begin{prop}
\label{prop:Tbf}
Let $\mathcal{T} = \langle T, Act_{\tau}, \longrightarrow \rangle$\ be the LTS generated by a state $t$\ in grammar \eqref{eq:tests}: then
\begin{enumerate}[(i)]
\item $\mathcal{T}$ is finite branching.
\label{prop:branfin}
\item $\mathcal{T}$ is finite state.
\end{enumerate}
\end{prop}
\begin{proof} We prove the two statements separately.
\begin{enumerate}[(i)]
\item First, notice that every time a test $t$ in grammar \eqref{eq:tests} 
performs a transition $t \trans{\alpha} t'$, then $t'$ is itself a 
closed term of such a grammar.\\

Further, each closed term of grammar \ref{eq:tests}\ can be represented as
\[
\sum_{i \in I} t_i
\]

where $I$\ is finite and each $t_i$\ is either in the form 
$0$, $\alpha.t'$\ or $\mu X.t'$. Then for each $i \in I$\ the number of 
outgoing transitions $n(t_i)$\ of $t_i$\ is at most one: we have therefore
\[
n(t) \leq \sum_{i \in I} n(t_i) \leq |I|
\]

The above argument applies to all states of the generated LTS: hence $\mathcal{T}$\ is finite branching.

\item A standard proof of this Proposition can be obtained 
by converting each test into a \textbf{Nondeterministic Finite state Tree Automata} 
\cite{regulartrees}. 
\end{enumerate}
\end{proof}

Henceforth we will always make the assumption that the LTS of tests 
we consider is branching finite. Further, if also the LTS of processes 
is also assumed to contain only branching finite states, then the induced 
LTS of experiments is branching finite as well. It is also ensured that, 
given an experiment $s \;\lvert\;t$ in such a LTS and such that 
$s \mustsatisfy t$, then the maximal length of a successful 
computation is well defined. To prove this result 
we will need the following Lemma, which is a variation of 
Konig's Lemma \cite{boolos} for directed graphs.
\begin{lem}[Konig's Lemma for directed graphs]
 \label{lem:konig}
  Let $G$\ be a directed graph whose set of vertices is countable. 
  Let a root of $G$ be any node with no incoming edge. Also, assume 
  that $G$ satisfies the following hypothesis:
  \begin{itemize}
   \item $G$ has finitely many roots,
   \item each node of $G$ has finite degree,
   \item each node in $G$ is reachable from some root in $G$.
  \end{itemize}
  Then there is an infinite path in $G$ starting from some root.
\end{lem}
\begin{proof}
 See \cite{ioautomata}, Lemma 2.3.
\end{proof}
\begin{thm}
\label{thm:bfexp} 
Let $S,T$ be finite branching LTSs of processes and tests respectively.\\
Let $s,t$ be two states in such LTSs, respectively. Then if 
$s \mustsatisfy t$ the maximal length of a successful computation 
$|s,t|$ is well defined.
\end{thm}
\begin{proof}
Let $\mathcal{E} = \langle E, \{\tau\}, \rightarrow \rangle$ be 
a finite branching LTS of experiments.
For each $e \in E$ we define its \emph{Computation Tree} $T_e$ as 
the smallest tree whose nodes are (not necessarily all the) 
elements of $E*$, and whose 
edges of a node $e_1\cdots e_n$ are defined as follows:
follows:
\begin{itemize}
 \item if $e_n$ has the form $s\;\lvert\;t$, with $t\trans{\omega}$, 
then node $e_1\cdots e_n$ has no children,
 \item otherwise, for each $e_{n+1}$ such that $e_n \trans{\tau} e_{n+1}$, 
 there is an edge from $e_1\cdots e_n$ to $e_1\cdots e_n\cdot e_{n+1}$.
\end{itemize}
Intuitively speaking, each path of $T_e$ rooted in represents a computation of the 
experiment $e$. A more formal definition of $T_e$ can be given as a function 
of recursive type $\mathcal{T}: N \rightarrow \mathcal{T}$ (see \cite{courcelle} for 
details).\\

Suppose now $s,t$ are chosen in finite branching LTSs of processes and tests, 
respectively. Suppose also $s \mustsatisfy t$. It is straightforward to 
prove that the LTS of experiments 
generated by $s \;\lvert\;t$ is also finite branching. Since $s \mustsatisfy t$, 
it is the case that all leaves in $T_{s\;\lvert\;t}$ represent successful 
computations. In order to prove that the maximal length of a successful 
computation $|s,t|$ is well defined, we distinguish two different cases:
\begin{enumerate}[(i)]
 \item the number of nodes in $T_{s\;\lvert\;t}$ is finite. In this case 
each path between $s\;\lvert\;t$ and a leaf in $T_{s\;\lvert\;t}$ has 
finite length, bounded by the number of nodes in the tree itself; 
since every path is associated with a successful computation, it follows 
that $|s,t|$ is bounded by the number of nodes in $T_{s\;\lvert\;t}$ 
and therefore is well defined,
\item $T_{s\;\lvert\;t}$ has infinite nodes. Since the LTS generated by 
$s\;\lvert\;t$ is finite branching, we have that the degree of each node 
in the computation tree above is finite. Thus, by an application of 
Lemma \ref{lem:konig}, we have that $T_{s\;\lvert\;t}$ contains 
an infinite path starting from the unique root $s\;\lvert\;t$ of such 
a tree; such a path represents 
an infinite, unsuccessful computation, contradicting the hypothesis 
$s \mustsatisfy t$.
\end{enumerate}
\end{proof}
 
\chapter{Testing formulae}\label{sec:tf}
Relative to a  process LTS $\langle S, Act_{\tau}, \longrightarrow_S \rangle$\ 
and a test LTS $\langle T, Act_{\tau} \cup \{\omega\}, \longrightarrow_T \rangle$, 
we now explore the relationship between tests from our default LTS of tests and 
formulae of \rechml. Specifically, given a test $t$, our goal is to infer a 
formula $\phi$\ such that the set of processes which \maysatisfy/\mustsatisfy 
such test is completely characterised by the interpretation $\sem{\phi}$. 
Moreover, we aim to establish exactly the subsets of \rechml for which 
each formula can be checked by some test, both in the \may and \must case.
 
For this purpose some definitions are necessary:
\begin{defi}
Let $\phi$\ be a \rechml formula and $t$ a test. We say that:
\begin{itemize}
\item $\phi$ \emph{may}-represents/\emph{must}-represents  the test $t$,  if
for all  $p \in S,\;  p \maysatisfy  t/ p \mustsatisfy t$  if and only if $p \models \phi$.

\item $\phi$ is  \emph{may}-testable/\emph{must}-testable whenever there exists 
a test  which  $\phi$ \\\emph{may}-represents/\emph{must}-represents.

\item $t$ is \emph{may}-representable/\emph{must}-representable, if
  there exists some $\phi \in \rechml$ which 
  \emph{may}-represents/\emph{must}-represents it respectively.\qed
\end{itemize}
\end{defi}
First we present both formulae which are \emph{may}-testable 
(\emph{must}-testable) and formulae which are not.
\begin{example}[Testable formulae]
   In this example we will use tests defined from grammar \eqref{eq:tests}. 
  All the examples are handled in an informal manner, as formal details will 
  be covered in a more general way in the remaining of the report.
 \begin{enumerate}[(a)]
 \item Formula $\lfp X {\dmnd a \ttt \vee \dmnd b X}$ is \emph{may}-testable.
 A state satisfies such a formula if and only if there exists a finite index 
 $n \geq 0$\ such that $s = s_0 \Trans{b} s_1 \Trans{b}\cdots\Trans{b} s_n$\ for 
 some $s_0, \cdots s_n$ with $s_n \Trans{a}$. We can therefore consider the test 
 $t \equiv fix(X=\tau.a.\omega.0 + \tau.b.X)$ If a state $s$ satisfies the above property, 
 then it can synchronise (after a sequence of internal actions performed both by 
 the state itself and by the process) with the test through a $b$-action; that is, 
 the experiment $s \;\lvert\; t$\ can evolve in $s_1 \;\lvert\; t$\ after a finite sequence 
 of internal actions. This procedure can be repeated until the configuration $s_n \;\lvert\; 
 t$ is reached. In this case, $s_n$\ can now synchronise with test $t$ (again after both 
 of them performed some internal steps) through an $a$-action, thus reaching a successful 
 configuration.\\
 On the other hand, consider now a state $s$\ which not satisfies such a property. 
 That is, as long as it synchronises with the test through the execution of a $b$ 
 action in a computation of the induced experiment, the resulting state component 
 will never be able to synchronise with the test through the execution of an $a$ 
 action; however this is mandatory for the experiment to reach a successful configuration. 
 Therefore, in this case the experiment $s \;\lvert\; t$ has no successful computation, 
 and therefore $s$ does not \maysatisfy $t$.
 
\item Formula $\lfp X {\bbox a \fff \wedge \bbox b X}$\ is must-testable. 
 A process $s$ satisfies this formula if and only if whenever  
 $s = s_0 \Trans{b} s_1 \cdots \Trans{b} s_n$ for some $n \geq 0$ and 
 states $s_0 \cdots s_n$\ with $s_n \notTrans{b}$, it holds that 
 \begin{itemize}
  \item $s_i \Downarrow$ for all $i:0 \leq i \leq n$,
  \item $s_i \notTrans{a}$ for all $i:0\leq i \leq n$,
 \end{itemize}
 
 Consider the test $t\equiv fix(X=\tau.(a.0 + \tau.\omega.0) + 
 \tau.(b.X + \tau.\omega.0))$, and suppose $s$ satisfies the 
 property above. Consider an arbitrary computation of $s\;\lvert\; t$; 
 in this case either the test component will perform a series of $\tau$ 
 actions, thus reaching a successful computation, or a synchronisation 
 with the test occurs through the execution of a $b$ actions, thus 
 deriving $s \;\lvert\; t \Trans{\tau} s_1 \;\lvert\; t$. This procedure can be 
 repeated until reaching configuration $s_n \;\lvert\; t$. As in this case we 
 also have $s_n \notTrans{b}$, the only possibility is to make the test component 
 of the experiment to perform a series of internal actions, thus reaching a 
 successful configuration.
 In other words, each computation of $s \;\lvert\; t$ is doomed to reach a configuration 
 where the test component can perform a $\omega$ action, and therefore 
 $s \mustsatisfy t$.
 Conversely, suppose $s$ is a process which does not satisfy the property above. 
 That is, either one of the following occurs:
 \begin{itemize}
  \item there exists a finite index $n \geq 0$ such that $s = s_0 \Trans{b} s_1 
 \Trans{b} \cdot \Trans{b} s_n$ with $s_n \Uparrow$,
  \item there exists a finite index $n \geq 0$ such that $s = s_0 \Trans{b} s_1 
 \Trans{b} \cdot \Trans{b} s_n$ with $s_n \Trans{a}$,
  \item $s$ has an infinite path $s= s_0 \Trans{b} s_1 \Trans{b}\cdots$.
 \end{itemize}

 In the first case we can build an unsuccessful computation by letting the state 
 component of the experiment synchronise with the test through the execution of 
 a $b$ action until configuration $s_n \;\lvert\; t$ is reached. Then we can obtain 
 an unsuccessful infinite computation by making evolve only the state component of the 
 experiment.\\
 In the second case, we can build a computation where the process component synchronise 
 with the test through the execution of a $b$ action until reaching configuration 
 $s_n \;\lvert\; t$, then, through a series of internal steps and a synchronisation through 
 an $a$ action, we obtain a configuration in which the test component can no longer 
 proceed. This computation is also unsuccessful.
 Finally, in the third case we can provide an infinite computation in which the state 
 component of the experiment always synchronise with the test component through the 
 execution of a $b$ action; even this computation is not successful. It holds therefore 
 that $s$ does not $\mustsatisfy t$.\qed
 \end{enumerate}
\end{example}

\begin{example}[Negative results]
\begin{enumerate}[(a)]\qquad
\item $\phi = [a]\fff$ is not \emph{may}-testable.\\
Let $s \in \sem{[a]\fff}$; a new process $p$\ can be built starting from $s$\ by letting  
$p \trans{\tau} p$, whenever
$s \trans{\alpha} s'$ then $p \trans{\alpha} s'$.\\
Processes $p$\ and $s$\ \maysatisfy the same set of tests. However, $p \notin \sem{[a]\fff}$, as $p \Uparrow$. 
Therefore\\ no test \emph{may}-represents $[a]\fff$.
\item $\phi = \dmnd a \ttt$\ is not \emph{must}-testable.\\
We show by contradiction that there exists no test $t$ that \emph{must}-represents $\phi$. 
To this end, we perform a case analysis on the structure of $t$.
\begin{itemize}
\item $t \trans{\omega}$: Consider the process $0$ with no transitions. Then $0 \mustsatisfy t$, 
whereas $0 \notin \sem\phi$.
\item $t \nottrans{\omega}$: Let $s \in \sem\phi$ and consider the process $p$ built up 
from $s$ according to the rules of the example above; we have $p \in \sem\phi$. On the 
other hand, $p \mustsatisfy t$ is not true; indeed the experiment $p \;|\;t$ leads to 
the unsuccessful computation 
$p\;|\;t \shortrightarrow p\;|\;t \shortrightarrow \cdots.$
\end{itemize}
Therefore there is no test $t$ which \emph{must}-represents $\phi$.
\item $\phi = \dmnd a \ttt \wedge \dmnd b \ttt$\ is not \emph{may}-testable.\\
Let $s$\ be the process whose only transitions are $s \trans{a} 0$, $s \trans{b} 0$.
Let also $p, p'$ be the processes whose only transitions are 
$p \trans{a} 0$, $p' \trans{b} 0$. We have $s \in \sem{\phi}$, whereas 
$p, p' \notin \sem{\phi}$. We show that whenever $s \maysatisfy$ a test $t$, 
then either $p \maysatisfy t$ or $p' \maysatisfy t$. Thus there exists 
no test which is \emph{may}-satisfied by exactly those processes in 
$\sem{\phi}$, and therefore $\phi$ is not 
\emph{may}-representable.
First, notice that if $s \maysatisfy t$, then at least one of the following holds:
\begin{enumerate}[(i)]
\item $t\Trans{\omega}$, \label{cond:1}
\item $t\Trans{a}t'\Trans{\omega}$, \label{cond:2}
\item $t\Trans{b}t'\Trans{\omega}$. \label{cond:3}
\end{enumerate}

If $t\Trans{\omega}$, then trivially both $p$\ and $p'$\ \maysatisfy $t$. On the other hand, if $t\Trans{a}t'\Trans{\omega}$, 
then there exist $t'', t_{\omega}$\ such that $t \Trans{\tau} t'' \trans{a} t' \Trans{\tau} t_{\omega} \trans{\omega}$. We can 
build the computation fragment for $p \barra t$\ such that
\[
p \barra t \shortrightarrow \cdots \shortrightarrow p \barra t'' \shortrightarrow 0 \barra t' \shortrightarrow \cdots \shortrightarrow 0 \barra t_{\omega}
\]

which is successful. Hence $p \maysatisfy t$. Finally, The case $t\Trans{b}t'\Trans{\omega}$ is similar.
\label{ex:c}
\item In an analogous way of \eqref{ex:c} it can be shown that $[a] \fff \vee [b] \fff$\ is not \emph{must}-testable.\qed
\end{enumerate}
\end{example}
We now 
investigate precisely which  formulae in \rechml can be represented by tests. 
To this end, we define two sub-languages, namely \mayhml and \musthml.
\begin{defi}{(Representable formulae)}
\begin{itemize}
\item The language \mayhml is defined to be the set of closed formulae generated by the following \rechml grammar fragment:
\begin{eqnarray}
\phi \is \ttt \barra \fff \barra X \barra \dmnd \alpha \phi \barra \phi_1 \vee \phi_2 \barra \lfp X \phi
\label{eq:mayhml}
\end{eqnarray}
\item The language \musthml is defined to be the set of closed formulae generated by the following \rechml grammar fragment:
\begin{eqnarray}
\phi \is \ttt \barra \fff \barra \Acc A \barra X \barra [\alpha]\phi \barra \phi_1 \wedge \phi_2 \barra \lfp X \phi
\label{eq:musthml} 
\end{eqnarray}
\end{itemize}
\qed
\end{defi}

Note that both sub-languages use the minimal fixpoint operator only; this is not surprising, 
as informally at least testing is an inductive rather than a co-inductive property.\\
The modality $[\cdot]$\ and the conjunction operator $\wedge$ are not allowed in \mayhml; the above examples 
show in fact that there exist formulae of the form $[\alpha]\phi$\ which are not \emph{may}-testable, and that 
conjunction of two formulae is not always \emph{may}-testable. The same argument applies to the modality $\dmnd \cdot$ 
and the disjunction operator $\vee$\ in the must case, which are therefore not included in \musthml.\\

We have now completed the set of definitions setting up our framework of 
properties and tests. In the remainder of the paper we prove the results 
announced, informally, in the Introduction.

\section{The must case}\label{sec:must}
We will now develop the mathematical basis needed to relate \musthml
formulae and the \must testing relation; in this section we will assume
that the LTS of processes is branching finite.\\

First, we prove the following result:
\begin{lem}
\label{lem:divergence}
Let $\phi \in \musthml$, and let $p \in \sem{\phi}$, where $p
\Uparrow$: then $\sem{\phi}$\ is the entire process space,
i.e. $\sem{\phi} = S$.
\end{lem}
\begin{proof}
 Let $p$ be a process such that $p \Uparrow$, let $\phi \in \musthml$ such that $p \in \sem \phi$.
Then $\phi$ cannot be $\Acc A, \fff, [\alpha] \phi$\ 
nor a conjunction of formulae containing one of such terms.\\
We now show that $\phi$ cannot be a formula of the form $\lfp X \psi$, where $\psi$ 
contains either free occurrences of the variable $X$ or the operators $\Acc A, \bbox \alpha$. 
To this end, we perform a case analysis on the formula $\psi$: 
\begin{enumerate}[(i)]
\item \label{lem:div1} $\psi$ contains an occurrence of the operator $\bbox \alpha$. Here we can apply Corollary 
\ref{cor:minsubst} to obtain a formula of the form 
$\bbox \alpha \phi' \wedge \phi''$ which is logically equivalent to $\phi$. Thus, if $p \Uparrow$ then 
$p \notin \sem \phi$, 
\item \label{lem:div2} $\psi$ contains the operator $\Acc A$. We can proceed as in Case \eqref{lem:div1}, 
\item \label{lem:div3} $\psi$\ contains at least a free occurrence of 
variable $X$. If such an occurrence is guarded by a $\bbox \alpha$ operator, then we can proceed as in 
Case \ref{lem:div1}. Otherwise we can obtain a formula of the form $\lfp X {X \wedge \psi'}$ which is 
equivalent to $\phi = \lfp X \psi$. Again, this is done by a repeated application of Corollary \ref{cor:minsubst}. 
Now it is trivial to notice that $\emptyset$ is a solution to the equation $X = X \wedge \psi$, and therefore 
it is its least solution. Hence $\sem{\phi} = \emptyset$, so that $p \notin \sem{\phi}$.
\end{enumerate}

The only possible case left for $p\Uparrow$, $p \in \sem\phi$ to hold is therefore 
given by $\phi$ being generated by the Grammar below:
\begin{equation}
\phi \is \ttt \barra \phi_1 \wedge \phi_2 \barra \lfp X \phi.
\label{eq:ttgrammar}
\end{equation}
It is trivial now to show $\sem{\phi} = S$.
\end{proof}

\noindent
This Lemma has important consequences; it means formulae in \musthml either have the trivial interpretation as
the full set of states $S$, or they are only satisfied by convergent states. 
\begin{defi}
  Let $\mathcal{C}$ be the collection of subsets of $S$ determined by:
\begin{itemize}
\item $S \in \mathcal{C}$,
\item $X \in \mathcal{C}, s \in X$ implies $s \Downarrow$. \qed
\end{itemize}
\end{defi}

\begin{prop}
\label{prop:cpo}
$\mathcal{C}$ ordered by set inclusion is a  \emph{continuous partial
order}, \emph{cpo}.
\end{prop}
\begin{proof}
  The empty set is obviously the least element in $\mathcal{C}$. So it is sufficient to show
that if  $X_0 \subseteq X_1 \subseteq \cdots$\ is a chain of elements  in $\mathcal{C}$ then 
$\bigcup_n X_n$ is also in $\mathcal{C}$. 
\end{proof}
We can now take advantage of the fact that \musthml actually has 
a continuous interpretation in $(\mathcal{C}, \subseteq)$. 
The only non trivial case here is the continuity of 
the operator $\bbox{\cdot\alpha\cdot}$:
\begin{prop}
\label{prop:dmndcontinuous}
Suppose the LTS of processes is finite-branching: If  
$X_0 \subseteq X_1 \subseteq \cdots$\ is a chain 
of elements in $\mathcal{C}$ then
\[
\bigcup_n [\cdot \alpha \cdot] X_n = [\cdot \alpha \cdot] \bigcup_n X_n.
\]
\end{prop}
\begin{proof}
 It is trivial to show that
\[
\bigcup_n[\cdot \alpha \cdot] X_n \subseteq [\cdot \alpha \cdot] \bigcup_n X_n.
\]

Thus we only need to show that the opposite implication holds.\\
First, notice that it $X_i = S$ for some $i$, then
\[
\bigcup_n\bbox{\cdot\alpha\cdot}X_n = \{ s :\; s \Downarrow\} = \bbox{\cdot\alpha\cdot}\bigcup_n X_n
\]

Suppose then that $X_i \neq S$ for all $i \geq 0$. Then we have 
$\bigcup_n X_n \neq S$.
By definition the set $\bbox{\cdot\alpha\cdot}\bigcup_n X_n$ can 
be written as
\[
\{s\;:\; s \Downarrow, \Succ{\alpha, s} \subseteq \bigcup_n X_n\}.
\]
 We will prove that for each state $s$ in such a set $\Succ{\alpha, s}$ 
is finite, therefore there exists an $X_n$ such that $\Succ{\alpha, s} 
\subseteq X_n$. As a direct consequence, $s \in \bbox{\cdot\alpha\cdot} X_n$, 
which is included in $\bigcup_n \bbox{\cdot\alpha\cdot}X_n$.

