
An End-to-End routing protocol for Peer-to-Peer
communication in Wireless Sensor Networks

Ricardo Simón Carbajo
carbajor@cs.tcd.ie

Meriel Huggard
Meriel.Huggard@cs.tcd.ie

Ciarán Mc Goldrick
Ciaran.McGoldrick@cs.tcd.ie

Department of Computer Science, Trinity College Dublin, Ireland

ABSTRACT
Interfacing Wireless Sensor Network (WSN) technologies with
the Internet is a key requirement for making sensor data
globally available. To this end, the authors have developed
the TinyTorrents system; a peer-to-peer publishing and re-
dundancy framework for the dissemination of sensor data
in a reliable, redundant and self-consistent manner using
torrent technology. TinyTorrents utilises a reactive rout-
ing protocol for WSNs which incorporates bidirectionality,
reliability and generic communications modalities. In this
paper the routing protocol, TinyHop, is presented. Tiny-
Hop creates on-demand routes, is self managed and works
in an end-to-end fashion. Any node in the mobile environ-
ment can establish communications with, and retrieve data
from, any contactable node at any time. Thus any node
can function as a base station or sink. Mobile elements (e.g.
data mules) or static gateways can interconnect from differ-
ent parts of the network, thereby balancing the traffic load
and helping avoid network partition. The protocol has been
implemented in TinyOS 2.0.2 and simulated in TOSSIM.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Algorithms, Performance, Reliability

Keywords
TinyTorrents, TinyHop, Wireless Sensor Network, WSN,
Peer to Peer, P2P, Reactive Routing Protocol

1. INTRODUCTION
Wireless Sensor Network (WSN) technologies are driving

many of the significant advances currently being made in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MiNEMA’08, April 1, 2008 Glasgow, Scotland
Copyright 2008 ACM 978-1-60558-122-4/08/04 ...$5.00.

field of data communications. End-users of WSN technolo-
gies want their sensed data to be available in a timely, accu-
rate and secure fashion. TinyTorrents [4] has been proposed
by the authors for the reliable, redundant and distributed
dissemination of WSN data across the Internet. TinyTor-
rents exploits existing peer-to-peer (P2P) ideologies, where
data is encapsulated into torrents and spread over the net-
work in a fault-tolerant manner. In the TinyTorrents sys-
tem, data accessibility is federated and mediated according
to both device capabilities and the prevailing needs of end-
users. WSN node and network capabilities are characterised
and published, thus allowing for the creation of end-user
applications that can access, consume and aggregate data
from multiple, diverse sources. The TinyTorrents infrastruc-
ture incorporates a high reliability WSN routing layer (Tiny-
Hop) which delivers the bi-directional data communication
features required to support the TinyTorrents architecture.
TinyHop presumes that any mote can act as a gateway. Mo-
bile or static elements (like data mules [12]) which imple-
ment the TinyTorrents system can integrate with the net-
work from any location, thereby helping to balance the traf-
fic load and avoiding energy-based network partition. The
new routing protocol provides on-demand connectivity by
using local flooding techniques and it guarantees reliability
through local repair mechanisms. It can work with static
and mobile networks, is self managed and is memory effi-
cient as it tends to minimize the memory needed to perform
routing. The protocol has been implemented using TinyOS
version 2.0.2 and validated both in TOSSIM [9] and in a live
WSN testbed.

The next section of this paper provides an overview of
existing WSN reactive routing protocols. These protocols
are reviewed and classified in the context of the operational
requirements of TinyTorrents. The TinyHop protocol that
underpins TinyTorrents is then presented, and its functional
integration described. The performance of the protocol is
then evaluated and, finally, some conclusions and planned
improvements are presented.

2. ROUTING PROTOCOLS IN WSN
Features such as node mobility, energy awareness, reliabil-

ity and reactive/proactive approaches are of significance in
WSN environments and must be incorporated when design-
ing routing protocols. A variety of approaches have been em-
ployed to reduce the power consumption of both the motes
[3] and the WSN as a whole, thereby helping avoid network
partition [2].

On-Demand protocols, such as AODV (Ad-hoc On-Demand

5

Distance Vector) [10] and DSR (Dynamic Source Routing)
[6], have been used for traditional wireless ad hoc networks.
Their reactive approach is attractive as it avoids the energy-
greedy, periodic beacons used by proactive protocols. Tiny-
AODV [13] and NST-AODV (Not So Tiny AODV) [5] are
widely referenced, lightweight implementations of reactive
WSN protocols.

TinyAODV [13] was designed to implement AODV using
a small footprint. The current version (release 3) provides
for communication between any two nodes in the network.
Route Response (RREP) messages are only generated by
the destination node. The routing metric employed is the
hop count. Route errors are generated and locally broadcast
when a data message can no longer be sent over a given path.
This circumstance is detected using Link Layer Notifications
(LLN) which are not enabled by default. The packet which
initiates the route discovery process is discarded.