Let $s \in \bbox{\cdot\alpha\cdot} \bigcup_n X_n$ and let 
$s'$ be one of its $\alpha$ derivative. By definition we have 
$s' \in \bigcup_n X_n$. Thus there exists $n \geq 0$ such that 
$s' \in X_n$. Since $X_n \in \mathcal{C}$, $X_n \neq S$, it holds 
$s' \Downarrow$. Since we are assuming that the LTS of processes 
is finite, as a consequence of Konig's lemma we obtain 
that if the set $\Succ{\alpha, s}$ is infinite then  
the $\tau$-computation tree of either $s$ or one of 
its $\alpha$-derivative $s'$ has an infinite path. 
The former contradicts the statement $s\Downarrow$, while 
the latter contradicts the property $s' \Downarrow$ we just proved. 
Thus $\Succ{\alpha, s}$ is finite.
\end{proof}

This continuous interpretation of \musthml allows us to 
use  chains of finite
approximations for these formulae of \musthml. 
That is given $\phi \in \musthml$\ and $k\geq 0$, recursion free
formulae $\phi^k$\ will be defined such that $\sem{\phi^k} \subseteq
\sem{\phi^{(k+1)}}$\ and $\bigcup_{k\geq 0} = \sem{\phi}$. We can therefore
 reason inductively on approximations in order to prove
properties of recursive formulae.
\begin{defi}[Formulae approximations]
For each formula $\phi$\ in \musthml define
\begin{eqnarray*}
\phi^0 &\triangleq& \fff\\
\phi^{(k+1)} &\triangleq& \phi \mbox{\hspace{135pt}if } \phi = \ttt,\fff \mbox{ or } \Acc A\\
([\alpha]\phi)^{(k+1)} &\triangleq& [\alpha](\phi)^{(k+1)}\\
(\phi_1 \wedge \phi_2)^{(k+1)} &\triangleq& \phi_1^{(k+1)} \wedge \phi_2^{(k+1)}\\
(\lfp X \phi)^{(k+1)} &\triangleq& (\phi\{min(X, \phi)/X\})^k
\end{eqnarray*}\qed
\label{def:mustapprox}
\end{defi}

It is obvious that for every $\phi \in \musthml$, $\sem{\phi^k} \subseteq
\sem{\phi^{(k+1)}}$ for every $k \geq 0$; The fact that the union of the
approximations of $\phi$\ converges to $\phi$\ itself depends on the
continuity of the interpretation: 
\begin{prop}
\label{cor:continuity}
\[
\bigcup_{k\geq 0} \sem{\phi^k} = \sem{\phi}
\]
\end{prop}
\begin{proof}
 This is true in the initial continuous interpretation of the language, and therefore also in our interpretation.
  For details see  \cite{finiteapprox}. 
\end{proof}

Having established these properties of the interpretation of formulae in \musthml, we now show that they are all
\emph{must}-testable.  The required tests are  defined by induction on the structure of the formulae. 
\begin{defi}
For each (possibly open) formula $\phi$\ in Grammar \eqref{eq:musthml} define $\Tmust \phi$\ as follows:
\begin{eqnarray}
\Tmust \ttt &=& \omega.0 \label{eq:tmusttt}\\
\Tmust \fff &=& 0 \label{eq:tmustff}\\
\Tmust {\Acc A} &=& \sum_{a \in A} a.\omega.0 \label{eq:tmustacc}\\
\Tmust {X} &=& X \label{eq:tmustX}\\
\Tmust {[\tau] \phi} &=& \tau.\Tmust \phi \label{eq:tmusttau}\\
\Tmust {[a] \phi} &=& a. \Tmust \phi + \tau.\omega.0 \label{eq:tmusta}\\
%\Tmust {\phi_1 \wedge \phi_2} &=& \omega.0 \;\;\;\mbox{if } \phi_1 \wedge \phi_2\ \mbox{ is closed and logically equivalent to }\ttt\\
%\Tmust {\phi_1 \wedge \phi_2} &=& \tau.\Tmust {\phi_1} + \tau. \Tmust{\phi_2}\;\;\;\mbox{otherwise}\\
\Tmust {\phi_1 \wedge \phi_2} &=& \begin{cases} 
	\omega.0, & \mbox{if } \phi_1 \wedge \phi_2 \mbox{ is closed and}\\
        &\mbox{logically equivalent to }\ttt\\
        &\\
	\tau.\Tmust {\phi_1} + \tau. \Tmust{\phi_2},&\mbox{otherwise}
	\end{cases} \label{eq:tmustwedge}\\
%\Tmust {\lfp X \phi} &=& \Tmust \phi \;\;\;\mbox{ if } \phi \mbox{ is closed}\\
%\Tmust {\lfp X \phi} &=& \mu X. \Tmust \phi \;\;\; \mbox{otherwise}
\Tmust{\lfp X \phi} &=& \begin{cases}
	\Tmust \phi, & \mbox{ if } \phi \mbox{ is closed}\\
	\mu X.\Tmust \phi, & \mbox{otherwise}
	\end{cases} \label{eq:tmustmin}
\end{eqnarray}
\qed
\end{defi}

For each formula $\phi$\ in $\musthml$, the test $\Tmust \phi$\ is defined 
in a way such that the set of processes which  $\mustsatisfy$\ $\Tmust\phi$\ is exactly $\sem{\phi}$. 
Before supplying the details of a formal proof of this statement, let us comment on the definition of $\Tmust\phi$.\\
Cases (\ref{eq:tmusttt}), (\ref{eq:tmustff}) and (\ref{eq:tmustX}) are straightforward.
In the case of $\Acc A$, the test allows only those action which are in $A$\ to be performed by a process, after which it reports success.\\
For the box operator, a distinction has to be made between $[a]\phi$\ and $[\tau]\phi$. In the former we have 
to take into account that a converging process which cannot perform a weak $a$-action 
satisfies such a property; thus, synchronisation through the execution of a $a$-action is allowed, but a possibility for the test to report success 
after the execution of an internal action is given.
In the case of $\bbox{\tau}\phi$ no synchronization with any action is required; however, 
since we are adding a convergence requirement to formula $\phi$, we have to avoid the possibility that the 
test $\Tmust{\bbox{\tau}\phi}$ can immediately perform a $\omega$ action. This is done by requiring the test 
$\Tmust{\bbox{\tau}\phi}$ to perform only an internal action.\\
Finally, (\ref{eq:tmustwedge})\ and (\ref{eq:tmustmin}) are defined by distinguishing between two cases; this is because a formula of the form $\phi_1 \wedge \phi_2$\ or $\lfp X \phi$\ can be logically equivalent to $\ttt$, whose interpretation is the entire state space. However, the second clause in the definition of $\Tmust \phi$\ for such formulae 
require the test to perform a $\tau$\ action before performing any other activity, thus at most converging processes \mustsatisfy such a test.\\

In order to give a formal proof that $\Tmust{\phi}$ does indeed capture the 
formula $\phi$ we need to establish some preliminary properties. 
The first essentially says that that no formula of the form $\lfp X \phi$, with $\phi$\
not closed, will be interpreted in the whole state space.

\begin{lem} 
\label{lem:statespaceformulae}
Let $\phi = \lfp X \psi$, with $\psi$\ not closed. Then $\sem{\phi} \neq S$.
\end{lem}
\begin{proof} 
By contradiction. Suppose $\sem{\lfp X \psi} = S$; then $\lfp X \psi$ is 
a term of the grammar \eqref{eq:ttgrammar}, as shown in the proof of 
Lemma \ref{lem:divergence}. That is, formula $\psi$ is necessarily 
closed.
\end{proof}

Next we state some simple properties about recursive tests.

\begin{lem}\qquad
\label{lem:testprops}
\begin{itemize}
\item $p \mustsatisfy \mu X.t$\ implies $p \mustsatisfy \mu X.t\{\mu X.t/X\}$.
\item $p \Downarrow, p \mustsatisfy t[\mu X.t/X]$\ implies $p \mustsatisfy \mu X.t$.
\end{itemize}
\end{lem}
\begin{proof}\qquad
\begin{itemize}
\item Suppose $p \mustsatisfy \mu X.t$. Then all computations with prefix
\[
p \;|\; \mu X.t \shortrightarrow p \;|\; t\{\mu X.t/X\}
\]
are successful; hence $p \mustsatisfy t\{\mu X.t/X\}$.
\item Suppose $p \Downarrow, p \mustsatisfy t\{\mu X.t/X\}$. Then for each computation of $p \barra \mu X.t$\ with prefix
\[
p \;|\; \mu X.t \shortrightarrow \cdots \shortrightarrow p' \;|\; \mu X.t \shortrightarrow p' \;|\; t\{\mu X.t/X\}
\]
there exists a computation with prefix
\[
p \;|\; t\{\mu X.t/X\} \shortrightarrow \cdots \shortrightarrow p' \;|\; t\{\mu X.t/X\}
\]
which is successful. Hence $p \mustsatisfy \mu X.t$.
\end{itemize}
\end{proof}
Note that the premise $p \Downarrow$  is essential in the second part of this lemma, 
as $\mu X.t$ cannot perform a $\omega$ action; therefore it can be \emph{must}-satisfied 
only by processes which converge.

%These results allow us to establish one implication of theorem \ref{thm:musthml}.
\begin{prop}\label{prop:oneway}
Suppose the LTS of processes is finitely branching. If $p \mustsatisfy \Tmust \phi$\ then $p \in \sem{\phi}$.
\end{prop}

\begin{proof}Suppose $p \mustsatisfy \Tmust \phi$; As both the LTS of
  processes (by assumption) and the LTS of tests (Proposition
  \ref{prop:Tbf}) are finite branching, then the LTS generated by 
  $p\;\lvert\;t$ is finite branching as well. By Theorem \ref{thm:bfexp} 
  we have that maximal length of a successful computation $|p,\Tmust \phi|$\ is defined and
  finite. Thus it is possible to perform an induction over
  $|p,\Tmust \phi|$ to prove that $p \in \sem{\phi^k}$ for some 
  $k \geq 0$.  The result
  will then follow from Proposition \ref{cor:continuity}.
\begin{itemize}
\item If $|p, \Tmust \phi| = 0$\ then $\Tmust \phi \trans{\omega}$, and hence for each $p \in S\; p \mustsatisfy\ \Tmust \phi$. Further, 
by the definition of $\Tmust \phi$ we have that $\phi$\ is logically equivalent to $\ttt$, hence $p \in \sem{\phi}$.
\item If $|p, \Tmust \phi| = n+1$\ then the validity of the Theorem follows from an application of an inner induction on $\phi$. We show only the most interesting case, which is $\phi = \lfp X \psi$. There are two possible cases.
\begin{enumerate}[(a)]
\item If $X$\ is not free in $\psi$\ then the result follows by the inner induction, as $\lfp X \psi$\ is logically equivalent to $\psi$, and $\Tmust{\lfp X \psi} \equiv \Tmust \psi$\ by definition.
\item If $X$\ is free in $\psi$\ then, by Lemma \ref{lem:testprops}\ $p \mustsatisfy \Tmust \psi \{\mu X.\Tmust{\psi}/X\}$, which is syntactically equal to $\Tmust {\psi\{ \lfp X \psi / X\}}$.\\
Since $|p, \Tmust {\psi\{\lfp X \psi / X\}}| < |p, \Tmust \phi|$, by inductive hypothesis we have \\$p \in \sem{\psi \{\lfp X \psi /X\}^k}$\ for some $k$, hence $p \in \sem{\phi^{(k+1)}}$.
\end{enumerate}
\end{itemize}
\end{proof}

To prove the converse of Proposition~\ref{prop:oneway} we use the following concept:
\begin{defi}[Satisfaction Relation]
Let $R \subseteq S \times \musthml$ and for any $\phi$\ let
$(R\; \phi) = \{ s \barra s\; R\;\phi\}$
Then $R$\ is a satisfaction relation if it satisfies
\begin{eqnarray*}
(R\;\ttt) &=& S\\
(R\;\fff) &=&\emptyset\\
 (R\; \Acc A) &=&\setof{s}{s \Downarrow, s \Trans{\tau} s' \mbox{ implies } S(s') \cap A \neq \emptyset}\\
(R \;[\alpha]\phi) &\subseteq& [\cdot \alpha \cdot] (R\; \phi)\\
(R\; \phi_1 \wedge \phi_2) &\subseteq& (R\;\phi_1) \cap (R\; \phi_2)\\
(R \; \phi\{\lfp X \phi /X\}) &\subseteq& (R\; \lfp X \phi)
\end{eqnarray*}
\qed
\end{defi}

Satisfaction relations are defined to agree with the interpretation $\sem \cdot$. 
Indeed, all implications required for satisfaction relations are satisfied 
by $\models$. Further, as $\sem{\lfp X \phi}$\ is defined to be the least 
solution to the recursive equation $X = \phi$, we expect it to be the 
smallest satisfaction relation.

\begin{prop}\label{prop:satisfaction}
The relation $\models$\ is a satisfaction relation. Further, it is the smallest satisfaction relation.
\end{prop}
\begin{proof}
The definition of $\sem\cdot$\ ensures that $\models$\ is a satisfaction relation; we have:
\begin{eqnarray*}
(\models \ttt) &=& S\\
(\models \fff) &=& \emptyset\\
(\models \Acc A) &=& \{ \setof{s}{s \Downarrow, s \Trans{\tau} s' \mbox{ implies } S(s') \cap A \neq \emptyset}\\
(\models \;[\alpha]\phi) &=& [\cdot \alpha \cdot] (\models\; \phi)\\
(\models \;\phi\{\lfp X \phi /X\}) &=& (\models\; \lfp X \phi)
\end{eqnarray*}
where the last equality follows from Corollary \ref{cor:minsubst}.

It remains to show that $\models$\ is in fact the smallest satisfaction relation.\\
Let $R$\ be a satisfaction relation, and suppose that $p \in \sem{\phi}$: we show that $p \; R \; \phi$.\\
By Proposition \ref{cor:continuity}\ there exists $k \geq 0$\ such that $p \in \sem{\phi^k}$. 
We proceed by induction on $k$.\\
The case $k = 0$\ is vacuous. Assume the result holds for a generic $k$; 
we will perform an inner induction on the structure of $\phi$. 
Again, only the most interesting details are given.\\
Suppose $\phi = \lfp X \psi$: then $\lfp{X}{\psi}^{(k+1)} = (\psi\{\phi/X\})^k$, 
and by inductive hypothesis $p \;R\; \psi\{\phi/X\}$ follows, and so $p \; R \; \phi$ 
by the definition of satisfaction relation.\\
Finally, if $\phi$ has the form $\bbox{\alpha}\psi$ or $\phi_1 \wedge \phi_2$, it is 
not possible to use the inductive hypothesis directly. This is because
$(\bbox{\alpha}\phi)^{(k+1)} = \bbox \alpha (\phi)^{(k+1)}, 
(\phi_1 \wedge \phi_2)^{(k+1)} = \phi_1{(k+1)} \wedge \phi_2^{(k+1)}$.\\
We define therefore the height of a formula $h(\phi)$ as
\begin{eqnarray*}
h(\ttt) &=& 0\\
h(\fff) &=& 0\\
h(\Acc A) &=& 0\\
h(\lfp X \psi) &=& 0\\
h(\bbox \alpha \psi) &=& h(\psi) + 1\\
h(\phi_1 \wedge \phi_2) &=& \mbox{max}(h(\phi_1), h(\phi_2)) +1
\end{eqnarray*}
and we perform another induction of $h(\phi)$. The case $h(\phi) = 0$ 
has already been handled. Suppose then $h(\phi) = n+1$; then 
either $\phi = \bbox \alpha \psi$ or $\phi = \phi_1 \wedge \phi_2$. 
We will consider only the first case.Here $h(\psi) = n$, so that 
by inductive hypothesis we have $p' \models \psi$ implies $p'\;R\;\psi$.\\
If $p \models \bbox \alpha \psi$ then $p \Downarrow$; further, whenever 
$p \Trans{\alpha} p'$, we have $p' \models \psi$ and therefore $p' \;R\; \psi$. 
Thus $p \in \bbox{\cdot \alpha \cdot}(R \phi)$.
\end{proof}

This Proposition can be exploited to prove properties for couples $(p, \phi)$ such that $p \models \phi$, 
for $\phi \in \musthml$.\\
Let $\pi$\ be a property over $S \times \musthml$, and suppose 
the relation $R = \{(s, \phi)\barra \pi(s,\phi)\}$ is a satisfaction relation. 
We obtain, by Proposition \ref{prop:satisfaction}, that $p \models \phi$ 
implies $\pi(p, \phi)$.\\
Next we consider the relation $R_{\scriptstyle{must}}$\ such that 
$p\; R_{\scriptstyle{must}}\;\phi$ whenever $p \mustsatisfy \Tmust \phi$, 
and show that it is a satisfaction relation.

\begin{prop}\label{prop:must.satisfaction}
The relation $R_{\text{must}}$  is a satisfaction relation.
\end{prop}

\begin{proof}
We proceed by induction on formula $\phi$. Again, we only check the most interesting case.\\
Suppose $\phi = \lfp X \psi$. We have to show $p \mustsatisfy \Tmust {\psi\{\phi/X\}}$\ 
implies $p \mustsatisfy \Tmust \phi$.\\
We distinguish two cases:
\begin{enumerate}[(a)]
\item $X$\ does not appear free in $\psi$. then 
$\Tmust \phi = \Tmust \psi$, and $\psi\{\phi/X\} = \psi$. This case is trivial.
\item $X$\ does appear free in $\phi$: in this case $\Tmust \phi = \mu X.\Tmust \psi$, 
and $\Tmust {\psi\{\phi/X\}}$\ has the form
$\Tmust \psi \{\mu X.\Tmust \psi /X\}$.\\
By Lemma \ref{lem:statespaceformulae} $\sem \phi \neq S$; therefore Lemma \ref{lem:divergence}\ 
ensures that $p \Downarrow$, and hence by Lemma \ref{lem:testprops}\ it follows 
$p \mustsatisfy \Tmust \phi$.

\end{enumerate}
\end{proof}

Combining all these results we now obtain our result on the testability of \musthml.
\begin{thm}
\label{thm:musthml}
Suppose the LTS of processes is finite-branching. Then for every 
$\phi \in \musthml$, there exists a   test $\Tmust \phi$\ such that $\phi$ \emph{must}-represents the test $\Tmust \phi$.
\end{thm}
\begin{proof}
We have to show that for any process $p$, $p \mustsatisfy \Tmust \phi$ if and only if $p \in \sem{\phi}$.
  One direction follows from Proposition~\ref{prop:oneway}.  Conversely suppose $p \in \sem{\phi}$. 
By Proposition \ref{prop:satisfaction}\ it follows that for all satisfaction relations 
$R$ it holds $p\; R\; \phi$; hence, by Proposition \ref{prop:must.satisfaction}, $p \;R_{\text{must}}\;\phi$, 
or equivalently $p \mustsatisfy \Tmust \phi$.
\end{proof}

We now turn our attention to the second result, namely that every test $t$ is \emph{must}-representable by some formula 
in \musthml. Let us for the moment assume a branching finite LTS of tests in which the state space $T$ is finite.
\begin{defi}\label{def:tests}
Assume we have a test-indexed set of variables $\{X_t\}$.
For each test $t \in T$\ define $\varphi_t$\ as below:
\begin{eqnarray}
\label{eq:must1}
\varphi_t &\triangleq&\ttt \hspace{139pt} \mbox{if } t\trans{\omega}\\
\label{eq:must2}
\varphi_t &\triangleq&\fff \hspace{139pt} \mbox{if } t \nottrans{\;}\\
\label{eq:must3}
\varphi_t &\triangleq& (\displaystyle{
\bigwedge_{\scriptstyle{a,t': t \trans{a} t'}}} [a] X_{t'})
 \;\wedge\; \Acc{\{a | t \trans{a}\}}
 \hspace{20pt} \mbox{if } t \nottrans{\omega}, t \nottrans{\tau}, 
 t \longrightarrow\\
\label{eq:must4}
\varphi_t &\triangleq& (\displaystyle{
\bigwedge_{t': t \trans{\tau}t'}} [\tau]X_{t'})
 \;\wedge\; (\displaystyle{\bigwedge_{a,t': t \trans{a} t'}} 
 [a] X_{t'}) \hspace{20pt}\mbox{if } t \nottrans{\omega}, t\trans{\tau}
\end{eqnarray}

Take $\phi_t$\ to be the extended formula $\slfp t {\overline{X_T}} {\overline{\varphi_T}}$, using  the simultaneous least fixed points
introduced in Section~\ref{sec:recursivehml}.
\end{defi}
Notice that we have a finite set of variables $\{X_t\}$ and 
that the conjunctions in Definition \ref{def:tests} are finite,
 as the LTS of tests 
is finite state and finite branching. These two conditions 
are needed therefore for $\phi_t$ to be well defined.\\

Formula $\phi_t$\ captures the properties required by a process 
to \mustsatisfy\ test $t$. The first two clauses of 
the definition are straightforward. If $t$\ cannot make 
an internal action or cannot report a success, but can 
perform a visible action $a$ to 
evolve in $t'$, then a process should be able to perform 
a $\Trans{a}$\ transition and evolve in a process 
$p'$ such that $p' \mustsatisfy t'$. 
The requirement $\Acc{\{a \barra t\trans{a}\}}$\ is needed 
because a synchronisation between the process $p$\ and the 
test $t$\ is required 
for $p \mustsatisfy t$\ to be true.\\
In the last clause, the test $t$\ is able to perform at 
least a $\tau$-action. In this case there is no need for a synchronisation 
between a process and the test, so there is no term of 
the form $\Acc{\{a \barra t\trans{a}\}}$\ in the 
definition of $\phi_t$. 
However, it is possible that a process $p$\ will never 
synchronise with such test, instead $t$\ will perform 
a transition $t \trans{\tau}t'$\ after $p$\ has 
executed an arbitrary number of 
internal actions. Thus, we require that for each 
transition $p \Trans{\tau} p'$, $p' \mustsatisfy t'$.\\

We now supply the formal details which lead to state that formula $\phi_t$\ characterises the test $t$. 
Our immediate aim is to show that the two environments, defined by
\begin{eqnarray*}
\rhomin(X_t) &\triangleq& \sem{ \phi_t}\\
\rhomust(X_t) &\triangleq& \{ p \barra p \mustsatisfy t\}
\end{eqnarray*}
are identical. This is achieved in the following two propositions. 
\begin{prop}
\label{thm:minsubsetmust}
For all $t \in T$ it holds that $\rhomin(X_t) \subseteq \rhomust(X_t)$.
\end{prop}

\begin{proof}
We just need to show that 
$\sem{\varphi_t} \rhomust \subseteq \rhomust(X_t)$: 
then we can apply the \textit{minimal fixpoint property}, 
Theorem \ref{thm:fixpointprop} (\ref{thm:minfixprop}), 
to conclude 
\[
\rhomin(X_t) = \sem{\slfp t {\overline{X_T}}{\overline{\phi_T}}} 
\subseteq \rhomust(X_T).
\]
The proof is carried out by performing a case 
analysis on $t$. We will only consider Case \eqref{eq:must3}, 
as cases \eqref{eq:must1} and \eqref{eq:must2} 
are trivial and Case \eqref{eq:must4} is handled similarly.

Assume $p \in \sem{\varphi_t}\rhomust$. We have
\begin{enumerate}[(a)]
\item \label{prf:cond1}$p \Downarrow$,
\item \label{prf:cond2}whenever $p \Trans{\tau} p'$\ there exists an action $a \in Act$\ such that $t \trans{a}$\ and $p' \Trans{a}$,
\item \label{prf:cond3}whenever $p \Trans{a} p'$\ and $t \trans{a} t'$, $p' \in \rhomust(X_{t'})$, i.e. $p' \mustsatisfy t'$.
\end{enumerate}

Conditions (\ref{prf:cond1}) and (\ref{prf:cond2}) are met since $p \in \sem{\Acc{\{a \;|\; t \trans{a}}}$ and $t \trans{a}$\ for some $a \in Act$, while (\ref{prf:cond3}) is true because of $p \in \sem{\bigwedge_{a, t':\; t \trans{a}t'}[a]X_{t'}}$.\\\\
To prove that $p \in \rhomust(X_t)$\ we have to show that every computation of $p\;|\;t$\ is successful. To this end, consider an arbitrary computation of $p\;|\; t$; condition (\ref{prf:cond2}) ensures that such a computation cannot have the finite form
\begin{equation}
\label{eq:nonmaximalcomp}
p \barra t \shortrightarrow p_1 \barra t \shortrightarrow \cdots p_k \barra t \shortrightarrow p_{k+1} \barra t \shortrightarrow \cdots \shortrightarrow p_n \barra t
\end{equation}

For such a computation we have that $p_n \Trans{\tau} p'$, and there exists $p''$\ with $p' \trans{a} p''$\ for some action $a$\ and test $t'$\ such that $t \trans{a} t'$. Therefore we have a computation prefix of the form
\[
p \barra t \shortrightarrow p_1 \barra t \shortrightarrow \cdots p_n \barra t \shortrightarrow \cdots \shortrightarrow p' \barra t \shortrightarrow p'' \barra t',
\]
hence the maximality of computation \eqref{eq:nonmaximalcomp}\ does not hold.\\

Further, condition (\ref{prf:cond1})\ ensures that a computation of $p \barra t$\ cannot have the form
\[
p \barra t \shortrightarrow p_1 \barra t \shortrightarrow \cdots \shortrightarrow  p_k \barra t \shortrightarrow p_{k+1} \barra t \shortrightarrow \cdots
\]

Therefore all computations of $p \barra t$\ have the form
\[
p \barra t \shortrightarrow p_1 \barra t \shortrightarrow \cdots \shortrightarrow p_n \barra t \shortrightarrow p' \barra t'
\]

with $p' \mustsatisfy t'$\ by condition (\ref{prf:cond3}); then for each computation of $p \barra t$ there exist $p'', t''$\ such that 
\[
p \barra t \shortrightarrow \cdots \shortrightarrow p' \barra t' \shortrightarrow \cdots \shortrightarrow p'' \barra t'',
\]

and $t''\trans{\omega}$. Hence, every computation from $p \barra t$\ is successful.
\end{proof}
\begin{prop}
\label{thm:minsubmust}
Assume the LTS of processes is branching finite. For every $ t \in T$,  $\rhomust(X_t) \subseteq \rhomin(X_t)$.
\end{prop}

\begin{proof}
We have to show $p \mustsatisfy t$\ implies $p \in \sem{\phi_t}$.\\
Suppose $p \mustsatisfy t$; since we are assuming that the set $T$, 
as well as the set $S$, contains only finite branching tests (processes), 
That is, the maximal length of a successful computation fragment $|p, t|$\ is defined and finite 
by Theorem \ref{thm:bfexp}.\\
Recall that $\phi_t = \slfp t {\overline{X_T}}{\overline{\varphi_T}}$. 
We proceed by induction on $k = |p, t|$ to show that 
$p \mustsatisfy t$ implies $p \in \sem{\varphi_t}\rhomin$; then the result 
$p \in \sem{\phi_t}$ is obtained by applying the Fixpoint Property \ref{thm:fixpointprop}(\ref{thm:fixprop}).
\begin{itemize}
\item $k = 0$: In this case, $t \trans{\omega}$, and hence for all $p \in S$\ we have $ p \mustsatisfy t$. 
Moreover, $\varphi_t = \ttt$, and hence for all $p \in S\; p \in \sem{\phi_t}\rhomin$,
\item $k > 0$. There are several cases to consider, according to the structure of the test $t$:
\begin{enumerate}
\item $t \nottrans{\omega}, t \nottrans{\tau}, t \longrightarrow$: we first show that $p \in \sem{\Acc {\{a | t \trans{a}}} \rhomin$.\\
Since $p \mustsatisfy t$, we have $p \Downarrow$. Consider a computation fragment of the form
\[
p \barra t \shortrightarrow \cdots \shortrightarrow p^n \barra t
\]

As $p \Downarrow$, we require that all computations rooted in $p^n \barra t$\ will eventually contain a term of the form $p^k \barra t'$, where $t' \neq t$. Further, as $t \nottrans{\tau}$, such a test should follow from a synchronisation between $p^{k-1}$\ and $t$. We have that then that, whenever $p\Trans{\tau} p^n$, there exists an action $a$\ such that $t \trans{a} t'$\ and $p^n \Trans{a} p^k$, which combined with the constraint $p \Downarrow$\ is equivalent to $p \in \sem{\Acc {\{a | t \trans{a}}}$.\\
We also have to show that $p \in \sem{[a]X_{t'}} \rhomin$. Let $p\trans{a}p'$. Then $p \mustsatisfy t$\ implies $p' \mustsatisfy t'$. Moreover, we have $|p', t'| < k$. By inductive hypothesis, we have that $p' \in \sem{\phi_{t'}}$, that is $p' \in \rhomin(X_{t'})$. Then the result $p \in \sem{[a]X_{t'}} \rhomin$\ holds.

\item $t \nottrans{\omega}, t \trans{\tau}$: A similar analysis as in the case above can be carried out.
\end{enumerate}
\end{itemize}
\end{proof}

Combining these two propositions we get our second result. Let us say that a test $t$ 
from a LTS of tests $\mathcal{T} = \langle T, Act_{\tau}^{\omega}, \rightarrow\rangle$ 
is finitary if the derived LTS consisting of all states in $\mathcal{T}$ accessible from $t$ 
is finite state and finite branching.
\begin{thm}
\label{thm:musttest}
Assuming the LTS of processes is finite branching, every finitary test $t$ is \emph{must}-representable. 
\end{thm}
\begin{proof}
  Consider any test $t$. We can apply Definition~\ref{def:tests} to the 
finite LTS of tests reachable from $t$ to obtain a formula $\phi_t$\ which 
\emph{must}-represents test $t$. Notice that this formula is not contained 
in $\rechml$, as it uses simultaneous least fixpoints. However, by Theorem 
\ref{thm:becik}\ there exists a formula $\phimust t \in \rechml$\ such 
that $\sem{\phi_t} = \sem{\phimust t}$, thus $t$\ is 
\emph{must}-representable. Further, since each operator used in Definition 
\ref{def:tests} to define $\varphi_t$\ belongs to \musthml, it is assured 
that $\phimust t \in \musthml$.
\end{proof}
As  a Corollary we are able to show that \musthml is actually the largest 
language (up to logical equivalences) of \emph{must}-testable formulae.
\begin{corollary}\label{cor:mustlargest}
Suppose $\phi$ is a formula in \rechml which is \emph{must}-testable. Then 
there exists some $\psi$ in $\musthml$ which is logically equivalent to it.
\end{corollary}

%\ifx\proofs\yes
\begin{proof}
Suppose $\phi$\ is \emph{must}-testable. By Theorem \ref{thm:musthml} 
there exists a finite test $t = \Tmust \phi$\ which \emph{must}-represents $\phi$. 
Further, by theorem \ref{thm:musttest}\ there exists a formula $\psi = 
\phimust {t} \in \musthml$\ which \emph{must}-tests for $t$. Therefore
\[
p \in \sem{\phi} \Leftrightarrow p \mustsatisfy \Tmust \phi \Leftrightarrow p \in \sem{\psi}
\]
\end{proof}

\section{The may case}\label{sec:may}

We now turn to the characterisation of the \maysatisfy testing relation in terms of \rechml formulae.\\
Notice that the nature of the \maysatisfy testing relation is different 
from that of the \mustsatisfy one; here an experiment 
composed of a process $s$ and a state $t$ is required to have only one successful computation to ensure 
that $s \maysatisfy t$ holds. As a consequence, when considering the \maysatisfy testing relation, we will not 
need to reason about all the computations generated by an experiment; in other words, it will be no 
longer necessary to reason on the maximal length of a successful computation, therefore the assumption 
that the LTS of processes to be tested contains only finitely branching states can be dropped. However, 
we still need to assume that the LTS of tests to be considered is finitely branching; informally 
speaking this is because a test is \emph{may}-represented by a disjunction of formulae, one 
for each of its branches. Therefore, as we do not allow infinite disjunction in our version of 
\rechml, we need to focus only to LTS of finitely branching tests.\\

First we will prove that each formula in \mayhml \emph{may}-represents 
some test $t$ in grammar \eqref{eq:tests}; then we show 
that if the LTS generated by a test $t$\ is finitely branching and finite state, 
then there exists a formula $\phi$\ which \emph{may}-represents $t$. 
In this case we do not require for the 
LTS of processes to be branching finite.\\

To prove that the power of tests defined in grammar \ref{eq:tests}\ can be captured (with respect to 
the \maysatisfy testing relation) by the language \mayhml, we define the concept of
\emph{weak satisfaction relation}; this is obtained as the dual version of 
the weak satisfaction relation relation defined in \cite{aceto}.

\begin{defi}
\label{def:wsatrel}
Let $R \subseteq S \times \mayhml$. Then $R$\ is a weak satisfaction relation if, and only if, it satisfies 
the following implications:
\begin{eqnarray*}
(R\; \ttt) &=& S\\
(R\; \fff) &=& \emptyset\\
(R\; \dmnd \alpha \phi) &\supseteq& \dmnd{\cdot\alpha\cdot}(R\; \phi)\\
(R\; \phi_1 \vee \phi_2) &\supseteq& \dmnd{\cdot\tau\cdot} [(R\; \phi_1) \cup (R\; \phi_2)]\\
(R\; \lfp X \phi) &\supseteq& \dmnd{\cdot\tau\cdot}(R\; \phi\{\lfp X \phi /X \})
\end{eqnarray*}
\qed
\end{defi}

Informally speaking, given a weak satisfaction relation $R$, it is possible 
to determine whether $s \in (R\;\phi)$ for some $s\in S$, $\phi \in \mayhml$ 
by looking at the set of the $\tau$-derivatives of $s$, rather than at the 
single state itself.\\
The satisfaction relation $\models$, when restricted to \mayhml, is a 
weak satisfaction relation. This is because for any $\phi \in \mayhml$ 
we have $\sem{\phi} = \sem{\dmnd\tau \phi}$.

\begin{lem}
\label{prop:mayhmltauclosed}
Let $p \in S$, $\phi \in \mayhml$. Then $p \models \phi$ if and 
only if there exists $p' : p \Trans{\tau} p'$\ and $p' \models \phi$.
\end{lem}

\begin{proof}
For the only if implication notice that for all $p \in S$\ it holds $p\Trans{\tau} p$.\\
For the only if implication, notice that the semantics of \mayhml is defined 
on weak actions, and that $\sem{\dmnd \alpha \phi} = \sem{\dmnd \tau \dmnd \alpha \phi}$.
\end{proof}
\begin{prop}
 The relation $\models$ is a weak satisfaction relation.
\end{prop}
\begin{proof}
 By Lemma \ref{prop:mayhmltauclosed}\ 
 and the definition of $\sem\cdot$\ we have the following implications:
\begin{eqnarray*}
(\models \ttt) &=& S\\
(\models \fff) &=& \emptyset\\
(\models \dmnd \alpha \phi) &=& \dmnd{\cdot\alpha\cdot}(\models\phi)\\
(\models \phi_1 \vee \phi_2) &=& (\models \phi_1) \cup \models(\phi_2)\\
&=&\dmnd{\cdot\tau\cdot}[(\models\phi_1) \cup (\models\phi_2)\\
(\models \lfp X \phi) &=& (\models \phi\{\lfp X \phi/X\})\\
&=& \dmnd{\cdot\tau\cdot}(\models \phi\{\lfp X \phi/X\})
\end{eqnarray*}
Corollary \ref{cor:minsubst} has been applied in the case of a least fixed point formula.
\end{proof}

Further, we have that $\models$ is the smallest weak satisfaction relation. 
To prove this statement we will use the same techniques used in Section 
\ref{sec:must}; that is, first we will show that $\mayhml$ has a 
continuous interpretation in the complete lattice $(2^S, \subseteq)$. 
The only non trivial case here consists in proving the continuity of 
the $\dmnd{\cdot\tau\cdot}$ operator; this is a direct consequence of 
the following results, which states that such an operator is distributive 
over countable sets chosen in $2^S$.

\begin{prop}
 Let $P_i, i \in I$ be a countable set of elements in $2^S$. Then
\[
 \dmnd{\cdot\alpha\cdot} \bigcup_{i \in I} P_i = \bigcup_{i \in I} \dmnd{\cdot\alpha\cdot}P_i
\]
\end{prop}

\begin{proof}
 It is trivial to show that 
\[
 \bigcup_{i \in I} \dmnd{\cdot\alpha\cdot} P_i \subseteq \dmnd{\cdot\alpha\cdot}\bigcup_{i \in I} P_i.
\]

For the opposite inclusion, suppose $s \in \dmnd{\cdot\alpha\cdot}\bigcup_{i \in I} P_i$; 
then there exists $s'$ such that $s \Trans{\alpha} s', s' \in \bigcup_{i \in I} P_i$.
That is, $s' \in P_j$ for some $j \in I$; since $s \Trans{\alpha} s'$, 
by definition $s \in \dmnd{\cdot\alpha\cdot} P_j$, and therefore 
$s \in \bigcup_{i \in I} \dmnd{\cdot\alpha\cdot}P_i$.
\end{proof}

Given a formula $\phi \in \mayhml$, it is possible to define a chain 
of recursion free formulae $\phi^0, \phi^1,\cdots$ which converge to $\phi$ 
itself. This definition is similar in style to that of Definition 
\ref{def:mustapprox}.
\begin{defi}[Formulae approximations]
For each formula $\phi$\ in \mayhml define
\begin{center}
\begin{eqnarray*}
\phi^0 &\triangleq& \fff\\
\ttt^{(k+1)} &\triangleq& \ttt\\
\fff^{(k+1)} &\triangleq &\fff\\
(\dmnd\alpha\phi)^{(k+1)} &\triangleq& \dmnd\alpha(\phi)^{(k+1)}\\
(\phi_1 \vee \phi_2)^{(k+1)} &\triangleq& \phi_1^{(k+1)} \vee \phi_2^{(k+1)}\\
(\lfp X \phi)^{(k+1)} &\triangleq& (\phi\{min(X, \phi)/X\})^k
\end{eqnarray*}\qed
\end{center}
\label{def:mayapprox}
\end{defi}
\begin{prop}
\label{cor:maycontinuity}
\[
\bigcup_{k\geq 0} \sem{\phi^k} = \sem{\phi}
\]\qed
\end{prop}

Chains of approximations of formulae in \mayhml can be exploited to show that 
$\models$ is indeed the smallest weak satisfaction relation.
\begin{prop}
 Let $R$ be a weak satisfaction relation. Then, for any 
$s \in S$ and $\phi \in \mayhml$, $s \models \phi$ implies 
$s\;R\;\phi$.
\label{prop:modsmallest}
\end{prop}
\begin{proof}
 The proof is similar in style to that of Proposition 
\ref{prop:satisfaction}. If $s \models \phi$ then by 
Corollary \ref{cor:maycontinuity} we have that
$s \models \phi^k$ for some $k \geq 0$. By performing 
an induction on $k$, we show that $s\; R\; \phi$.
For $k=0$ the statement is vacuous; assume then 
that the statement is true for a generic $k$, 
and consider the formula $\phi^{k+1}$; we will only check the 
case $\phi = \lfp X \psi$.\\
If $s \models (\lfp X \psi)^{k+1}$ then by Definition 
$s \models (\psi\{\lfp X \psi / X\})^k$. 
By Lemma \ref{prop:mayhmltauclosed} 
$s \models \dmnd \tau (\psi\{\lfp X \psi / X\})^k$, 
which is equivalent to 
$s \models \dmnd (\tau \psi\{\lfp X \psi / X\})^k$. 
Now, by inductive hypothesis 
$s \;R\; \dmnd (\tau \psi\{\lfp X \psi / X\})$, 
or equivalently $s \Trans{\tau} s'$ with 
$s' \;R\; (\tau \psi\{\lfp X \psi / X\})$; then 
by Definition \ref{def:wsatrel} we have 
$s \;R\; \lfp X \psi$.
\end{proof}

We are now ready to show that each formula of \mayhml \emph{may}-represents some test $t$.\\
For each formula $\phi$\ in Grammar \eqref{eq:mayhml}, the test $\Tmay \phi$\ is defined as below:
\begin{eqnarray*}
\Tmay \ttt &=& \omega.0\\
\Tmay \fff &=& 0\\
\Tmay X &=& X\\
\Tmay {\phi_1 \vee \phi_2} &=& \tau.\Tmay {\phi_1} + \tau.\Tmay{\phi_2}\\
\Tmay {\dmnd \alpha \phi} &=& \alpha.\Tmay \phi\\
\Tmay {\lfp X \phi} &=& \mu X.\Tmay{\phi}
\end{eqnarray*}

We will need the following property for tests:
\begin{prop}
 Let $\phi, \psi$ be two formulae in Grammar \eqref{eq:mayhml}, and 
suppose $\psi$ is a closed formula. Then 
\[
 \Tmay{\phi}\{\Tmay\psi/X\} = \Tmay{\phi\{\psi/X\}}
\]
\label{prop:testsubst}
\end{prop}
\begin{proof}
 By induction on the structure of $\phi$.
\end{proof}

\begin{prop}
\label{prop:maywsr}
The relation $\Rmay = \{\;(s, \phi) \barra s \maysatisfy \Tmay \phi\}$\ is a weak satisfaction relation.
\end{prop}
\begin{proof}
We prove that $\Rmay$\ satisfies the constraints of Definition \ref{def:wsatrel}.
\begin{itemize}
\item $\Tmay \ttt = \omega.0$. It is trivial to check that 
each process in $S$\ \maysatisfy such a test.
\item $\Tmay \fff = 0$. Again, it is straightforward to show 
that for no process $p \in S$\ we have $p \maysatisfy \Tmay \fff$.
\item Suppose $p \Trans{a} p'$, and $p' \Rmay \phi$. Then, we have the computation prefix
\[
p \barra \alpha.\Tmay \phi \shortrightarrow \cdots \shortrightarrow p'' \barra \alpha.\Tmay \phi \shortrightarrow p' \barra \Tmay \phi\footnote{where $p'' = p'$\ in the case $\alpha = \tau$}.
\]

Since $p' \maysatisfy \Tmay \phi$ by the definition of $\Rmay$, the experiment $p \barra \Tmay {\dmnd a \phi}$\ has a successful computation, hence $p \Rmay \dmnd{\alpha}\phi$.
\item Suppose $p \Trans{\tau} p'$, and $p' \Rmay \phi_1$. Given an arbitrary formula $\phi_2$, consider the experiment\\
$p \barra \tau.\Tmay{\phi_1} + \tau.\Tmay{\phi_2}$, which has the computation fragment
\[
p \barra \tau.\Tmay{\phi_1} + \tau.\Tmay{\phi_2} \shortrightarrow p \barra \Tmay{\phi_1} \shortrightarrow \cdots \shortrightarrow p' \barra \Tmay{\phi_1}
\]

As $p' \maysatisfy \Tmay{\phi_1}$, we have $p \maysatisfy \Tmay{\phi_1 \vee \phi_2}$.