NST-AODV (Not So Tiny AODV) [5] is a reactive rout-
ing protocol which improves on TinyAODV at the expense
of an increase in memory storage requirements. NST-AODV
is similar to the proposed 6LoWPAN Ad Hoc On-Demand
Distance Vector Routing (LOAD) protocol [7]. Unlike Tiny-
AODV, NST-AODV uses local repair and an LLN mech-
anism is enabled by default, thereby supporting dynamic
topology networks. Routes can be repaired without source
initiated Route Discovery. RREP packets can now be gen-
erated by nodes other than the destination, leading to the
use of partial routes in the discovery process. The packet
that triggers Route Discovery is not discarded (as in Tiny-
AODV) and routes are used immediately after the path is
established. When unsuccessful link layer transmission oc-
curs, two retries are triggered. When a link failure is de-
tected the packet is buffered and transmitted if a new route
is found. The additional memory expense involved in NST-
AODV is as a result of the maintenance of two FIFO queues,
one to save packets in the discovery phase and the other to
record output packets. NST-AODV uses hop count as the
routing metric.

3. TINYHOP: PROTOCOL DESCRIPTION
TinyHop is a reactive routing protocol which aims to min-

imize the number of messages necessary to perform routing
and thus avoids the expensive (in power terms) periodic bea-
con messages of proactive routing protocols [11]. In scenarios
where zones are defined (clusters), TinyHop may be config-
ured to perform zone routing by limiting the flooding to the
local area (hops or zone/group identifier). TinyHop is reli-
able in the sense that it provides bidirectional communica-
tion between any two motes in the network - if such commu-
nication is possible. It creates bi-directional routing paths
at each discovery process thereby helping to minimise net-
work partition. It allows any mote to act as an on-demand
base station (sink) at any point in time.

In Table 1 TinyAODV, NST-AODV and TinyHop are
compared (some data is drawn from [5]). TinyHop uses
the fastest RREQ packet to establish the path, assuming
that the route created will be both hop and congestion ef-
ficient. NST-AODV improves the TinyAODV protocol by
introducing a local repair mechanism in which routes can be
repaired without source-initiated Route Discovery. TinyHop
implements a local repair mechanism which looks for alter-
native routes in the reverse phase of the Route Discovery
process; this mechanism is employed to guarantee bidirec-

Table 1: Comparison of the features of TinyAODV,
NST-AODV and TinyHop

Protocol TinyAODV NST-AODV TinyHop
Connectivity Maintenance Mechanism LLN (disabled) LLN End-to-End

RERR message Yes Yes No
Local Repair No Yes Yes

Only destination generates RREP Yes No Yes
Routing Metric Hop Count Hop Count Fastest RREQ
Precursor List No No No

Implementation Status TinyOS 1.x TinyOS 1.x TinyOS 2.x

tionality within the end-to-end route.
TinyHop uses a flooding mechanism which seeds each node

with information from the immediately previous node en
route from the origin. This helps avoid cycles. As mul-
tiple paths are not maintained in every node, memory and
power consumption overheads are reduced. In forward route
discovery, metrics such as signal strength, number of hops,
battery level and congestion level can be utilised in decid-
ing which packet should be broadcast, although by default
the metric used is based on the fastest RREQ to the desti-
nation. When the return route fails, local flooding is per-
formed. This process exploits existing neighbourhood route
information. The most suitable, valid neighbour route is se-
lected (by default this is determined from the fastest ACK
in response to the local broadcast).

TinyHop uses a flat, non-hierarchical network structure
where any node may act as router, sink or source. Each end-
to-end route between two nodes (source and destination)
is independently discovered. Every packet from a source
node is acknowledged by the destination node. This con-
trols the path flow state and ensures that only fresh, work-
ing paths are maintained within the routing tables. Explicit
acknowledgements, incorporating a dynamic backoff mech-
anism based on route reliability, are employed. Implicit ac-
knowledgements are used on reliable, well established routes.
Sequence numbers ensure that every packet is unique within
a sequence cycle and facilitate discrimination between pack-
ets with the same ID that belong to different sequence cycles.

Every mote maintains two main tables: i) the Contactable
Motes Table; a list of motes for which a route has already
been created that is utilised for sending packets to the neigh-
bour mote address with a specified packet sequence, and ii)
the Routing Table; used to perform routing for each path
(defined by its origin mote and destination mote). Every
unique table entry is defined by a receive address and se-
quence (indicating where packets are received from), and a
send address and sequence (indicating where the packets are
to be sent). The acknowledgement packets traverse the route
back to the origin mote. There is also a control field which
acts as a reset counter to indicate activity on the path.

The protocol uses the following packet types: RREQ : a
route is being requested; RREP : a response with route in-
formation is being sent back to the source; A RREP : an
acknowledgement that the RREP message was received by
the next mote en route to the source; LD RREP : when bidi-
rectionality fails, a local discovery is performed to find new
routes back to the source; ALD RREP : an acknowledgement
to the LD RREP message, confirming that the packet has
arrived at the next hop, that a bidirectional route exists and
that there is a route back to the source; RT : the packet is
traversing an existing route to the destination; A RT : an

6

acknowledgement packet for the RT message, traversing the
bidirectional route to source and confirming that the mes-
sage arrived and that the route is functional.

3.1 Protocol Phases
There are three distinct operational phases in the Tiny

Hop protocol: the Route Discovery, Route Traversal and
Route Maintenance phases.