\item Suppose $p \Trans{\tau} p'$, with $p' \Rmay \psi \{\lfp X \psi/X\}$; we have 
$\Tmay{\lfp X \psi} = \mu X.\Tmay{\psi}$. In this case we have the computation
\[
p \barra \mu X.\Tmay{\psi}\shortrightarrow \cdots \shortrightarrow p' \barra \mu X.\Tmay{\psi} \shortrightarrow p' \barra \Tmay{\psi}\{\mu X.\psi/X\},
\]
where $\Tmay{\psi}\{\mu X.\psi/X\} = \Tmay{\psi\{\lfp X \psi/X\}}$ by Proposition \ref{prop:testsubst},
and hence $p \Rmay \lfp X \psi$.
\end{itemize}
\end{proof}

\begin{prop}
\label{prop:maylwsr}
Let $p \in S$ and let $\phi \in \mayhml$. If $p \maysatisfy \Tmay \phi$\ then $p \models \phi$.
\end{prop}
\begin{proof}
Assume $p \maysatisfy \Tmay \phi$. We proceed by induction on the 
minimal length of a successful prefix of a computation, denoted 
$|p, \Tmay \phi|$\ with an abuse of notation, 
to show that $p \models \phi$.
\begin{itemize}
\item $|p, \Tmay \phi| = 0$. Then we may infer $\Tmay \phi \trans{\omega}$\ hence $\phi \equiv \ttt$. 
In this case, for each $p\in S$\ it holds. $p \maysatisfy \Tmay \phi$, and $\forall p \in S. p \models \ttt$.
\item $|p, \Tmay \phi| = k+1$. Assume the statement holds for $k$, and consider the prefix 
\[
p | \Tmay \phi \shortrightarrow p' | t'
\]

of a minimal successful computation.\\ We distinguish several cases:
\begin{enumerate}[(a)]
\item $p \trans{\tau} p', t' \equiv \Tmay \phi$. Then by inductive hypothesis $p' \models \phi$, 
and by Lemma \ref{prop:mayhmltauclosed}\ we have $p \models \phi$.
\item $p = p', \Tmay \phi \trans{\tau} t'$: in this case there are tree possibilities.
\begin{itemize}
\item $\phi = \lfp X \psi$\ for some $\psi$. Hence $t' \equiv \Tmay \psi \{\Tmay \phi/X\}$, 
which is $t' \equiv \Tmay {\psi \{\phi/X\}}$. Again, by induction we have 
$p \models \psi\{\phi/X\}$, and hence $p \models \phi$.
\item $\phi = \phi_1 \vee \phi_2$. Without loss of generality 
we may infer $t' \equiv \Tmay {\phi_1}$. By Inductive hypothesis 
we have $p \models \phi_1$, hence $p \models \phi_1 \vee \phi_2$.
\item $\phi = \dmnd\tau \psi$ for some $\psi$. In this case we have 
$t' = \Tmay\psi$; by the inductive hypothesis it holds $p \models \psi$. 
Therefore, by Lemma \ref{prop:mayhmltauclosed} $p \models \dmnd\tau \psi$.
\end{itemize}
\item $p \trans{a} p', \Tmay \phi \trans{a} t'$. In this case we have 
$\phi = \dmnd \alpha \psi$, and hence $t' \equiv \Tmay \psi$. 
Then, by using the inductive hypothesis again, we have $p \models \dmnd a \phi$.
\end{enumerate}
\end{itemize}
\end{proof}

\begin{thm}
\label{thm:mayhml}
Let $\phi \in \mayhml$, $p \in S$. Then $p \models \phi$\ if and only if  $p \maysatisfy \Tmay \phi$.
\end{thm}
\begin{proof}
Analogous to the proof of Theorem \ref{thm:musthml}
\end{proof}

Next, we show that if the LTS of tests generated by a test is finite state, then each test 
$t$ is \emph{may}-represented by a \mayhml formula $\phimay t$.\\
First, assume to have a test indexed set of test variables $\{X_t\}$. Then, for each test $t$\ define the formula $\phi_t$\ as
\begin{eqnarray*}
\varphi_t &= \ttt &\mbox {if }t\trans{\omega}\\
\varphi_t &= \fff &\mbox {if }t \nottrans{\;}\\
%\phi_t &= \displaystyle{\bigvee_{t': t \trans{a} t'}} \dmnd {a} X_{t'} \vee \displaystyle{\bigvee_{t': t \trans{\tau} t'}} X_{t'}
\varphi_t &= \displaystyle{\bigvee_{\alpha, t': t \trans{\alpha} t'}} \dmnd{\alpha} X_{t'} & \mbox{if } t \nottrans{\omega}, t\trans{\;}
\end{eqnarray*}

and take $\phimay t$\ to be the $\rechml^+$\ formula $\min_t({\overline{X_T}}, {\overline{\varphi_T}})$.\\
Next we define the following environments:
\begin{eqnarray*}
\rhomin(X_t) &=& \sem{\phimay t}\\
\rhomay(X_t) &=& \{ p \barra p \maysatisfy t\}
\end{eqnarray*}

In the same style as Section \ref{sec:must}, we will prove that the two environments above coincide.
\begin{prop}
\label{prop:minsubmay}
For each test $t, \rhomin(X_t) \subseteq \rhomay(X_t)$.
\end{prop}
\begin{proof}
Suppose the LTS generated by a test $t$\ is finite state and finite branching. 
We just need to show that 
$\sem{\varphi_t} \rhomust \subseteq \rhomust(X_t)$: 
then we can apply the \textit{minimal fixpoint property}, 
Theorem \ref{thm:fixpointprop} (\ref{thm:minfixprop}), 
to conclude 
\[
\rhomin(X_t) = \sem{\slfp t {\overline{X_T}}{\overline{\phi_T}}} 
\subseteq \rhomust(X_T).
\]
The proof is carried out by performing a case 
analysis on $t$.
\begin{itemize}
\item $t \trans{\omega}$. In this case we have $\rhomay(X_t) = S$, so the statement trivially holds.
\item $t \nottrans{\;}$. W have $\phi_t = \fff$, hence $\sem{\phi_t} \rhomay = \emptyset$. Again, the statement is trivial.
\item $t \nottrans{\omega}, t \trans{\;}$. 
Suppose $p \in \sem{\phi}\rhomay$. We have that there exists at least one action 
$\alpha$\ such that $t \trans{\alpha} t'$; thus there exists a process 
$p'$\ such that $p \Trans{\alpha} p'$\ and $p' \maysatisfy t'$ (in the case 
$\alpha = \tau$ choose $p' = p$). Hence we have the computation fragment
\[
p \barra t \shortrightarrow \cdots \shortrightarrow p'' \barra t \shortrightarrow p' \barra t',
\]
so that $p \maysatisfy t$.
\end{itemize}
\end{proof} 

\begin{prop}
\label{prop:maysubmin}
For each test $t, \rhomay(X_t) \subseteq \rhomin(X_t)$.
\end{prop}

\begin{proof}
Again, assume the LTS generated by a test $t$\ is finite state.
Let $p$\ be a process such that $p \maysatisfy t$. 
We proceed by induction on the minimal length of a successful computation prefix $|p, t|$\ 
to show that $p \maysatisfy t$ implies $p \in \sem{\varphi_t}\rhomin$; then the result 
$p \in \sem{\phi_t}$ is obtained by applying the Fixpoint Property \ref{thm:fixpointprop}(\ref{thm:fixprop}).
\begin{itemize}
\item $|p, t| = 0$. In this case we have $t \trans{\omega}$. By definition, $\phi_t = \ttt$, so that we have $\sem{\phi_t}\rhomin = S$. This case is trivial.
\item $|p, t| > 0$. Let
\[
p \barra t \shortrightarrow p' \barra t' \shortrightarrow \cdots \shortrightarrow p_n \barra t_n
\]
be a successful computation prefix of length $|p, t|$. 
We distinguish several cases according to the structure of the 
computation. Since $p' \maysatisfy t'$ and $|p',t'|<|p,t|$, 
in each case we have $p' \in \sem{\varphi_{t'}}\rhomin$\ by inductive hypothesis.
\begin{itemize}
\item $p = p'$, $t \trans{\tau} t'$; we have 
$p \in \sem{X_t}\rhomin = \sem{\dmnd{\tau}\phi_{t'}}\rhomin$. 
Then $p \in \sem{\bigvee_{\alpha, t':t\trans{\alpha}t'}\dmnd{\tau}X_{t'}}\rhomin$.
\item $p \trans{\tau} p'$, $t = t'$; we have 
$p' \in \sem{X_t}\rhomin$, and therefore 
$p \in \sem{X_t}\rhomin$ by Lemma \ref{prop:mayhmltauclosed}.
\item $p \trans{a} p'$, $t \trans{a} t'$; 
in this case $p \in \sem{\dmnd{a} X_{t'}}\rhomin$, and hence $p \in \sem{\phi_t}\rhomin$.
\end{itemize}
\end{itemize}
\end{proof}

Propositions \ref{prop:minsubmay} and \ref{prop:maysubmin} can be 
combined to obtain the following result:

\begin{thm}
\label{thm:maytest}
 Every finitary test $t$ is \emph{may}-representable.\qed
\end{thm}

\begin{corollary}\label{cor:maylargest}
Suppose $\phi$ is a formula in \rechml which is \emph{may}-testable. Then 
there exists some $\psi$ in $\mayhml$ which is logically equivalent to it.
\end{corollary}

\begin{proof}
Suppose $\phi$\ is \emph{may}-testable. By theorem 
\ref{thm:mayhml} there exists a finite test 
$t = \Tmay \phi$\ which \emph{may}-represents $\phi$. 
Further, by Theorem \ref{thm:maytest}\ there exists a 
formula $\psi = \phimay {t} \in \mayhml$\ which \emph{may}-tests for $t$. Therefore
\[
p \in \sem{\phi} \Leftrightarrow p \maysatisfy \Tmay \phi \Leftrightarrow p \in \sem{\psi}
\]
\end{proof}

\chapter{Conclusions}\label{sec:end}

We have investigated the relationship between properties of processes as expressed 
in a recursive version of Hennessy-Milner logic, \rechml, and \emph{extensional} tests as 
defined in \cite{dhn}. In particular we have shown that both \emph{may} and \emph{must}
tests can be captured in the logic, and we have isolated logically complete sub-languages
of \rechml which can be captured by \emph{may} testing and \emph{must} testing. One 
consequence of these results is that the \emph{may} and \emph{must} testing preorders
of \cite{dhn} are determined by the logical properties in these sub-languages \mayhml and
\musthml respectively.\\

However these results come at the price of modifying the satisfaction relation; 
to satisfy a box formula a process is required to converge. One consequence of this 
change is that the language \rechml no longer characterises the standard notion
of \emph{weak bisimulation equivalence}, as this equivalence is insensitive to
divergence. But there are variations on \emph{bisimulation equivalence} which do
take divergence into account; see for example \cite{walker,cbl}.\\

The research reported here was initiated after reading \cite{aceto};
there a notion of testing was used which is different from both
\emph{may} and \emph{must} testing. They define $s$ \emph{passes} the
test $t$ whenever no computation from $s \;|\; t$ can perform the
success action $\omega$, and give a sub-language which characterises this form of testing. 
It is easy to check that $s$ \emph{passes} $t$ if and only if, in our terminology, 
$s$ \emph{may} $t$ is not true. So their notion of testing is dual to \emph{may} testing,
and therefore, not surprisingly, our results on \emph{may} testing are simply dual versions
of theirs.\\

We have concentrated on properties associated with essentially two
behavioural theories, \emph{weak bisimulation equivalence} and
\emph{testing}. However there are a large number of other behavioural theories; 
see \cite{rob} for an extensive survey, including their characterisation in terms of
\emph{observational} properties.
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%%   Right bracket \]     Circumflex    \^     Underscore    \_
%%   Grave accent  \`     Left brace    \{     Vertical bar  \|
%%   Right brace   \}     Tilde         \~}
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\NeedsTeXFormat{LaTeX2e}[1995/12/01]
\ProvidesClass{llncs}[2004/08/17 v2.14
^^J LaTeX document class for Lecture Notes in Computer Science]
% Options
\let\if@envcntreset\iffalse
\DeclareOption{envcountreset}{\let\if@envcntreset\iftrue}
\DeclareOption{citeauthoryear}{\let\citeauthoryear=Y}
\DeclareOption{oribibl}{\let\oribibl=Y}
\let\if@custvec\iftrue
\DeclareOption{orivec}{\let\if@custvec\iffalse}
\let\if@envcntsame\iffalse
\DeclareOption{envcountsame}{\let\if@envcntsame\iftrue}
\let\if@envcntsect\iffalse
\DeclareOption{envcountsect}{\let\if@envcntsect\iftrue}
\let\if@runhead\iffalse
\DeclareOption{runningheads}{\let\if@runhead\iftrue}

\let\if@openbib\iffalse
\DeclareOption{openbib}{\let\if@openbib\iftrue}

% languages
\let\switcht@@therlang\relax
\def\ds@deutsch{\def\switcht@@therlang{\switcht@deutsch}}
\def\ds@francais{\def\switcht@@therlang{\switcht@francais}}

\DeclareOption*{\PassOptionsToClass{\CurrentOption}{article}}

\ProcessOptions

\LoadClass[twoside]{article}
\RequirePackage{multicol} % needed for the list of participants, index

\setlength{\textwidth}{12.5cm}
%%%12.2
%%%12.64249
\setlength{\textheight}{19.3cm}
%%%19.3
%%%20
\renewcommand\@pnumwidth{2em}
\renewcommand\@tocrmarg{3.5em}
%
\def\@dottedtocline#1#2#3#4#5{%
  \ifnum #1>\c@tocdepth \else
    \vskip \z@ \@plus.2\p@
    {\leftskip #2\relax \rightskip \@tocrmarg \advance\rightskip by 0pt plus 2cm
               \parfillskip -\rightskip \pretolerance=10000
     \parindent #2\relax\@afterindenttrue
     \interlinepenalty\@M
     \leavevmode
     \@tempdima #3\relax
     \advance\leftskip \@tempdima \null\nobreak\hskip -\leftskip
     {#4}\nobreak
     \leaders\hbox{$\m@th
        \mkern \@dotsep mu\hbox{.}\mkern \@dotsep
        mu$}\hfill
     \nobreak
     \hb@xt@\@pnumwidth{\hfil\normalfont \normalcolor #5}%
     \par}%
  \fi}
%
\def\switcht@albion{%
\def\abstractname{Abstract.}
\def\ackname{Acknowledgement.}
\def\andname{and}
\def\lastandname{\unskip, and}
\def\appendixname{Appendix}
\def\chaptername{Chapter}
\def\claimname{Claim}
\def\conjecturename{Conjecture}
\def\contentsname{Table of Contents}
\def\corollaryname{Corollary}
\def\definitionname{Definition}
\def\examplename{Example}
\def\exercisename{Exercise}
\def\figurename{Fig.}
\def\keywordname{{\bf Key words:}}
\def\indexname{Index}
\def\lemmaname{Lemma}
\def\contriblistname{List of Contributors}
\def\listfigurename{List of Figures}
\def\listtablename{List of Tables}
\def\mailname{{\it Correspondence to\/}:}
\def\noteaddname{Note added in proof}
\def\notename{Note}
\def\partname{Part}
\def\problemname{Problem}
\def\proofname{Proof}
\def\propertyname{Property}
\def\propositionname{Proposition}
\def\questionname{Question}
\def\remarkname{Remark}
\def\seename{see}
\def\solutionname{Solution}
\def\subclassname{{\it Subject Classifications\/}:}
\def\tablename{Table}
\def\theoremname{Theorem}}
\switcht@albion
% Names of theorem like environments are already defined
% but must be translated if another language is chosen
%
% French section
\def\switcht@francais{%\typeout{On parle francais.}%
 \def\abstractname{R\'esum\'e.}%
 \def\ackname{Remerciements.}%
 \def\andname{et}%
 \def\lastandname{ et}%
 \def\appendixname{Appendice}
 \def\chaptername{Chapitre}%
 \def\claimname{Pr\'etention}%
 \def\conjecturename{Hypoth\`ese}%
 \def\contentsname{Table des mati\`eres}%
 \def\corollaryname{Corollaire}%
 \def\definitionname{D\'efinition}%
 \def\examplename{Exemple}%
 \def\exercisename{Exercice}%
 \def\figurename{Fig.}%
 \def\keywordname{{\bf Mots-cl\'e:}}
 \def\indexname{Index}
 \def\lemmaname{Lemme}%
 \def\contriblistname{Liste des contributeurs}
 \def\listfigurename{Liste des figures}%
 \def\listtablename{Liste des tables}%
 \def\mailname{{\it Correspondence to\/}:}
 \def\noteaddname{Note ajout\'ee \`a l'\'epreuve}%
 \def\notename{Remarque}%
 \def\partname{Partie}%
 \def\problemname{Probl\`eme}%
 \def\proofname{Preuve}%
 \def\propertyname{Caract\'eristique}%
%\def\propositionname{Proposition}%
 \def\questionname{Question}%
 \def\remarkname{Remarque}%
 \def\seename{voir}
 \def\solutionname{Solution}%
 \def\subclassname{{\it Subject Classifications\/}:}
 \def\tablename{Tableau}%
 \def\theoremname{Th\'eor\`eme}%
}
%
% German section
\def\switcht@deutsch{%\typeout{Man spricht deutsch.}%
 \def\abstractname{Zusammenfassung.}%
 \def\ackname{Danksagung.}%
 \def\andname{und}%
 \def\lastandname{ und}%
 \def\appendixname{Anhang}%
 \def\chaptername{Kapitel}%
 \def\claimname{Behauptung}%
 \def\conjecturename{Hypothese}%
 \def\contentsname{Inhaltsverzeichnis}%
 \def\corollaryname{Korollar}%
%\def\definitionname{Definition}%
 \def\examplename{Beispiel}%
 \def\exercisename{\"Ubung}%
 \def\figurename{Abb.}%
 \def\keywordname{{\bf Schl\"usselw\"orter:}}
 \def\indexname{Index}
%\def\lemmaname{Lemma}%
 \def\contriblistname{Mitarbeiter}
 \def\listfigurename{Abbildungsverzeichnis}%
 \def\listtablename{Tabellenverzeichnis}%
 \def\mailname{{\it Correspondence to\/}:}
 \def\noteaddname{Nachtrag}%
 \def\notename{Anmerkung}%
 \def\partname{Teil}%
%\def\problemname{Problem}%
 \def\proofname{Beweis}%
 \def\propertyname{Eigenschaft}%
%\def\propositionname{Proposition}%
 \def\questionname{Frage}%
 \def\remarkname{Anmerkung}%
 \def\seename{siehe}
 \def\solutionname{L\"osung}%
 \def\subclassname{{\it Subject Classifications\/}:}
 \def\tablename{Tabelle}%
%\def\theoremname{Theorem}%
}

% Ragged bottom for the actual page
\def\thisbottomragged{\def\@textbottom{\vskip\z@ plus.0001fil
\global\let\@textbottom\relax}}

\renewcommand\small{%
   \@setfontsize\small\@ixpt{11}%
   \abovedisplayskip 8.5\p@ \@plus3\p@ \@minus4\p@
   \abovedisplayshortskip \z@ \@plus2\p@
   \belowdisplayshortskip 4\p@ \@plus2\p@ \@minus2\p@
   \def\@listi{\leftmargin\leftmargini
               \parsep 0\p@ \@plus1\p@ \@minus\p@
               \topsep 8\p@ \@plus2\p@ \@minus4\p@
               \itemsep0\p@}%
   \belowdisplayskip \abovedisplayskip
}

\frenchspacing
\widowpenalty=10000
\clubpenalty=10000

\setlength\oddsidemargin   {63\p@}
\setlength\evensidemargin  {63\p@}
\setlength\marginparwidth  {90\p@}

\setlength\headsep   {16\p@}

\setlength\footnotesep{7.7\p@}
\setlength\textfloatsep{8mm\@plus 2\p@ \@minus 4\p@}
\setlength\intextsep   {8mm\@plus 2\p@ \@minus 2\p@}

\setcounter{secnumdepth}{2}

\newcounter {chapter}
\renewcommand\thechapter      {\@arabic\c@chapter}

\newif\if@mainmatter \@mainmattertrue
\newcommand\frontmatter{\cleardoublepage
            \@mainmatterfalse\pagenumbering{Roman}}
\newcommand\mainmatter{\cleardoublepage
       \@mainmattertrue\pagenumbering{arabic}}
\newcommand\backmatter{\if@openright\cleardoublepage\else\clearpage\fi
      \@mainmatterfalse}

\renewcommand\part{\cleardoublepage
                 \thispagestyle{empty}%
                 \if@twocolumn
                     \onecolumn
                     \@tempswatrue
                   \else
                     \@tempswafalse
                 \fi
                 \null\vfil
                 \secdef\@part\@spart}

\def\@part[#1]#2{%
    \ifnum \c@secnumdepth >-2\relax
      \refstepcounter{part}%
      \addcontentsline{toc}{part}{\thepart\hspace{1em}#1}%
    \else
      \addcontentsline{toc}{part}{#1}%
    \fi
    \markboth{}{}%
    {\centering
     \interlinepenalty \@M
     \normalfont
     \ifnum \c@secnumdepth >-2\relax
       \huge\bfseries \partname~\thepart
       \par
       \vskip 20\p@
     \fi
     \Huge \bfseries #2\par}%
    \@endpart}
\def\@spart#1{%
    {\centering
     \interlinepenalty \@M
     \normalfont
     \Huge \bfseries #1\par}%
    \@endpart}
\def\@endpart{\vfil\newpage
              \if@twoside
                \null
                \thispagestyle{empty}%
                \newpage
              \fi
              \if@tempswa
                \twocolumn
              \fi}

\newcommand\chapter{\clearpage
                    \thispagestyle{empty}%
                    \global\@topnum\z@
                    \@afterindentfalse
                    \secdef\@chapter\@schapter}
\def\@chapter[#1]#2{\ifnum \c@secnumdepth >\m@ne
                       \if@mainmatter
                         \refstepcounter{chapter}%
                         \typeout{\@chapapp\space\thechapter.}%
                         \addcontentsline{toc}{chapter}%
                                  {\protect\numberline{\thechapter}#1}%
                       \else
                         \addcontentsline{toc}{chapter}{#1}%
                       \fi
                    \else
                      \addcontentsline{toc}{chapter}{#1}%
                    \fi
                    \chaptermark{#1}%
                    \addtocontents{lof}{\protect\addvspace{10\p@}}%
                    \addtocontents{lot}{\protect\addvspace{10\p@}}%
                    \if@twocolumn
                      \@topnewpage[\@makechapterhead{#2}]%
                    \else
                      \@makechapterhead{#2}%
                      \@afterheading
                    \fi}
\def\@makechapterhead#1{%
% \vspace*{50\p@}%
  {\centering
    \ifnum \c@secnumdepth >\m@ne
      \if@mainmatter
        \large\bfseries \@chapapp{} \thechapter
        \par\nobreak
        \vskip 20\p@
      \fi
    \fi
    \interlinepenalty\@M
    \Large \bfseries #1\par\nobreak
    \vskip 40\p@
  }}
\def\@schapter#1{\if@twocolumn
                   \@topnewpage[\@makeschapterhead{#1}]%
                 \else
                   \@makeschapterhead{#1}%
                   \@afterheading
                 \fi}
\def\@makeschapterhead#1{%
% \vspace*{50\p@}%
  {\centering
    \normalfont
    \interlinepenalty\@M
    \Large \bfseries  #1\par\nobreak
    \vskip 40\p@
  }}

\renewcommand\section{\@startsection{section}{1}{\z@}%
                       {-18\p@ \@plus -4\p@ \@minus -4\p@}%
                       {12\p@ \@plus 4\p@ \@minus 4\p@}%
                       {\normalfont\large\bfseries\boldmath
                        \rightskip=\z@ \@plus 8em\pretolerance=10000 }}
\renewcommand\subsection{\@startsection{subsection}{2}{\z@}%
                       {-18\p@ \@plus -4\p@ \@minus -4\p@}%
                       {8\p@ \@plus 4\p@ \@minus 4\p@}%
                       {\normalfont\normalsize\bfseries\boldmath
                        \rightskip=\z@ \@plus 8em\pretolerance=10000 }}
\renewcommand\subsubsection{\@startsection{subsubsection}{3}{\z@}%
                       {-18\p@ \@plus -4\p@ \@minus -4\p@}%
                       {-0.5em \@plus -0.22em \@minus -0.1em}%
                       {\normalfont\normalsize\bfseries\boldmath}}
\renewcommand\paragraph{\@startsection{paragraph}{4}{\z@}%
                       {-12\p@ \@plus -4\p@ \@minus -4\p@}%
                       {-0.5em \@plus -0.22em \@minus -0.1em}%
                       {\normalfont\normalsize\itshape}}
\renewcommand\subparagraph[1]{\typeout{LLNCS warning: You should not use
                  \string\subparagraph\space with this class}\vskip0.5cm
You should not use \verb|\subparagraph| with this class.\vskip0.5cm}

\DeclareMathSymbol{\Gamma}{\mathalpha}{letters}{"00}
\DeclareMathSymbol{\Delta}{\mathalpha}{letters}{"01}
\DeclareMathSymbol{\Theta}{\mathalpha}{letters}{"02}
\DeclareMathSymbol{\Lambda}{\mathalpha}{letters}{"03}
\DeclareMathSymbol{\Xi}{\mathalpha}{letters}{"04}
\DeclareMathSymbol{\Pi}{\mathalpha}{letters}{"05}
\DeclareMathSymbol{\Sigma}{\mathalpha}{letters}{"06}
\DeclareMathSymbol{\Upsilon}{\mathalpha}{letters}{"07}
\DeclareMathSymbol{\Phi}{\mathalpha}{letters}{"08}
\DeclareMathSymbol{\Psi}{\mathalpha}{letters}{"09}
\DeclareMathSymbol{\Omega}{\mathalpha}{letters}{"0A}

\let\footnotesize\small

\if@custvec
\def\vec#1{\mathchoice{\mbox{\boldmath$\displaystyle#1$}}
{\mbox{\boldmath$\textstyle#1$}}
{\mbox{\boldmath$\scriptstyle#1$}}
{\mbox{\boldmath$\scriptscriptstyle#1$}}}
\fi

\def\squareforqed{\hbox{\rlap{$\sqcap$}$\sqcup$}}
\def\qed{\ifmmode\squareforqed\else{\unskip\nobreak\hfil
\penalty50\hskip1em\null\nobreak\hfil\squareforqed
\parfillskip=0pt\finalhyphendemerits=0\endgraf}\fi}

\def\getsto{\mathrel{\mathchoice {\vcenter{\offinterlineskip
\halign{\hfil
$\displaystyle##$\hfil\cr\gets\cr\to\cr}}}
{\vcenter{\offinterlineskip\halign{\hfil$\textstyle##$\hfil\cr\gets
\cr\to\cr}}}
{\vcenter{\offinterlineskip\halign{\hfil$\scriptstyle##$\hfil\cr\gets
\cr\to\cr}}}
{\vcenter{\offinterlineskip\halign{\hfil$\scriptscriptstyle##$\hfil\cr
\gets\cr\to\cr}}}}}
\def\lid{\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displaystyle##$\hfil\cr<\cr\noalign{\vskip1.2pt}=\cr}}}
{\vcenter{\offinterlineskip\halign{\hfil$\textstyle##$\hfil\cr<\cr
\noalign{\vskip1.2pt}=\cr}}}
{\vcenter{\offinterlineskip\halign{\hfil$\scriptstyle##$\hfil\cr<\cr
\noalign{\vskip1pt}=\cr}}}
{\vcenter{\offinterlineskip\halign{\hfil$\scriptscriptstyle##$\hfil\cr
<\cr
\noalign{\vskip0.9pt}=\cr}}}}}
\def\gid{\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displaystyle##$\hfil\cr>\cr\noalign{\vskip1.2pt}=\cr}}}
{\vcenter{\offinterlineskip\halign{\hfil$\textstyle##$\hfil\cr>\cr
\noalign{\vskip1.2pt}=\cr}}}
{\vcenter{\offinterlineskip\halign{\hfil$\scriptstyle##$\hfil\cr>\cr
\noalign{\vskip1pt}=\cr}}}
{\vcenter{\offinterlineskip\halign{\hfil$\scriptscriptstyle##$\hfil\cr
>\cr
\noalign{\vskip0.9pt}=\cr}}}}}
\def\grole{\mathrel{\mathchoice {\vcenter{\offinterlineskip
\halign{\hfil
$\displaystyle##$\hfil\cr>\cr\noalign{\vskip-1pt}<\cr}}}
{\vcenter{\offinterlineskip\halign{\hfil$\textstyle##$\hfil\cr
>\cr\noalign{\vskip-1pt}<\cr}}}
{\vcenter{\offinterlineskip\halign{\hfil$\scriptstyle##$\hfil\cr
>\cr\noalign{\vskip-0.8pt}<\cr}}}
{\vcenter{\offinterlineskip\halign{\hfil$\scriptscriptstyle##$\hfil\cr
>\cr\noalign{\vskip-0.3pt}<\cr}}}}}
\def\bbbr{{\rm I\!R}} %reelle Zahlen
\def\bbbm{{\rm I\!M}}
\def\bbbn{{\rm I\!N}} %natuerliche Zahlen
\def\bbbf{{\rm I\!F}}
\def\bbbh{{\rm I\!H}}
\def\bbbk{{\rm I\!K}}
\def\bbbp{{\rm I\!P}}
\def\bbbone{{\mathchoice {\rm 1\mskip-4mu l} {\rm 1\mskip-4mu l}
{\rm 1\mskip-4.5mu l} {\rm 1\mskip-5mu l}}}
\def\bbbc{{\mathchoice {\setbox0=\hbox{$\displaystyle\rm C$}\hbox{\hbox
to0pt{\kern0.4\wd0\vrule height0.9\ht0\hss}\box0}}
{\setbox0=\hbox{$\textstyle\rm C$}\hbox{\hbox
to0pt{\kern0.4\wd0\vrule height0.9\ht0\hss}\box0}}
{\setbox0=\hbox{$\scriptstyle\rm C$}\hbox{\hbox
to0pt{\kern0.4\wd0\vrule height0.9\ht0\hss}\box0}}
{\setbox0=\hbox{$\scriptscriptstyle\rm C$}\hbox{\hbox
to0pt{\kern0.4\wd0\vrule height0.9\ht0\hss}\box0}}}}
\def\bbbq{{\mathchoice {\setbox0=\hbox{$\displaystyle\rm
Q$}\hbox{\raise
0.15\ht0\hbox to0pt{\kern0.4\wd0\vrule height0.8\ht0\hss}\box0}}
{\setbox0=\hbox{$\textstyle\rm Q$}\hbox{\raise
0.15\ht0\hbox to0pt{\kern0.4\wd0\vrule height0.8\ht0\hss}\box0}}
{\setbox0=\hbox{$\scriptstyle\rm Q$}\hbox{\raise
0.15\ht0\hbox to0pt{\kern0.4\wd0\vrule height0.7\ht0\hss}\box0}}
{\setbox0=\hbox{$\scriptscriptstyle\rm Q$}\hbox{\raise
0.15\ht0\hbox to0pt{\kern0.4\wd0\vrule height0.7\ht0\hss}\box0}}}}
\def\bbbt{{\mathchoice {\setbox0=\hbox{$\displaystyle\rm
T$}\hbox{\hbox to0pt{\kern0.3\wd0\vrule height0.9\ht0\hss}\box0}}
{\setbox0=\hbox{$\textstyle\rm T$}\hbox{\hbox
to0pt{\kern0.3\wd0\vrule height0.9\ht0\hss}\box0}}
{\setbox0=\hbox{$\scriptstyle\rm T$}\hbox{\hbox
to0pt{\kern0.3\wd0\vrule height0.9\ht0\hss}\box0}}
{\setbox0=\hbox{$\scriptscriptstyle\rm T$}\hbox{\hbox
to0pt{\kern0.3\wd0\vrule height0.9\ht0\hss}\box0}}}}
\def\bbbs{{\mathchoice
{\setbox0=\hbox{$\displaystyle     \rm S$}\hbox{\raise0.5\ht0\hbox
to0pt{\kern0.35\wd0\vrule height0.45\ht0\hss}\hbox
to0pt{\kern0.55\wd0\vrule height0.5\ht0\hss}\box0}}
{\setbox0=\hbox{$\textstyle        \rm S$}\hbox{\raise0.5\ht0\hbox
to0pt{\kern0.35\wd0\vrule height0.45\ht0\hss}\hbox
to0pt{\kern0.55\wd0\vrule height0.5\ht0\hss}\box0}}
{\setbox0=\hbox{$\scriptstyle      \rm S$}\hbox{\raise0.5\ht0\hbox
to0pt{\kern0.35\wd0\vrule height0.45\ht0\hss}\raise0.05\ht0\hbox
to0pt{\kern0.5\wd0\vrule height0.45\ht0\hss}\box0}}
{\setbox0=\hbox{$\scriptscriptstyle\rm S$}\hbox{\raise0.5\ht0\hbox
to0pt{\kern0.4\wd0\vrule height0.45\ht0\hss}\raise0.05\ht0\hbox
to0pt{\kern0.55\wd0\vrule height0.45\ht0\hss}\box0}}}}
\def\bbbz{{\mathchoice {\hbox{$\mathsf\textstyle Z\kern-0.4em Z$}}
{\hbox{$\mathsf\textstyle Z\kern-0.4em Z$}}
{\hbox{$\mathsf\scriptstyle Z\kern-0.3em Z$}}
{\hbox{$\mathsf\scriptscriptstyle Z\kern-0.2em Z$}}}}

\let\ts\,

\setlength\leftmargini  {17\p@}
\setlength\leftmargin    {\leftmargini}
\setlength\leftmarginii  {\leftmargini}
\setlength\leftmarginiii {\leftmargini}
\setlength\leftmarginiv  {\leftmargini}
\setlength  \labelsep  {.5em}
\setlength  \labelwidth{\leftmargini}
\addtolength\labelwidth{-\labelsep}

\def\@listI{\leftmargin\leftmargini
            \parsep 0\p@ \@plus1\p@ \@minus\p@
            \topsep 8\p@ \@plus2\p@ \@minus4\p@
            \itemsep0\p@}
\let\@listi\@listI
\@listi
\def\@listii {\leftmargin\leftmarginii
              \labelwidth\leftmarginii
              \advance\labelwidth-\labelsep
              \topsep    0\p@ \@plus2\p@ \@minus\p@}
\def\@listiii{\leftmargin\leftmarginiii
              \labelwidth\leftmarginiii
              \advance\labelwidth-\labelsep
              \topsep    0\p@ \@plus\p@\@minus\p@
              \parsep    \z@
              \partopsep \p@ \@plus\z@ \@minus\p@}

\renewcommand\labelitemi{\normalfont\bfseries --}
\renewcommand\labelitemii{$\m@th\bullet$}

\setlength\arraycolsep{1.4\p@}
\setlength\tabcolsep{1.4\p@}

\def\tableofcontents{\chapter*{\contentsname\@mkboth{{\contentsname}}%
                                                    {{\contentsname}}}
 \def\authcount##1{\setcounter{auco}{##1}\setcounter{@auth}{1}}
 \def\lastand{\ifnum\value{auco}=2\relax
                 \unskip{} \andname\
              \else
                 \unskip \lastandname\
              \fi}%
 \def\and{\stepcounter{@auth}\relax
          \ifnum\value{@auth}=\value{auco}%
             \lastand
          \else
             \unskip,
          \fi}%
 \@starttoc{toc}\if@restonecol\twocolumn\fi}

\def\l@part#1#2{\addpenalty{\@secpenalty}%
   \addvspace{2em plus\p@}%  % space above part line
   \begingroup
     \parindent \z@
     \rightskip \z@ plus 5em
     \hrule\vskip5pt
     \large               % same size as for a contribution heading
     \bfseries\boldmath   % set line in boldface
     \leavevmode          % TeX command to enter horizontal mode.
     #1\par
     \vskip5pt
     \hrule
     \vskip1pt
     \nobreak             % Never break after part entry
   \endgroup}

\def\@dotsep{2}

\def\hyperhrefextend{\ifx\hyper@anchor\@undefined\else
{chapter.\thechapter}\fi}

\def\addnumcontentsmark#1#2#3{%
\addtocontents{#1}{\protect\contentsline{#2}{\protect\numberline
                     {\thechapter}#3}{\thepage}\hyperhrefextend}}
\def\addcontentsmark#1#2#3{%
\addtocontents{#1}{\protect\contentsline{#2}{#3}{\thepage}\hyperhrefextend}}
\def\addcontentsmarkwop#1#2#3{%
\addtocontents{#1}{\protect\contentsline{#2}{#3}{0}\hyperhrefextend}}

\def\@adcmk[#1]{\ifcase #1 \or
\def\@gtempa{\addnumcontentsmark}%
  \or    \def\@gtempa{\addcontentsmark}%
  \or    \def\@gtempa{\addcontentsmarkwop}%
  \fi\@gtempa{toc}{chapter}}
\def\addtocmark{\@ifnextchar[{\@adcmk}{\@adcmk[3]}}

\def\l@chapter#1#2{\addpenalty{-\@highpenalty}
 \vskip 1.0em plus 1pt \@tempdima 1.5em \begingroup
 \parindent \z@ \rightskip \@tocrmarg
 \advance\rightskip by 0pt plus 2cm
 \parfillskip -\rightskip \pretolerance=10000
 \leavevmode \advance\leftskip\@tempdima \hskip -\leftskip
 {\large\bfseries\boldmath#1}\ifx0#2\hfil\null
 \else
      \nobreak
      \leaders\hbox{$\m@th \mkern \@dotsep mu.\mkern
      \@dotsep mu$}\hfill
      \nobreak\hbox to\@pnumwidth{\hss #2}%
 \fi\par
 \penalty\@highpenalty \endgroup}

\def\l@title#1#2{\addpenalty{-\@highpenalty}
 \addvspace{8pt plus 1pt}
 \@tempdima \z@
 \begingroup
 \parindent \z@ \rightskip \@tocrmarg
 \advance\rightskip by 0pt plus 2cm
 \parfillskip -\rightskip \pretolerance=10000
 \leavevmode \advance\leftskip\@tempdima \hskip -\leftskip
 #1\nobreak
 \leaders\hbox{$\m@th \mkern \@dotsep mu.\mkern
 \@dotsep mu$}\hfill
 \nobreak\hbox to\@pnumwidth{\hss #2}\par
 \penalty\@highpenalty \endgroup}

\def\l@author#1#2{\addpenalty{\@highpenalty}
 \@tempdima=15\p@ %\z@
 \begingroup
 \parindent \z@ \rightskip \@tocrmarg
 \advance\rightskip by 0pt plus 2cm
 \pretolerance=10000
 \leavevmode \advance\leftskip\@tempdima %\hskip -\leftskip
 \textit{#1}\par
 \penalty\@highpenalty \endgroup}

\setcounter{tocdepth}{0}
\newdimen\tocchpnum
\newdimen\tocsecnum
\newdimen\tocsectotal
\newdimen\tocsubsecnum
\newdimen\tocsubsectotal
\newdimen\tocsubsubsecnum
\newdimen\tocsubsubsectotal
\newdimen\tocparanum
\newdimen\tocparatotal
\newdimen\tocsubparanum
\tocchpnum=\z@            % no chapter numbers
\tocsecnum=15\p@          % section 88. plus 2.222pt
\tocsubsecnum=23\p@       % subsection 88.8 plus 2.222pt
\tocsubsubsecnum=27\p@    % subsubsection 88.8.8 plus 1.444pt
\tocparanum=35\p@         % paragraph 88.8.8.8 plus 1.666pt
\tocsubparanum=43\p@      % subparagraph 88.8.8.8.8 plus 1.888pt
\def\calctocindent{%
\tocsectotal=\tocchpnum
\advance\tocsectotal by\tocsecnum
\tocsubsectotal=\tocsectotal
\advance\tocsubsectotal by\tocsubsecnum
\tocsubsubsectotal=\tocsubsectotal
\advance\tocsubsubsectotal by\tocsubsubsecnum
\tocparatotal=\tocsubsubsectotal
\advance\tocparatotal by\tocparanum}
\calctocindent

\def\l@section{\@dottedtocline{1}{\tocchpnum}{\tocsecnum}}
\def\l@subsection{\@dottedtocline{2}{\tocsectotal}{\tocsubsecnum}}
\def\l@subsubsection{\@dottedtocline{3}{\tocsubsectotal}{\tocsubsubsecnum}}
\def\l@paragraph{\@dottedtocline{4}{\tocsubsubsectotal}{\tocparanum}}
\def\l@subparagraph{\@dottedtocline{5}{\tocparatotal}{\tocsubparanum}}

\def\listoffigures{\@restonecolfalse\if@twocolumn\@restonecoltrue\onecolumn
 \fi\section*{\listfigurename\@mkboth{{\listfigurename}}{{\listfigurename}}}
 \@starttoc{lof}\if@restonecol\twocolumn\fi}
\def\l@figure{\@dottedtocline{1}{0em}{1.5em}}

\def\listoftables{\@restonecolfalse\if@twocolumn\@restonecoltrue\onecolumn
 \fi\section*{\listtablename\@mkboth{{\listtablename}}{{\listtablename}}}
 \@starttoc{lot}\if@restonecol\twocolumn\fi}
\let\l@table\l@figure

\renewcommand\listoffigures{%
    \section*{\listfigurename
      \@mkboth{\listfigurename}{\listfigurename}}%
    \@starttoc{lof}%
    }

\renewcommand\listoftables{%
    \section*{\listtablename
      \@mkboth{\listtablename}{\listtablename}}%
    \@starttoc{lot}%
    }

\ifx\oribibl\undefined
\ifx\citeauthoryear\undefined
\renewenvironment{thebibliography}[1]
     {\section*{\refname}
      \def\@biblabel##1{##1.}
      \small
      \list{\@biblabel{\@arabic\c@enumiv}}%
           {\settowidth\labelwidth{\@biblabel{#1}}%
            \leftmargin\labelwidth
            \advance\leftmargin\labelsep
            \if@openbib
              \advance\leftmargin\bibindent
              \itemindent -\bibindent
              \listparindent \itemindent
              \parsep \z@
            \fi
            \usecounter{enumiv}%
            \let\p@enumiv\@empty
            \renewcommand\theenumiv{\@arabic\c@enumiv}}%
      \if@openbib
        \renewcommand\newblock{\par}%
      \else
        \renewcommand\newblock{\hskip .11em \@plus.33em \@minus.07em}%
      \fi
      \sloppy\clubpenalty4000\widowpenalty4000%
      \sfcode`\.=\@m}
     {\def\@noitemerr
       {\@latex@warning{Empty `thebibliography' environment}}%
      \endlist}
\def\@lbibitem[#1]#2{\item[{[#1]}\hfill]\if@filesw
     {\let\protect\noexpand\immediate
     \write\@auxout{\string\bibcite{#2}{#1}}}\fi\ignorespaces}
\newcount\@tempcntc
\def\@citex[#1]#2{\if@filesw\immediate\write\@auxout{\string\citation{#2}}\fi
  \@tempcnta\z@\@tempcntb\m@ne\def\@citea{}\@cite{\@for\@citeb:=#2\do
    {\@ifundefined
       {b@\@citeb}{\@citeo\@tempcntb\m@ne\@citea\def\@citea{,}{\bfseries
        ?}\@warning
       {Citation `\@citeb' on page \thepage \space undefined}}%
    {\setbox\z@\hbox{\global\@tempcntc0\csname b@\@citeb\endcsname\relax}%
     \ifnum\@tempcntc=\z@ \@citeo\@tempcntb\m@ne
       \@citea\def\@citea{,}\hbox{\csname b@\@citeb\endcsname}%
     \else
      \advance\@tempcntb\@ne
      \ifnum\@tempcntb=\@tempcntc
      \else\advance\@tempcntb\m@ne\@citeo
      \@tempcnta\@tempcntc\@tempcntb\@tempcntc\fi\fi}}\@citeo}{#1}}
\def\@citeo{\ifnum\@tempcnta>\@tempcntb\else
               \@citea\def\@citea{,\,\hskip\z@skip}%
               \ifnum\@tempcnta=\@tempcntb\the\@tempcnta\else
               {\advance\@tempcnta\@ne\ifnum\@tempcnta=\@tempcntb \else
                \def\@citea{--}\fi
      \advance\@tempcnta\m@ne\the\@tempcnta\@citea\the\@tempcntb}\fi\fi}
\else
\renewenvironment{thebibliography}[1]
     {\section*{\refname}
      \small
      \list{}%
           {\settowidth\labelwidth{}%
            \leftmargin\parindent
            \itemindent=-\parindent
            \labelsep=\z@
            \if@openbib
              \advance\leftmargin\bibindent
              \itemindent -\bibindent
              \listparindent \itemindent
              \parsep \z@
            \fi
            \usecounter{enumiv}%
            \let\p@enumiv\@empty
            \renewcommand\theenumiv{}}%
      \if@openbib
        \renewcommand\newblock{\par}%
      \else
        \renewcommand\newblock{\hskip .11em \@plus.33em \@minus.07em}%
      \fi
      \sloppy\clubpenalty4000\widowpenalty4000%
      \sfcode`\.=\@m}
     {\def\@noitemerr
       {\@latex@warning{Empty `thebibliography' environment}}%
      \endlist}
      \def\@cite#1{#1}%
      \def\@lbibitem[#1]#2{\item[]\if@filesw
        {\def\protect##1{\string ##1\space}\immediate
      \write\@auxout{\string\bibcite{#2}{#1}}}\fi\ignorespaces}
   \fi
\else
\@cons\@openbib@code{\noexpand\small}
\fi

\def\idxquad{\hskip 10\p@}% space that divides entry from number

\def\@idxitem{\par\hangindent 10\p@}

\def\subitem{\par\setbox0=\hbox{--\enspace}% second order
                \noindent\hangindent\wd0\box0}% index entry

\def\subsubitem{\par\setbox0=\hbox{--\,--\enspace}% third
                \noindent\hangindent\wd0\box0}% order index entry

\def\indexspace{\par \vskip 10\p@ plus5\p@ minus3\p@\relax}

\renewenvironment{theindex}
               {\@mkboth{\indexname}{\indexname}%
                \thispagestyle{empty}\parindent\z@
                \parskip\z@ \@plus .3\p@\relax
                \let\item\par
                \def\,{\relax\ifmmode\mskip\thinmuskip
                             \else\hskip0.2em\ignorespaces\fi}%
                \normalfont\small
                \begin{multicols}{2}[\@makeschapterhead{\indexname}]%
                }
                {\end{multicols}}

\renewcommand\footnoterule{%
  \kern-3\p@
  \hrule\@width 2truecm
  \kern2.6\p@}
  \newdimen\fnindent
  \fnindent1em
\long\def\@makefntext#1{%
    \parindent \fnindent%
    \leftskip \fnindent%
    \noindent
    \llap{\hb@xt@1em{\hss\@makefnmark\ }}\ignorespaces#1}

\long\def\@makecaption#1#2{%
  \vskip\abovecaptionskip
  \sbox\@tempboxa{{\bfseries #1.} #2}%
  \ifdim \wd\@tempboxa >\hsize
    {\bfseries #1.} #2\par
  \else
    \global \@minipagefalse
    \hb@xt@\hsize{\hfil\box\@tempboxa\hfil}%
  \fi
  \vskip\belowcaptionskip}

\def\fps@figure{htbp}
\def\fnum@figure{\figurename\thinspace\thefigure}
\def \@floatboxreset {%
        \reset@font
        \small
        \@setnobreak
        \@setminipage
}
\def\fps@table{htbp}
\def\fnum@table{\tablename~\thetable}
\renewenvironment{table}
               {\setlength\abovecaptionskip{0\p@}%
                \setlength\belowcaptionskip{10\p@}%
                \@float{table}}
               {\end@float}
\renewenvironment{table*}
               {\setlength\abovecaptionskip{0\p@}%
                \setlength\belowcaptionskip{10\p@}%
                \@dblfloat{table}}
               {\end@dblfloat}

\long\def\@caption#1[#2]#3{\par\addcontentsline{\csname
  ext@#1\endcsname}{#1}{\protect\numberline{\csname
  the#1\endcsname}{\ignorespaces #2}}\begingroup
    \@parboxrestore
    \@makecaption{\csname fnum@#1\endcsname}{\ignorespaces #3}\par
  \endgroup}

% LaTeX does not provide a command to enter the authors institute
% addresses. The \institute command is defined here.

\newcounter{@inst}
\newcounter{@auth}
\newcounter{auco}
\newdimen\instindent
\newbox\authrun
\newtoks\authorrunning
\newtoks\tocauthor
\newbox\titrun
\newtoks\titlerunning
\newtoks\toctitle

\def\clearheadinfo{\gdef\@author{No Author Given}%
                   \gdef\@title{No Title Given}%
                   \gdef\@subtitle{}%
                   \gdef\@institute{No Institute Given}%
                   \gdef\@thanks{}%
                   \global\titlerunning={}\global\authorrunning={}%
                   \global\toctitle={}\global\tocauthor={}}

\def\institute#1{\gdef\@institute{#1}}

\def\institutename{\par
 \begingroup
 \parskip=\z@
 \parindent=\z@
 \setcounter{@inst}{1}%
 \def\and{\par\stepcounter{@inst}%
 \noindent$^{\the@inst}$\enspace\ignorespaces}%
 \setbox0=\vbox{\def\thanks##1{}\@institute}%
 \ifnum\c@@inst=1\relax
   \gdef\fnnstart{0}%
 \else
   \xdef\fnnstart{\c@@inst}%
   \setcounter{@inst}{1}%
   \noindent$^{\the@inst}$\enspace
 \fi
 \ignorespaces
 \@institute\par
 \endgroup}

\def\@fnsymbol#1{\ensuremath{\ifcase#1\or\star\or{\star\star}\or
   {\star\star\star}\or \dagger\or \ddagger\or
   \mathchar "278\or \mathchar "27B\or \|\or **\or \dagger\dagger
   \or \ddagger\ddagger \else\@ctrerr\fi}}

\def\inst#1{\unskip$^{#1}$}
\def\fnmsep{\unskip$^,$}
\def\email#1{{\tt#1}}
\AtBeginDocument{\@ifundefined{url}{\def\url#1{#1}}{}%
\@ifpackageloaded{babel}{%
\@ifundefined{extrasenglish}{}{\addto\extrasenglish{\switcht@albion}}%
\@ifundefined{extrasfrenchb}{}{\addto\extrasfrenchb{\switcht@francais}}%
\@ifundefined{extrasgerman}{}{\addto\extrasgerman{\switcht@deutsch}}%
}{\switcht@@therlang}%
}
\def\homedir{\~{ }}

\def\subtitle#1{\gdef\@subtitle{#1}}
\clearheadinfo
%
\renewcommand\maketitle{\newpage
  \refstepcounter{chapter}%
  \stepcounter{section}%
  \setcounter{section}{0}%
  \setcounter{subsection}{0}%
  \setcounter{figure}{0}
  \setcounter{table}{0}
  \setcounter{equation}{0}
  \setcounter{footnote}{0}%
  \begingroup
    \parindent=\z@
    \renewcommand\thefootnote{\@fnsymbol\c@footnote}%
    \if@twocolumn
      \ifnum \col@number=\@ne
        \@maketitle
      \else
        \twocolumn[\@maketitle]%
      \fi
    \else
      \newpage
      \global\@topnum\z@   % Prevents figures from going at top of page.
      \@maketitle
    \fi
    \thispagestyle{empty}\@thanks
%
    \def\\{\unskip\ \ignorespaces}\def\inst##1{\unskip{}}%
    \def\thanks##1{\unskip{}}\def\fnmsep{\unskip}%
    \instindent=\hsize
    \advance\instindent by-\headlineindent
    \if!\the\toctitle!\addcontentsline{toc}{title}{\@title}\else
       \addcontentsline{toc}{title}{\the\toctitle}\fi
    \if@runhead
       \if!\the\titlerunning!\else
         \edef\@title{\the\titlerunning}%
       \fi
       \global\setbox\titrun=\hbox{\small\rm\unboldmath\ignorespaces\@title}%
       \ifdim\wd\titrun>\instindent
          \typeout{Title too long for running head. Please supply}%
          \typeout{a shorter form with \string\titlerunning\space prior to
                   \string\maketitle}%
          \global\setbox\titrun=\hbox{\small\rm
          Title Suppressed Due to Excessive Length}%
       \fi
       \xdef\@title{\copy\titrun}%
    \fi
%
    \if!\the\tocauthor!\relax
      {\def\and{\noexpand\protect\noexpand\and}%
      \protected@xdef\toc@uthor{\@author}}%
    \else
      \def\\{\noexpand\protect\noexpand\newline}%
      \protected@xdef\scratch{\the\tocauthor}%
      \protected@xdef\toc@uthor{\scratch}%
    \fi
    \addtocontents{toc}{\noexpand\protect\noexpand\authcount{\the\c@auco}}%
    \addcontentsline{toc}{author}{\toc@uthor}%
    \if@runhead
       \if!\the\authorrunning!
         \value{@inst}=\value{@auth}%
         \setcounter{@auth}{1}%
       \else
         \edef\@author{\the\authorrunning}%
       \fi
       \global\setbox\authrun=\hbox{\small\unboldmath\@author\unskip}%
       \ifdim\wd\authrun>\instindent
          \typeout{Names of authors too long for running head. Please supply}%
          \typeout{a shorter form with \string\authorrunning\space prior to
                   \string\maketitle}%
          \global\setbox\authrun=\hbox{\small\rm
          Authors Suppressed Due to Excessive Length}%
       \fi
       \xdef\@author{\copy\authrun}%
       \markboth{\@author}{\@title}%
     \fi
  \endgroup
  \setcounter{footnote}{\fnnstart}%
  \clearheadinfo}
%
\def\@maketitle{\newpage
 \markboth{}{}%
 \def\lastand{\ifnum\value{@inst}=2\relax
                 \unskip{} \andname\
              \else
                 \unskip \lastandname\
              \fi}%
 \def\and{\stepcounter{@auth}\relax
          \ifnum\value{@auth}=\value{@inst}%
             \lastand
          \else
             \unskip,
          \fi}%
 \begin{center}%
 \let\newline\\
 {\Large \bfseries\boldmath
  \pretolerance=10000
  \@title \par}\vskip .8cm
\if!\@subtitle!\else {\large \bfseries\boldmath
  \vskip -.65cm
  \pretolerance=10000
  \@subtitle \par}\vskip .8cm\fi
 \setbox0=\vbox{\setcounter{@auth}{1}\def\and{\stepcounter{@auth}}%
 \def\thanks##1{}\@author}%
 \global\value{@inst}=\value{@auth}%
 \global\value{auco}=\value{@auth}%
 \setcounter{@auth}{1}%
{\lineskip .5em
\noindent\ignorespaces
\@author\vskip.35cm}
 {\small\institutename}
 \end{center}%
 }

% definition of the "\spnewtheorem" command.
%
% Usage:
%
%     \spnewtheorem{env_nam}{caption}[within]{cap_font}{body_font}
% or  \spnewtheorem{env_nam}[numbered_like]{caption}{cap_font}{body_font}
% or  \spnewtheorem*{env_nam}{caption}{cap_font}{body_font}
%
% New is "cap_font" and "body_font". It stands for
% fontdefinition of the caption and the text itself.
%
% "\spnewtheorem*" gives a theorem without number.
%
% A defined spnewthoerem environment is used as described
% by Lamport.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\def\@thmcountersep{}
\def\@thmcounterend{.}

\def\spnewtheorem{\@ifstar{\@sthm}{\@Sthm}}

% definition of \spnewtheorem with number

\def\@spnthm#1#2{%
  \@ifnextchar[{\@spxnthm{#1}{#2}}{\@spynthm{#1}{#2}}}
\def\@Sthm#1{\@ifnextchar[{\@spothm{#1}}{\@spnthm{#1}}}

\def\@spxnthm#1#2[#3]#4#5{\expandafter\@ifdefinable\csname #1\endcsname
   {\@definecounter{#1}\@addtoreset{#1}{#3}%
   \expandafter\xdef\csname the#1\endcsname{\expandafter\noexpand
     \csname the#3\endcsname \noexpand\@thmcountersep \@thmcounter{#1}}%
   \expandafter\xdef\csname #1name\endcsname{#2}%
   \global\@namedef{#1}{\@spthm{#1}{\csname #1name\endcsname}{#4}{#5}}%
                              \global\@namedef{end#1}{\@endtheorem}}}

\def\@spynthm#1#2#3#4{\expandafter\@ifdefinable\csname #1\endcsname
   {\@definecounter{#1}%
   \expandafter\xdef\csname the#1\endcsname{\@thmcounter{#1}}%
   \expandafter\xdef\csname #1name\endcsname{#2}%
   \global\@namedef{#1}{\@spthm{#1}{\csname #1name\endcsname}{#3}{#4}}%
                               \global\@namedef{end#1}{\@endtheorem}}}

\def\@spothm#1[#2]#3#4#5{%
  \@ifundefined{c@#2}{\@latexerr{No theorem environment `#2' defined}\@eha}%
  {\expandafter\@ifdefinable\csname #1\endcsname
  {\global\@namedef{the#1}{\@nameuse{the#2}}%
  \expandafter\xdef\csname #1name\endcsname{#3}%
  \global\@namedef{#1}{\@spthm{#2}{\csname #1name\endcsname}{#4}{#5}}%
  \global\@namedef{end#1}{\@endtheorem}}}}

\def\@spthm#1#2#3#4{\topsep 7\p@ \@plus2\p@ \@minus4\p@
\refstepcounter{#1}%
\@ifnextchar[{\@spythm{#1}{#2}{#3}{#4}}{\@spxthm{#1}{#2}{#3}{#4}}}

\def\@spxthm#1#2#3#4{\@spbegintheorem{#2}{\csname the#1\endcsname}{#3}{#4}%
                    \ignorespaces}

\def\@spythm#1#2#3#4[#5]{\@spopargbegintheorem{#2}{\csname
       the#1\endcsname}{#5}{#3}{#4}\ignorespaces}

\def\@spbegintheorem#1#2#3#4{\trivlist
                 \item[\hskip\labelsep{#3#1\ #2\@thmcounterend}]#4}

\def\@spopargbegintheorem#1#2#3#4#5{\trivlist
      \item[\hskip\labelsep{#4#1\ #2}]{#4(#3)\@thmcounterend\ }#5}

% definition of \spnewtheorem* without number

\def\@sthm#1#2{\@Ynthm{#1}{#2}}

\def\@Ynthm#1#2#3#4{\expandafter\@ifdefinable\csname #1\endcsname
   {\global\@namedef{#1}{\@Thm{\csname #1name\endcsname}{#3}{#4}}%
    \expandafter\xdef\csname #1name\endcsname{#2}%
    \global\@namedef{end#1}{\@endtheorem}}}

\def\@Thm#1#2#3{\topsep 7\p@ \@plus2\p@ \@minus4\p@
\@ifnextchar[{\@Ythm{#1}{#2}{#3}}{\@Xthm{#1}{#2}{#3}}}

\def\@Xthm#1#2#3{\@Begintheorem{#1}{#2}{#3}\ignorespaces}

\def\@Ythm#1#2#3[#4]{\@Opargbegintheorem{#1}
       {#4}{#2}{#3}\ignorespaces}

\def\@Begintheorem#1#2#3{#3\trivlist
                           \item[\hskip\labelsep{#2#1\@thmcounterend}]}

\def\@Opargbegintheorem#1#2#3#4{#4\trivlist
      \item[\hskip\labelsep{#3#1}]{#3(#2)\@thmcounterend\ }}

\if@envcntsect
   \def\@thmcountersep{.}
   \spnewtheorem{theorem}{Theorem}[section]{\bfseries}{\itshape}
\else
   \spnewtheorem{theorem}{Theorem}{\bfseries}{\itshape}
   \if@envcntreset
      \@addtoreset{theorem}{section}
   \else
      \@addtoreset{theorem}{chapter}
   \fi
\fi

%definition of divers theorem environments
\spnewtheorem*{claim}{Claim}{\itshape}{\rmfamily}
\spnewtheorem*{proof}{Proof}{\itshape}{\rmfamily}
\if@envcntsame % alle Umgebungen wie Theorem.
   \def\spn@wtheorem#1#2#3#4{\@spothm{#1}[theorem]{#2}{#3}{#4}}
\else % alle Umgebungen mit eigenem Zaehler
   \if@envcntsect % mit section numeriert
      \def\spn@wtheorem#1#2#3#4{\@spxnthm{#1}{#2}[section]{#3}{#4}}
   \else % nicht mit section numeriert
      \if@envcntreset
         \def\spn@wtheorem#1#2#3#4{\@spynthm{#1}{#2}{#3}{#4}
                                   \@addtoreset{#1}{section}}
      \else
         \def\spn@wtheorem#1#2#3#4{\@spynthm{#1}{#2}{#3}{#4}
                                   \@addtoreset{#1}{chapter}}%
      \fi
   \fi
\fi
\spn@wtheorem{case}{Case}{\itshape}{\rmfamily}
\spn@wtheorem{conjecture}{Conjecture}{\itshape}{\rmfamily}
\spn@wtheorem{corollary}{Corollary}{\bfseries}{\itshape}
\spn@wtheorem{definition}{Definition}{\bfseries}{\itshape}
\spn@wtheorem{example}{Example}{\itshape}{\rmfamily}
\spn@wtheorem{exercise}{Exercise}{\itshape}{\rmfamily}
\spn@wtheorem{lemma}{Lemma}{\bfseries}{\itshape}
\spn@wtheorem{note}{Note}{\itshape}{\rmfamily}
\spn@wtheorem{problem}{Problem}{\itshape}{\rmfamily}
\spn@wtheorem{property}{Property}{\itshape}{\rmfamily}
\spn@wtheorem{proposition}{Proposition}{\bfseries}{\itshape}
\spn@wtheorem{question}{Question}{\itshape}{\rmfamily}
\spn@wtheorem{solution}{Solution}{\itshape}{\rmfamily}
\spn@wtheorem{remark}{Remark}{\itshape}{\rmfamily}

\def\@takefromreset#1#2{%
    \def\@tempa{#1}%
    \let\@tempd\@elt
    \def\@elt##1{%
        \def\@tempb{##1}%
        \ifx\@tempa\@tempb\else
            \@addtoreset{##1}{#2}%
        \fi}%
    \expandafter\expandafter\let\expandafter\@tempc\csname cl@#2\endcsname
    \expandafter\def\csname cl@#2\endcsname{}%
    \@tempc
    \let\@elt\@tempd}

\def\theopargself{\def\@spopargbegintheorem##1##2##3##4##5{\trivlist
      \item[\hskip\labelsep{##4##1\ ##2}]{##4##3\@thmcounterend\ }##5}
                  \def\@Opargbegintheorem##1##2##3##4{##4\trivlist
      \item[\hskip\labelsep{##3##1}]{##3##2\@thmcounterend\ }}
      }

\renewenvironment{abstract}{%
      \list{}{\advance\topsep by0.35cm\relax\small
      \leftmargin=1cm
      \labelwidth=\z@
      \listparindent=\z@
      \itemindent\listparindent
      \rightmargin\leftmargin}\item[\hskip\labelsep
                                    \bfseries\abstractname]}
    {\endlist}

\newdimen\headlineindent             % dimension for space between
\headlineindent=1.166cm              % number and text of headings.

\def\ps@headings{\let\@mkboth\@gobbletwo
   \let\@oddfoot\@empty\let\@evenfoot\@empty
   \def\@evenhead{\normalfont\small\rlap{\thepage}\hspace{\headlineindent}%
                  \leftmark\hfil}
   \def\@oddhead{\normalfont\small\hfil\rightmark\hspace{\headlineindent}%
                 \llap{\thepage}}
   \def\chaptermark##1{}%
   \def\sectionmark##1{}%
   \def\subsectionmark##1{}}

\def\ps@titlepage{\let\@mkboth\@gobbletwo
   \let\@oddfoot\@empty\let\@evenfoot\@empty
   \def\@evenhead{\normalfont\small\rlap{\thepage}\hspace{\headlineindent}%
                  \hfil}
   \def\@oddhead{\normalfont\small\hfil\hspace{\headlineindent}%
                 \llap{\thepage}}
   \def\chaptermark##1{}%
   \def\sectionmark##1{}%
   \def\subsectionmark##1{}}

\if@runhead\ps@headings\else
\ps@empty\fi

\setlength\arraycolsep{1.4\p@}
\setlength\tabcolsep{1.4\p@}

\endinput
%end of file llncs.cls
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% This is LLNCSDOC.STY the modification of the
% LLNCS class file for the documentation of
% the class itself.
%
\def\AmS{{\protect\usefont{OMS}{cmsy}{m}{n}%
  A\kern-.1667em\lower.5ex\hbox{M}\kern-.125emS}}
\def\AmSTeX{{\protect\AmS-\protect\TeX}}
%
\def\ps@myheadings{\let\@mkboth\@gobbletwo
\def\@oddhead{\hbox{}\hfil\small\rm\rightmark
\qquad\thepage}%
\def\@oddfoot{}\def\@evenhead{\small\rm\thepage\qquad
\leftmark\hfil}%
\def\@evenfoot{}\def\sectionmark##1{}\def\subsectionmark##1{}}
\ps@myheadings
%
\setcounter{tocdepth}{2}
%
\renewcommand{\labelitemi}{--}
\newenvironment{alpherate}%
{\renewcommand{\labelenumi}{\alph{enumi})}\begin{enumerate}}%
{\end{enumerate}\renewcommand{\labelenumi}{enumi}}
%
\def\bibauthoryear{\begingroup
\def\thebibliography##1{\section*{References}%
    \small\list{}{\settowidth\labelwidth{}\leftmargin\parindent
    \itemindent=-\parindent
    \labelsep=\z@
    \usecounter{enumi}}%
    \def\newblock{\hskip .11em plus .33em minus -.07em}%
    \sloppy
    \sfcode`\.=1000\relax}%
    \def\@cite##1{##1}%
    \def\@lbibitem[##1]##2{\item[]\if@filesw
      {\def\protect####1{\string ####1\space}\immediate
    \write\@auxout{\string\bibcite{##2}{##1}}}\fi\ignorespaces}%
\begin{thebibliography}{}
\bibitem[1982]{clar:eke3} Clarke, F., Ekeland, I.: Nonlinear
oscillations and boundary-value problems for Hamiltonian systems.
Arch. Rat. Mech. Anal. 78, 315--333 (1982)
\end{thebibliography}
\endgroup}
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This is pdfTeX, Version 3.141592-1.40.4 (MiKTeX 2.7) (preloaded format=pdflatex 2008.9.3)  21 JUL 2009 16:47
entering extended mode
**C:/Dublin/TCD/workinprogress/0509*-*Process*Behaviour*-*formulae*versus*tests
/Draft*3/processes.sty

("C:/Dublin/TCD/workinprogress/0509 - Process Behaviour - formulae versus tests
/Draft 3/processes.sty"
LaTeX2e <2005/12/01>
Babel <v3.8h> and hyphenation patterns for english, dumylang, nohyphenation, ge
rman, ngerman, french, italian, loaded.

LaTeX Warning: You have requested package `',
               but the package provides `processes'.

Package: processes 2009/06/26 Process Class
("C:\Programmi\MiKTeX 2.7\tex\latex\amsfonts\amssymb.sty"
Package: amssymb 2002/01/22 v2.2d

("C:\Programmi\MiKTeX 2.7\tex\latex\amsfonts\amsfonts.sty"
Package: amsfonts 2001/10/25 v2.2f
\@emptytoks=\toks14
\symAMSa=\mathgroup4
\symAMSb=\mathgroup5
LaTeX Font Info:    Overwriting math alphabet `\mathfrak' in version `bold'
(Font)                  U/euf/m/n --> U/euf/b/n on input line 132.
))
("C:\Programmi\MiKTeX 2.7\tex\latex\amsmath\amsmath.sty"
Package: amsmath 2000/07/18 v2.13 AMS math features
\@mathmargin=\skip41

For additional information on amsmath, use the `?' option.
("C:\Programmi\MiKTeX 2.7\tex\latex\amsmath\amstext.sty"
Package: amstext 2000/06/29 v2.01

("C:\Programmi\MiKTeX 2.7\tex\latex\amsmath\amsgen.sty"
File: amsgen.sty 1999/11/30 v2.0
\@emptytoks=\toks15
\ex@=\dimen102
))
("C:\Programmi\MiKTeX 2.7\tex\latex\amsmath\amsbsy.sty"
Package: amsbsy 1999/11/29 v1.2d
\pmbraise@=\dimen103
)
("C:\Programmi\MiKTeX 2.7\tex\latex\amsmath\amsopn.sty"
Package: amsopn 1999/12/14 v2.01 operator names
)
\inf@bad=\count79
LaTeX Info: Redefining \frac on input line 211.
\uproot@=\count80
\leftroot@=\count81
LaTeX Info: Redefining \overline on input line 307.
\classnum@=\count82
\DOTSCASE@=\count83
LaTeX Info: Redefining \ldots on input line 379.
LaTeX Info: Redefining \dots on input line 382.
LaTeX Info: Redefining \cdots on input line 467.
\Mathstrutbox@=\box26
\strutbox@=\box27
\big@size=\dimen104
LaTeX Font Info:    Redeclaring font encoding OML on input line 567.
LaTeX Font Info:    Redeclaring font encoding OMS on input line 568.
\macc@depth=\count84
\c@MaxMatrixCols=\count85
\dotsspace@=\muskip10
\c@parentequation=\count86
\dspbrk@lvl=\count87
\tag@help=\toks16
\row@=\count88
\column@=\count89
\maxfields@=\count90
\andhelp@=\toks17
\eqnshift@=\dimen105
\alignsep@=\dimen106
\tagshift@=\dimen107
\tagwidth@=\dimen108
\totwidth@=\dimen109
\lineht@=\dimen110
\@envbody=\toks18
\multlinegap=\skip42
\multlinetaggap=\skip43
\mathdisplay@stack=\toks19
LaTeX Info: Redefining \[ on input line 2666.
LaTeX Info: Redefining \] on input line 2667.
)
("C:\Programmi\MiKTeX 2.7\tex\latex\mh\mathtools.sty"
Package: mathtools 2008/08/01 v1.06 mathematical typesetting tools (MH)

("C:\Programmi\MiKTeX 2.7\tex\latex\graphics\keyval.sty"
Package: keyval 1999/03/16 v1.13 key=value parser (DPC)
\KV@toks@=\toks20
)
("C:\Programmi\MiKTeX 2.7\tex\latex\tools\calc.sty"
Package: calc 2005/08/06 v4.2 Infix arithmetic (KKT,FJ)
\calc@Acount=\count91
\calc@Bcount=\count92
\calc@Adimen=\dimen111
\calc@Bdimen=\dimen112
\calc@Askip=\skip44
\calc@Bskip=\skip45
LaTeX Info: Redefining \setlength on input line 75.
LaTeX Info: Redefining \addtolength on input line 76.
\calc@Ccount=\count93
\calc@Cskip=\skip46
)
("C:\Programmi\MiKTeX 2.7\tex\latex\mh\mhsetup.sty"
Package: mhsetup 2007/12/03 v1.2 programming setup (MH)
)
\g_MT_multlinerow_int=\count94
\l_MT_multwidth_dim=\dimen113
)
("C:\Programmi\MiKTeX 2.7\tex\latex\amscls\amsthm.sty"
Package: amsthm 2004/08/06 v2.20
\thm@style=\toks21
\thm@bodyfont=\toks22
\thm@headfont=\toks23
\thm@notefont=\toks24
\thm@headpunct=\toks25
\thm@preskip=\skip47
\thm@postskip=\skip48
\thm@headsep=\skip49
\dth@everypar=\toks26
)
("C:\Programmi\MiKTeX 2.7\tex\latex\base\latexsym.sty"
Package: latexsym 1998/08/17 v2.2e Standard LaTeX package (lasy symbols)
\symlasy=\mathgroup6
LaTeX Font Info:    Overwriting symbol font `lasy' in version `bold'
(Font)                  U/lasy/m/n --> U/lasy/b/n on input line 47.
)
("C:\Programmi\MiKTeX 2.7\tex\latex\stmaryrd\stmaryrd.sty"
Package: stmaryrd 1994/03/03 St Mary's Road symbol package
\symstmry=\mathgroup7
LaTeX Font Info:    Overwriting symbol font `stmry' in version `bold'
(Font)                  U/stmry/m/n --> U/stmry/b/n on input line 89.
)
("C:\Programmi\MiKTeX 2.7\tex\latex\tools\enumerate.sty"
Package: enumerate 1999/03/05 v3.00 enumerate extensions (DPC)
\@enLab=\toks27
)
("C:\Programmi\MiKTeX 2.7\tex\latex\base\inputenc.sty"
Package: inputenc 2006/05/05 v1.1b Input encoding file
\inpenc@prehook=\toks28
\inpenc@posthook=\toks29

("C:\Programmi\MiKTeX 2.7\tex\latex\base\latin1.def"
File: latin1.def 2006/05/05 v1.1b Input encoding file
))
\includeproofsx=\toks30
\c@defi=\count95


! LaTeX Error: No counter 'section' defined.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help.
 ...                                              
                                                  
l.99 \newtheorem{defi}{Definition}[section]
                                           
Your command was ignored.
Type  I <command> <return>  to replace it with another command,
or  <return>  to continue without it.

\c@thm=\count96

! LaTeX Error: No counter 'section' defined.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help.
 ...                                              
                                                  
l.100 \newtheorem{thm}{Theorem}[section]
                                        
Your command was ignored.
Type  I <command> <return>  to replace it with another command,
or  <return>  to continue without it.

)
! Emergency stop.
<*> ...formulae*versus*tests/Draft*3/processes.sty
                                                  
*** (job aborted, no legal \end found)

 
Here is how much of TeX's memory you used:
 1673 strings out of 95322
 20036 string characters out of 1184006
 65614 words of memory out of 1500000
 4920 multiletter control sequences out of 110000
 3640 words of font info for 14 fonts, out of 1200000 for 2000
 14 hyphenation exceptions out of 8191
 27i,0n,24p,317b,30s stack positions out of 5000i,500n,10000p,200000b,5000s
!  ==> Fatal error occurred, no output PDF file produced!




1001 - Formulae vs tests - Technical Report/processes.sty
\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{processes}[2009/06/26 Process Class]

\RequirePackage{amssymb}
\RequirePackage{amsmath}
\RequirePackage{mathtools}
\RequirePackage{amsthm}
\RequirePackage{latexsym}
\RequirePackage{stmaryrd}
\RequirePackage{amstext}
\RequirePackage{enumerate}
%\RequirePackage{url}
\RequirePackage[latin1]{inputenc}
%\RequirePackage[T1]{fontenc}
%\RequirePackage{fancyhdr}
%\RequirePackage{float}
%\RequirePackage{vmargin}
%\RequirePackage{geometry}
%\RequirePackage{duerer}
%\RequirePackage{bookman}

%\RequirePackage{multirow}

%\RequirePackage{xcolor}
%\RequirePackage{graphicx}
%
\newtoks\includeproofsx
\includeproofsx={yes}
\edef\proofs{\the\includeproofsx}
\def\yes{yes}

\DeclareOption{noproofs}{
	\includeproofsx={no}
	\edef\proofs{\the\includeproofsx}
}

\ProcessOptions\relax

\newcommand{\leaveout}[1]{}
\newcommand{\shortproof}[2]{\ifx \proofs\yes #2 \else #1 \fi}
\newcommand{\optional}[1]{\shortproof{}{#1}}
%  \newcommand{\eqref}[1]{\emph{(\ref{#1})}}
	\newcommand{\transifx}[1]
	{\mathrel{\overset{#1}{\longrightarrow}}}
	\newcommand{\transarrow}[1]
	{\mathrel{\overset{#1}{\longrightarrow}\hspace{-3pt}{}^*}}
	\newcommand{\Trans}[1]{\mathbin{\stackrel{#1}{\Longrightarrow}}}
	%\newcommand{\transarrowbk}{\xrightarrow{\tau}{\joinrel^*}}
	%\newcommand{\transarrow}{\relbar\joinrel\transarrowbk}
	\newcommand{\Succ}[1]{\mathop{\text{Succ}}({#1})}
	\newcommand{\setof}[2]{ \{\; {#1} \;|\; {#2} \;\}}
	%\newcommand{\Trans}[1]{\mathrel{\Goesto[\raisebox{.08em}{\scriptsize$#1$}]}} % mh
	\newcommand{\mustsatisfy}{\ensuremath{\mathrel{\emph{must satisfy}}}\xspace}
	\newcommand{\maysatisfy}{\ensuremath{\mathrel{\emph{may satisfy}}}\xspace}
	\newcommand{\approxprop}{\approx_\text{prop}}
	\newcommand{\approxtest}{\approx_\text{test}}
	\newcommand{\approxmay}{\approx_\text{may}}
	\newcommand{\approxmust}{\approx_\text{must}}
	\newcommand{\rechml}{\ensuremath{\textit{recHML}}\xspace}
	\newcommand{\mayhml}{\ensuremath{\textit{mayHML}}\xspace}
	\newcommand{\musthml}{\ensuremath{\textit{mustHML}}\xspace}
	\newcommand{\Tmay}[1]{\mathop{t_{\text{may}}( #1)}}
	\newcommand{\Tmust}[1]{\mathop{t_{\text{must}}( #1)}}
	\newcommand{\phimay}[1]{\mathop{\phi_{\text{may}}( #1)}}
	\newcommand{\phimust}[1]{\mathop{\phi_{\text{must}}( #1)}}
	\newcommand{\dmnd}[1]{\langle #1 \rangle}
	\newcommand{\couple}[2]{\langle #1 \,,\, #2 \rangle}
	\newcommand{\triple}[3]{\langle #1\,,\, #2 \,,\, #3 \rangle}
	\newcommand{\bbox}[1]{[ #1 ]} %mh
	\newcommand{\rhomust}{\rho_{\scriptstyle{\textit{must}}}}
	\newcommand{\rhomin}{\rho_{\scriptstyle{\textit{min}}}}
	\newcommand{\rhomay}{\rho_{\scriptstyle{\textit{may}}}}
	\newcommand{\may}{\ensuremath{\textit{ may }}}
	\newcommand{\must}{\ensuremath{\textit{ must }}}
	\newcommand{\submay}{\sqsubseteq_{\scriptsize{\textit{may}}}}
	\newcommand{\submust}{\sqsubseteq_{\scriptsize{\textit{must}}}}
	\newcommand{\simmay}{\sim_{\scriptstyle{\textit{may}}}}
	\newcommand{\simmust}{\sim_{\scriptstyle{\textit{must}}}}
	%\newcommand{\nottrans}[1]{\mathbin{\stackrel{#1}{\not\rightarrow}}}
	%\newcommand{\trans}[1]{\xrightarrow{#1}}
	\newcommand{\trans}[1]{\mathbin{\stackrel{#1}{\longrightarrow}}} %mh
	\newcommand{\nottrans}[1]{\mathrel{\trans{#1}\hspace{-9pt}/\hspace{7pt}}}
	%\newcommand{\barra}{\; | \;}
	\newcommand{\barra}{\; \;| \; \;}  %mh
	\newcommand{\is}{\; ::= \;}
	\newcommand{\lfp}[2]{\ensuremath{\textit{min}(#1, #2)}}
	\newcommand{\gfp}[2]{\ensuremath{\textit{max}(#1, #2)}}
	\newcommand{\slfp}[3]{\ensuremath{\textit{min}_{#1}(#2, #3)}}
	\newcommand{\Acc}[1]{\ensuremath{\textit{Acc}(#1)}}
	\newcommand{\ttt}{\ensuremath{\,\text{tt}\,}}
	\newcommand{\fff}{\ensuremath{\,\text{ff}\,}}
	\newcommand{\env}{\ensuremath{\textit{Env}}}
	\newcommand{\sem}[1]{\ensuremath{\llbracket\, #1\, \rrbracket}}
	%\newcommand{\notTrans}[1]{\stackrel{#1}{\not\Rightarrow}}
	\newcommand{\notTrans}[1]{\mathrel{\Trans{#1}\hspace{-9pt}/\hspace{7pt}}}
	\newcommand{\iheq}{\mathrel{\stackrel{\scriptstyle{\text{\mbox{IH}}}}{=}}}
	\newcommand{\maymodels}{\mathrel{\models_{\scriptstyle{\text{may}}}}}

\newtheorem{defi}{Definition}[section]
\newtheorem{thm}{Theorem}[section]
\newtheorem{lem}[thm]{Lemma}
\newtheorem{claim}[thm]{Claim}
\newtheorem{prop}[thm]{Proposition}
\newtheorem{corollary}[thm]{Corollary}
\newtheorem{example}[defi]{Example}

\newtheorem{rem}[defi]{Remark}
\newenvironment{remark}{\begin{rem}}{\end{rem}\begin{flushright}$\diamond$\end{flushright}}
\newenvironment{aproof}{}{\begin{flushright}$\square$\end{flushright}}
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\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{processes}[2009/06/26 Process Class]

\RequirePackage{amssymb}
\RequirePackage{amsmath}
\RequirePackage{mathtools}
\RequirePackage{amsthm}
\RequirePackage{latexsym}
\RequirePackage{stmaryrd}
\RequirePackage{amstext}
\RequirePackage{enumerate}
%\RequirePackage{url}
\RequirePackage[latin1]{inputenc}
%\RequirePackage[T1]{fontenc}
%\RequirePackage{fancyhdr}
%\RequirePackage{float}
%\RequirePackage{vmargin}
%\RequirePackage{geometry}
%\RequirePackage{duerer}
%\RequirePackage{bookman}

%\RequirePackage{multirow}

%\RequirePackage{xcolor}
%\RequirePackage{graphicx}
%
\newtoks\includeproofsx
\includeproofsx={yes}
\edef\proofs{\the\includeproofsx}
\def\yes{yes}

\DeclareOption{noproofs}{
	\includeproofsx={no}
	\edef\proofs{\the\includeproofsx}
}

\ProcessOptions\relax

\newcommand{\leaveout}[1]{}
\newcommand{\shortproof}[2]{\ifx \proofs\yes #2 \else #1 \fi}
\newcommand{\optional}[1]{\shortproof{}{#1}}

	\newcommand{\transifx}[1]
	{\mathrel{\overset{#1}{\longrightarrow}}}
	\newcommand{\transarrow}[1]
	{\mathrel{\overset{#1}{\longrightarrow}\hspace{-3pt}{}^*}}
	\newcommand{\Trans}[1]{\mathbin{\stackrel{#1}{\Longrightarrow}}}
	%\newcommand{\transarrowbk}{\xrightarrow{\tau}{\joinrel^*}}
	%\newcommand{\transarrow}{\relbar\joinrel\transarrowbk}
	\newcommand{\Succ}[1]{\mathop{\text{Succ}}({#1})}
	\newcommand{\setof}[2]{ \{\; {#1} \;|\; {#2} \;\}}
	%\newcommand{\Trans}[1]{\mathrel{\Goesto[\raisebox{.08em}{\scriptsize$#1$}]}} % mh
	\newcommand{\mustsatisfy}{\ensuremath{\mathrel{\emph{must satisfy}}}}
	\newcommand{\maysatisfy}{\ensuremath{\mathrel{\emph{may satisfy}}}}
	\newcommand{\approxprop}{\approx_\text{prop}}
	\newcommand{\approxtest}{\approx_\text{test}}
	\newcommand{\approxmay}{\approx_\text{may}}
	\newcommand{\approxmust}{\approx_\text{must}}
	\newcommand{\rechml}{\ensuremath{\textit{recHML}}\xspace}
	\newcommand{\mayhml}{\ensuremath{\textit{mayHML}}\xspace}
	\newcommand{\musthml}{\ensuremath{\textit{mustHML}}\xspace}
	\newcommand{\Tmay}[1]{\mathop{t_{\text{may}}( #1)}}
	\newcommand{\Tmust}[1]{\mathop{t_{\text{must}}( #1)}}
	\newcommand{\phimay}[1]{\mathop{\phi_{\text{may}}( #1)}}
	\newcommand{\phimust}[1]{\mathop{\phi_{\text{must}}( #1)}}
	\newcommand{\dmnd}[1]{\langle #1 \rangle}
	\newcommand{\couple}[2]{\langle #1 \,,\, #2 \rangle}
	\newcommand{\triple}[3]{\langle #1\,,\, #2 \,,\, #3 \rangle}
	\newcommand{\bbox}[1]{[ #1 ]} %mh
	\newcommand{\rhomust}{\rho_{\scriptstyle{\textit{must}}}}
	\newcommand{\rhomin}{\rho_{\scriptstyle{\textit{min}}}}
	\newcommand{\rhomay}{\rho_{\scriptstyle{\textit{may}}}}
	\newcommand{\may}{\ensuremath{\textit{ may }}}
	\newcommand{\must}{\ensuremath{\textit{ must }}}
	\newcommand{\submay}{\sqsubseteq_{\scriptsize{\textit{may}}}}
	\newcommand{\submust}{\sqsubseteq_{\scriptsize{\textit{must}}}}
	\newcommand{\simmay}{\sim_{\scriptstyle{\textit{may}}}}
	\newcommand{\simmust}{\sim_{\scriptstyle{\textit{must}}}}
	%\newcommand{\nottrans}[1]{\mathbin{\stackrel{#1}{\not\rightarrow}}}
	%\newcommand{\trans}[1]{\xrightarrow{#1}}
	\newcommand{\trans}[1]{\mathbin{\stackrel{#1}{\longrightarrow}}} %mh
	\newcommand{\nottrans}[1]{\mathrel{\trans{#1}\hspace{-9pt}/\hspace{7pt}}}
	%\newcommand{\barra}{\; | \;}
	\newcommand{\barra}{\; \;| \; \;}  %mh
	\newcommand{\is}{\; ::= \;}
	\newcommand{\lfp}[2]{\ensuremath{\textit{min}(#1, #2)}}
	\newcommand{\gfp}[2]{\ensuremath{\textit{max}(#1, #2)}}
	\newcommand{\slfp}[3]{\ensuremath{\textit{min}_{#1}(#2, #3)}}
	\newcommand{\Acc}[1]{\ensuremath{\textit{Acc}(#1)}}
	\newcommand{\ttt}{\ensuremath{\,\text{tt}\,}}
	\newcommand{\fff}{\ensuremath{\,\text{ff}\,}}
	\newcommand{\env}{\ensuremath{\textit{Env}}}
	\newcommand{\sem}[1]{\ensuremath{\llbracket\, #1\, \rrbracket}}
	%\newcommand{\notTrans}[1]{\stackrel{#1}{\not\Rightarrow}}
	\newcommand{\notTrans}[1]{\mathrel{\Trans{#1}\hspace{-9pt}/\hspace{7pt}}}
	\newcommand{\iheq}{\mathrel{\stackrel{\scriptstyle{\text{\mbox{IH}}}}{=}}}
	\newcommand{\maymodels}{\mathrel{\models_{\scriptstyle{\text{may}}}}}

\newtheorem{defi}{Definition}[section]
\newtheorem{thm}{Theorem}[section]
\newtheorem{lem}[thm]{Lemma}
\newtheorem{claim}[thm]{Claim}
\newtheorem{prop}[thm]{Proposition}
\newtheorem{corollary}[thm]{Corollary}
\newtheorem{example}[defi]{Example}

\newtheorem{rem}[defi]{Remark}
\newenvironment{remark}{\begin{rem}}{\end{rem}\begin{flushright}$\diamond$\end{flushright}}




1001 - Formulae vs tests - Technical Report/processes.sty~
\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{processes}[2009/06/26 Process Class]

\RequirePackage{amssymb}
\RequirePackage{amsmath}
\RequirePackage{mathtools}
\RequirePackage{amsthm}
\RequirePackage{latexsym}
\RequirePackage{stmaryrd}
\RequirePackage{amstext}
\RequirePackage{enumerate}
%\RequirePackage{url}
\RequirePackage[latin1]{inputenc}
%\RequirePackage[T1]{fontenc}
%\RequirePackage{fancyhdr}
%\RequirePackage{float}
%\RequirePackage{vmargin}
%\RequirePackage{geometry}
%\RequirePackage{duerer}
%\RequirePackage{bookman}

%\RequirePackage{multirow}

%\RequirePackage{xcolor}
%\RequirePackage{graphicx}
%
\newtoks\includeproofsx
\includeproofsx={yes}
\edef\proofs{\the\includeproofsx}
\def\yes{yes}

\DeclareOption{noproofs}{
	\includeproofsx={no}
	\edef\proofs{\the\includeproofsx}
}

\ProcessOptions\relax

\newcommand{\leaveout}[1]{}
\newcommand{\shortproof}[2]{\ifx \proofs\yes #2 \else #1 \fi}
\newcommand{\optional}[1]{\shortproof{}{#1}}

	\newcommand{\transifx}[1]
	{\mathrel{\overset{#1}{\longrightarrow}}}
	\newcommand{\transarrow}[1]
	{\mathrel{\overset{#1}{\longrightarrow}\hspace{-3pt}{}^*}}
	\newcommand{\Trans}[1]{\mathbin{\stackrel{#1}{\Longrightarrow}}}
	%\newcommand{\transarrowbk}{\xrightarrow{\tau}{\joinrel^*}}
	%\newcommand{\transarrow}{\relbar\joinrel\transarrowbk}
	\newcommand{\Succ}[1]{\mathop{\text{Succ}}({#1})}
	\newcommand{\setof}[2]{ \{\; {#1} \;|\; {#2} \;\}}
	%\newcommand{\Trans}[1]{\mathrel{\Goesto[\raisebox{.08em}{\scriptsize$#1$}]}} % mh
	\newcommand{\mustsatisfy}{\ensuremath{\mathrel{\emph{must satisfy}}}}
	\newcommand{\maysatisfy}{\ensuremath{\mathrel{\emph{may satisfy}}}}
	\newcommand{\approxprop}{\approx_\text{prop}}
	\newcommand{\approxtest}{\approx_\text{test}}
	\newcommand{\approxmay}{\approx_\text{may}}
	\newcommand{\approxmust}{\approx_\text{must}}
	\newcommand{\rechml}{\ensuremath{\textit{recHML}}\xspace}
	\newcommand{\mayhml}{\ensuremath{\textit{mayHML}}\xspace}
	\newcommand{\musthml}{\ensuremath{\textit{mustHML}}\xspace}
	\newcommand{\Tmay}[1]{\mathop{t_{\text{may}}( #1)}}
	\newcommand{\Tmust}[1]{\mathop{t_{\text{must}}( #1)}}
	\newcommand{\phimay}[1]{\mathop{\phi_{\text{may}}( #1)}}
	\newcommand{\phimust}[1]{\mathop{\phi_{\text{must}}( #1)}}
	\newcommand{\dmnd}[1]{\langle #1 \rangle}
	\newcommand{\couple}[2]{\langle #1 \,,\, #2 \rangle}
	\newcommand{\triple}[3]{\langle #1\,,\, #2 \,,\, #3 \rangle}
	\newcommand{\bbox}[1]{[ #1 ]} %mh
	\newcommand{\rhomust}{\rho_{\scriptstyle{\textit{must}}}}
	\newcommand{\rhomin}{\rho_{\scriptstyle{\textit{min}}}}
	\newcommand{\rhomay}{\rho_{\scriptstyle{\textit{may}}}}
	\newcommand{\may}{\ensuremath{\textit{ may }}}
	\newcommand{\must}{\ensuremath{\textit{ must }}}
	\newcommand{\submay}{\sqsubseteq_{\scriptsize{\textit{may}}}}
	\newcommand{\submust}{\sqsubseteq_{\scriptsize{\textit{must}}}}
	\newcommand{\simmay}{\sim_{\scriptstyle{\textit{may}}}}
	\newcommand{\simmust}{\sim_{\scriptstyle{\textit{must}}}}
	%\newcommand{\nottrans}[1]{\mathbin{\stackrel{#1}{\not\rightarrow}}}
	%\newcommand{\trans}[1]{\xrightarrow{#1}}
	\newcommand{\trans}[1]{\mathbin{\stackrel{#1}{\longrightarrow}}} %mh
	\newcommand{\nottrans}[1]{\mathrel{\trans{#1}\hspace{-9pt}/\hspace{7pt}}}
	%\newcommand{\barra}{\; | \;}
	\newcommand{\barra}{\; \;| \; \;}  %mh
	\newcommand{\is}{\; ::= \;}
	\newcommand{\lfp}[2]{\ensuremath{\textit{min}(#1, #2)}}
	\newcommand{\gfp}[2]{\ensuremath{\textit{max}(#1, #2)}}
	\newcommand{\slfp}[3]{\ensuremath{\textit{min}_{#1}(#2, #3)}}
	\newcommand{\Acc}[1]{\ensuremath{\textit{Acc}(#1)}}
	\newcommand{\ttt}{\ensuremath{\,\text{tt}\,}}
	\newcommand{\fff}{\ensuremath{\,\text{ff}\,}}
	\newcommand{\env}{\ensuremath{\textit{Env}}}
	\newcommand{\sem}[1]{\ensuremath{\llbracket\, #1\, \rrbracket}}
	%\newcommand{\notTrans}[1]{\stackrel{#1}{\not\Rightarrow}}
	\newcommand{\notTrans}[1]{\mathrel{\Trans{#1}\hspace{-9pt}/\hspace{7pt}}}
	\newcommand{\iheq}{\mathrel{\stackrel{\scriptstyle{\text{\mbox{IH}}}}{=}}}
	\newcommand{\maymodels}{\mathrel{\models_{\scriptstyle{\text{may}}}}}

\newtheorem{defi}{Definition}[section]
\newtheorem{thm}{Theorem}[section]
\newtheorem{lem}[thm]{Lemma}
\newtheorem{claim}[thm]{Claim}
\newtheorem{prop}[thm]{Proposition}
\newtheorem{corollary}[thm]{Corollary}
\newtheorem{example}[defi]{Example}

\newtheorem{rem}[defi]{Remark}
\newenvironment{remark}{\begin{rem}}{\end{rem}\begin{flushright}$\diamond$\end{flushright}}
\newenvironnment{aproof}{}{\begin{flushright}$\square$\end{flushright}}
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%% Build proof tree for Natural Deduction, Sequent Calculus, etc.
%% WITH SHORTENING OF PROOF RULES!
%% Paul Taylor, begun 10 Oct 1989
%% *** THIS IS ONLY A PRELIMINARY VERSION AND THINGS MAY CHANGE! ***
%%
%%  \prooftree
%%      hyp1        produces:
%%      hyp2
%%      hyp3        hyp1    hyp2    hyp3
%%  \justifies      -------------------- rulename
%%      concl           concl
%%  \thickness=0.08em
%%  \shiftright 2em
%%  \using
%%      rulename
%%  \endprooftree
%%
%% where the hypotheses may be similar structures or just formulae.
%%
%% To get a vertical string of dots instead of the proof rule, do
%%
%%  \prooftree          which produces:
%%      [hyp]
%%  \using                  [hyp]
%%      name                  .
%%  \proofdotseparation=1.2ex         .name
%%  \proofdotnumber=4             .
%%  \leadsto                  .
%%      concl               concl
%%  \endprooftree
%%
%% Within a prooftree, \[ and \] may be used instead of \prooftree and
%% \endprooftree; this is not permitted at the outer level because it
%% conflicts with LaTeX. Also,
%%  \Justifies
%% produces a double line. In LaTeX you can use \begin{prooftree} and
%% \end{prootree} at the outer level (however this will not work for the inner
%% levels, but in any case why would you want to be so verbose?).
%%
%% All of of the keywords except \prooftree and \endprooftree are optional
%% and may appear in any order. They may also be combined in \newcommand's
%% eg "\def\Cut{\using\sf cut\thickness.08em\justifies}" with the abbreviation
%% "\prooftree hyp1 hyp2 \Cut \concl \endprooftree". This is recommended and
%% some standard abbreviations will be found at the end of this file.
%%
%% \thickness specifies the breadth of the rule in any units, although
%% font-relative units such as "ex" or "em" are preferable.
%% It may optionally be followed by "=".
%% \proofrulebreadth=.08em or \setlength\proofrulebreadth{.08em} may also be
%% used either in place of \thickness or globally; the default is 0.04em.
%% \proofdotseparation and \proofdotnumber control the size of the
%% string of dots
%%
%% If proof trees and formulae are mixed, some explicit spacing is needed,
%% but don't put anything to the left of the left-most (or the right of
%% the right-most) hypothesis, or put it in braces, because this will cause
%% the indentation to be lost.
%%
%% By default the conclusion is centered wrt the left-most and right-most
%% immediate hypotheses (not their proofs); \shiftright or \shiftleft moves
%% it relative to this position. (Not sure about this specification or how
%% it should affect spreading of proof tree.)
%%==========================================================================

\def\introrule{{\cal I}}\def\elimrule{{\cal E}}%%
\def\andintro{\using{\land}\introrule\justifies}%%
\def\impelim{\using{\Rightarrow}\elimrule\justifies}%%
\def\allintro{\using{\forall}\introrule\justifies}%%
\def\allelim{\using{\forall}\elimrule\justifies}%%
\def\falseelim{\using{\bot}\elimrule\justifies}%%
\def\existsintro{\using{\exists}\introrule\justifies}%%

%% #1 is meant to be 1 or 2 for the first or second formula
\def\andelim#1{\using{\land}#1\elimrule\justifies}%%
\def\orintro#1{\using{\lor}#1\introrule\justifies}%%

%% #1 is meant to be a label corresponding to the discharged hypothesis/es
\def\impintro#1{\using{\Rightarrow}\introrule_{#1}\justifies}%%
\def\orelim#1{\using{\lor}\elimrule_{#1}\justifies}%%
\def\existselim#1{\using{\exists}\elimrule_{#1}\justifies}

%%==========================================================================

\newdimen\proofrulebreadth \proofrulebreadth=.05em
\newdimen\proofdotseparation \proofdotseparation=1.25ex
\newdimen\proofrulebaseline \proofrulebaseline=2ex
\newcount\proofdotnumber \proofdotnumber=3
\let\then\relax
\def\hfi{\hskip0pt plus.0001fil}
\mathchardef\squigto="3A3B
%
% flag where we are
\newif\ifinsideprooftree\insideprooftreefalse
\newif\ifonleftofproofrule\onleftofproofrulefalse
\newif\ifproofdots\proofdotsfalse
\newif\ifdoubleproof\doubleprooffalse
\let\wereinproofbit\relax
%
% dimensions and boxes of bits
\newdimen\shortenproofleft
\newdimen\shortenproofright
\newdimen\proofbelowshift
\newbox\proofabove
\newbox\proofbelow
\newbox\proofrulename
%
% miscellaneous commands for setting values
\def\shiftproofbelow{\let\next\relax\afterassignment\setshiftproofbelow\dimen0 }
\def\shiftproofbelowneg{\def\next{\multiply\dimen0 by-1 }%
\afterassignment\setshiftproofbelow\dimen0 }
\def\setshiftproofbelow{\next\proofbelowshift=\dimen0 }
\def\setproofrulebreadth{\proofrulebreadth}

%=============================================================================
\def\prooftree{% NESTED ZERO (\ifonleftofproofrule)
%
% first find out whether we're at the left-hand end of a proof rule
\ifnum  \lastpenalty=1
\then   \unpenalty
\else   \onleftofproofrulefalse
\fi
%
% some space on left (except if we're on left, and no infinity for outermost)
\ifonleftofproofrule
\else   \ifinsideprooftree
        \then   \hskip.5em plus1fil
        \fi
\fi
%
% begin our proof tree environment
\bgroup% NESTED ONE (\proofbelow, \proofrulename, \proofabove,
%               \shortenproofleft, \shortenproofright, \proofrulebreadth)
\setbox\proofbelow=\hbox{}\setbox\proofrulename=\hbox{}%
\let\justifies\proofover\let\leadsto\proofoverdots\let\Justifies\proofoverdbl
\let\using\proofusing\let\[\prooftree
\ifinsideprooftree\let\]\endprooftree\fi
\proofdotsfalse\doubleprooffalse
\let\thickness\setproofrulebreadth
\let\shiftright\shiftproofbelow \let\shift\shiftproofbelow
\let\shiftleft\shiftproofbelowneg
\let\ifwasinsideprooftree\ifinsideprooftree
\insideprooftreetrue
%
% now begin to set the top of the rule (definitions local to it)
\setbox\proofabove=\hbox\bgroup$\displaystyle % NESTED TWO
\let\wereinproofbit\prooftree
%
% these local variables will be copied out:
\shortenproofleft=0pt \shortenproofright=0pt \proofbelowshift=0pt
%
% flags to enable inner proof tree to detect if on left:
\onleftofproofruletrue\penalty1
}

%=============================================================================
% end whatever box and copy crucial values out of it
\def\eproofbit{% NESTED TWO
%
% various hacks applicable to hypothesis list
\ifx    \wereinproofbit\prooftree
\then   \ifcase \lastpenalty
        \then   \shortenproofright=0pt  % 0: some other object, no indentation
        \or     \unpenalty\hfil         % 1: empty hypotheses, just glue
        \or     \unpenalty\unskip       % 2: just had a tree, remove glue
        \else   \shortenproofright=0pt  % eh?
        \fi
\fi
%
% pass out crucial values from scope
\global\dimen0=\shortenproofleft
\global\dimen1=\shortenproofright
\global\dimen2=\proofrulebreadth
\global\dimen3=\proofbelowshift
\global\dimen4=\proofdotseparation
\global\count255=\proofdotnumber
%
% end the box
$\egroup  % NESTED ONE
%
% restore the values
\shortenproofleft=\dimen0
\shortenproofright=\dimen1
\proofrulebreadth=\dimen2
\proofbelowshift=\dimen3
\proofdotseparation=\dimen4
\proofdotnumber=\count255
}

%=============================================================================
\def\proofover{% NESTED TWO
\eproofbit % NESTED ONE
\setbox\proofbelow=\hbox\bgroup % NESTED TWO
\let\wereinproofbit\proofover
$\displaystyle
}%
%
%=============================================================================
\def\proofoverdbl{% NESTED TWO
\eproofbit % NESTED ONE
\doubleprooftrue
\setbox\proofbelow=\hbox\bgroup % NESTED TWO
\let\wereinproofbit\proofoverdbl
$\displaystyle
}%
%
%=============================================================================
\def\proofoverdots{% NESTED TWO
\eproofbit % NESTED ONE
\proofdotstrue
\setbox\proofbelow=\hbox\bgroup % NESTED TWO
\let\wereinproofbit\proofoverdots
$\displaystyle
}%
%
%=============================================================================
\def\proofusing{% NESTED TWO
\eproofbit % NESTED ONE
\setbox\proofrulename=\hbox\bgroup % NESTED TWO
\let\wereinproofbit\proofusing
\kern0.3em$
}

%=============================================================================
\def\endprooftree{% NESTED TWO
\eproofbit % NESTED ONE
% \dimen0 =     length of proof rule
% \dimen1 =     indentation of conclusion wrt rule
% \dimen2 =     new \shortenproofleft, ie indentation of conclusion
% \dimen3 =     new \shortenproofright, ie
%                space on right of conclusion to end of tree
% \dimen4 =     space on right of conclusion below rule
  \dimen5 =0pt% spread of hypotheses
% \dimen6, \dimen7 = height & depth of rule
%
% length of rule needed by proof above
\dimen0=\wd\proofabove \advance\dimen0-\shortenproofleft
\advance\dimen0-\shortenproofright
%
% amount of spare space below
\dimen1=.5\dimen0 \advance\dimen1-.5\wd\proofbelow
\dimen4=\dimen1
\advance\dimen1\proofbelowshift \advance\dimen4-\proofbelowshift
%
% conclusion sticks out to left of immediate hypotheses
\ifdim  \dimen1<0pt
\then   \advance\shortenproofleft\dimen1
        \advance\dimen0-\dimen1
        \dimen1=0pt
%       now it sticks out to left of tree!
        \ifdim  \shortenproofleft<0pt
        \then   \setbox\proofabove=\hbox{%
                        \kern-\shortenproofleft\unhbox\proofabove}%
                \shortenproofleft=0pt
        \fi
\fi
%
% and to the right
\ifdim  \dimen4<0pt
\then   \advance\shortenproofright\dimen4
        \advance\dimen0-\dimen4
        \dimen4=0pt
\fi
%
% make sure enough space for label
\ifdim  \shortenproofright<\wd\proofrulename
\then   \shortenproofright=\wd\proofrulename
\fi
%
% calculate new indentations
\dimen2=\shortenproofleft \advance\dimen2 by\dimen1
\dimen3=\shortenproofright\advance\dimen3 by\dimen4
%
% make the rule or dots, with name attached
\ifproofdots
\then
        \dimen6=\shortenproofleft \advance\dimen6 .5\dimen0
        \setbox1=\vbox to\proofdotseparation{\vss\hbox{$\cdot$}\vss}%
        \setbox0=\hbox{%
                \advance\dimen6-.5\wd1
                \kern\dimen6
                $\vcenter to\proofdotnumber\proofdotseparation
                        {\leaders\box1\vfill}$%
                \unhbox\proofrulename}%
\else   \dimen6=\fontdimen22\the\textfont2 % height of maths axis
        \dimen7=\dimen6
        \advance\dimen6by.5\proofrulebreadth
        \advance\dimen7by-.5\proofrulebreadth
        \setbox0=\hbox{%
                \kern\shortenproofleft
                \ifdoubleproof
                \then   \hbox to\dimen0{%
                        $\mathsurround0pt\mathord=\mkern-6mu%
                        \cleaders\hbox{$\mkern-2mu=\mkern-2mu$}\hfill
                        \mkern-6mu\mathord=$}%
                \else   \vrule height\dimen6 depth-\dimen7 width\dimen0
                \fi
                \unhbox\proofrulename}%
        \ht0=\dimen6 \dp0=-\dimen7
\fi
%
% set up to centre outermost tree only
\let\doll\relax
\ifwasinsideprooftree
\then   \let\VBOX\vbox
\else   \ifmmode\else$\let\doll=$\fi
        \let\VBOX\vcenter
\fi
% this \vbox or \vcenter is the actual output:
\VBOX   {\baselineskip\proofrulebaseline \lineskip.2ex
        \expandafter\lineskiplimit\ifproofdots0ex\else-0.6ex\fi
        \hbox   spread\dimen5   {\hfi\unhbox\proofabove\hfi}%
        \hbox{\box0}%
        \hbox   {\kern\dimen2 \box\proofbelow}}\doll%
%
% pass new indentations out of scope
\global\dimen2=\dimen2
\global\dimen3=\dimen3
\egroup % NESTED ZERO
\ifonleftofproofrule
\then   \shortenproofleft=\dimen2
\fi
\shortenproofright=\dimen3
%
% some space on right and flag we've just made a tree
\onleftofproofrulefalse
\ifinsideprooftree
\then   \hskip.5em plus 1fil \penalty2
\fi
}
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% TCD-CS Technical Report Cover 
%
% USAGE: 
%
% * Make sure to load this package: insert 
%
%     \usepackage{tcd-cs-cover}
% 
% * Define the title, author and date of the report as usual, and set the
%   number using
%     
%     \coverNumber{TCS-CS-YYYY-NN}
%
% * To insert the cover page, call 
%
%     \makecover
% 
%   typically just before calling \maketitle
%
% * To override the title, author or date displayed on the cover page (if
%   you want them to be different from the corresponding entries on the
%   report itself), use
%
%     \coverTitle{..}
%     \coverAuthor{..}
%     \coverDate{..}
%
%   *after* \title{..}, \author{..} or \date{..}
% 
% * For two-sided articles, simply use the twoside option as per usual:
%
%     \documentclass[twoside]
%
% NOTES:
%
% * Assumes A4 page size
%
% AUTHORS:
%
%   Edsko de Vries <Edsko.de.Vries@cs.tcd.ie> 
%   Vassilis Koutavas <Vasileios.Koutavas@cs.tcd.ie>
%
% May 29, 2009
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{tcd-cs-cover}[2009/05/29]
\RequirePackage{graphicx}

\let\tcdcscover@oldtitle=\title
\let\tcdcscover@oldauthor=\author
\let\tcdcscover@olddate=\date

\def\coverTitle#1{%
  \def\tcdcscover@title{#1}
}

\def\coverAuthor#1{%
  \def\tcdcscover@author{#1}
}

\def\coverDate#1{%
  \def\tcdcscover@date{#1}
}

\def\tcdcscover@number{TCS-CS-YYYY-NN}

\def\coverNumber#1{%
  \def\tcdcscover@number{#1}
}

\def\title#1{%
  \coverTitle{#1}
  \tcdcscover@oldtitle{#1}
}

\def\author#1{%
  \coverAuthor{#1}
  \tcdcscover@oldauthor{#1}
}

\def\date#1{%
  \coverDate{#1}
  \tcdcscover@olddate{#1}
}

\newlength{\tcdcscover@width}
\setlength{\tcdcscover@width}{\paperwidth}
\addtolength{\tcdcscover@width}{-4cm}

\newlength{\tcdcscover@height}
\setlength{\tcdcscover@height}{\paperheight}
\addtolength{\tcdcscover@height}{-6cm}

\newif\iftop@           \newif\ifbot@
\def\topsmash{\top@true\bot@false\smash@}
\def\botsmash{\top@false\bot@true\smash@}
\def\smash{\top@true\bot@true\smash@}
\def\smash@{\relax\ifmmode\def\next{\mathpalette\mathsm@sh}%
        \else\let\next\makesm@sh\fi \next }
        \def\finsm@sh{\iftop@\ht\z@\z@\fi\ifbot@\dp\z@\z@\fi\box\z@}


\newcounter{tcdcscover@oldpage}

% ignore whatever margins are set and set up our own full-size A4 page
% and use Times new Roman rather than the default font
\def\tcdcscover@fullpage#1{%
  \setcounter{tcdcscover@oldpage}{\value{page}}
  \newpage{
  \pagestyle{empty}%
	\begin{flushleft}
  \phantom{ } % HACK: make the vspace do something 
  % Get to the top of the page (almost :-/)
  \vspace{-1in}%
  \vspace{-\voffset}%
  \vspace{-\topmargin}%
  \vspace{-\headheight}%
  \vspace{-\headsep}%
  % Our own top margin
  \vspace{2cm}
  % Get to the left edge of the page 
	\hspace{-1in}%
	\hspace{-\oddsidemargin}%
	\hspace{-\hoffset}%
  % Owr own left margin
  \hspace{2cm}%
  \renewcommand{\rmdefault}{ptm}\rmfamily\selectfont%
	\rlap{\botsmash{\parbox{\tcdcscover@width}{\vbox to \tcdcscover@height{#1}}}}
	\end{flushleft}
  \cleardoublepage%
  }
  \setcounter{page}{\value{tcdcscover@oldpage}}%
}

\def\tcdcscover@content{%
  \setlength{\parindent}{0pt}%
  %
	\begin{tabular}{@{}l@{\hspace{1em}}p{\paperwidth}@{}}%
	\vtop{%%
	 \vskip-2em%
	  \hbox{%%
	     \includegraphics[width=0.2\textwidth]{tcd-crest}%%
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	      }%
	 &%
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  \vspace{0.2em}
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