3.1.1 Route Discovery Phase
Flooding has been employed in this protocol phase be-

cause of its inherent reliability. To minimize the number of
packets involved in the flooding process, the protocol main-
tains a short dynamic list (which acts as a filter) containing
the most recent packets received. This avoids duplicate re-
transmissions during the same flooding discovery process.

The Route Discovery phase is entered when a mote has
a packet to transmit and there is i) no route to the desti-
nation in its “Contactable Motes” table, or ii) this route is
no longer working. The packet “RREQ” contains two se-
quence numbers, one which acts as an identifier for the new
route being created, while the other is modified at each hop.
The mote sequence counter is increased for each new packet
created by that mote. TinyHop currently operates on the
basis of accepting the first arriving message and discarding
subsequent requests.

If the “RREQ” packet is not in the list of recently received
messages, a unique entry is created in the “Routing” table.
This new entry contains the address of the sender and the
sequence of the message, amongst other information. This
phase of the protocol works by linking addresses and se-
quences from the motes wishing to route through the routing
table mote. As packets flood through the network, informa-
tion on how to reach the original source node is gleaned from
them. This will be used in the acknowledgement process,
completing the “Routing” table information.

Once the first“RREQ”is received by the destination mote,
additional messages for the same route discovery process are
discarded. An “RREP” acknowledgement packet is sent to
the mote from which the first “RREQ” was received and
contains the sequence information from that first “RREQ”.
The mote receiving the “RREP” packet will then identify
the appropriate entry in the “Routing” table to route back
the packet.

Each mote receiving an “RREP” packet must reply with
an “A RREP” packet, informing it that the packet has ar-
rived successfully. Thus the “RREP” message will traverse
the route back to the source to acknowledge the original
“RREQ” message and confirm bidirectionality of the route.
When the “RREP” message arrives at the source mote, the
“Contactable Motes” table is updated.

For every“RREP”message sent back to the original source
mote, an “A RREP” acknowledgment message is expected
by each intermediary node. If this is not received within
a timeout period, the router mote assumes the packet was
not delivered and therefore bidirectionality does not exist.
In this case, a neighbourhood discovery process is launched
to identify an alternative route to the original source mote.
The mote broadcasts a message typed “LD RREP”. Neigh-
bours reply with a message typed “ALD RREP”. The mote
which started the “LD RREP” process uses the first mes-
sage received and discards the rest. In the “Routing” table,
the original forward route (source-destination) is modified

to connect with the new route. At this stage, the “RREP”
process is restarted.

A difficulty arises when “A RREP” packets are lost but
the corresponding ‘RREP” packet has been delivered suc-
cessfully. In this scenario, a local route discovery process is
launched which creates a different route from the one that
is assumed to be broken. In this situation, when the source
mote receives the “RREP”, it will presume that the route
information is valid. It will not be aware that a local route
discovery process is underway, thus making the information
in the “Routing” table invalid. This issue may be addressed
by either maintaining information in the “Routing” table
for all motes to which “RREP” packets have been sent, or
through snooping packets once an“RREP”message has been
sent. The latter approach reduces the number of messages
involved in the discovery process, but at the expense of some
additional computational cost and the interception of pack-
ets during the snooping operation. Both approaches are
valid; indeed together they create a more reliable protocol.

3.1.2 Route Traversal Phase
This phase is entered when a source mote has data to send

and there is an entry in the“Contactable Motes”table for the
destination. The routing mote searches its routing table for
the address and sequence number associated with the next
node on the route. It updates the packet to be routed with
this information and transmits it. Once the “RT” packet
reaches the destination mote, an“A RT”acknowledge packet
will traverse the route back to the source mote.

3.1.3 Maintenance Phase
This phase of the TinyHop protocol is used to keep the

number of entries in the “Routing” table within acceptable
limits. In order to optimise network performance, it is es-
sential to delete i) all entries created in the discovery phase
that have never been used, and ii) valid routes that are no
longer in use. A “Freq” field in the “Routing” table is set
to 0 when a new entry is created during the route discov-
ery phase. Every time an “RREP” or “A RT” message is
received it is incremented. If overflow of a mote’s “Routing”
table is imminent, a “cleaning” process is activated ensuring
that only frequently used routes are maintained.

4. EVALUATION
The protocol has been developed on version 2.0.2 of the

TinyOS platform [1]. The simulations presented were car-
ried out using Tossim [9, 8], a TinyOS discrete-event simu-
lator. TOSSIM simulates the micaZ motes (which utilising
the CC2420 transceiver). The Radio Propagation model em-
ployed in TOSSIM simulates the RF noise and interference
a node experiences. Signal-Noise Ratio (SNR) and Packet
Reception Rate (PRR) responses, derived from experimen-
tal data, capture interference and noise transmissions origi-
nating both within, and external to, the WSN. Behaviours
incorporated include those arising from RF shielding (utilis-
ing a variable attenuator [8]), interference bursts and other
correlated problems. The model also uses the Closest Pat-
tern Matching (CPM) algorithm to incorporate a statistical
noise behaviour derived from a noise trace (Meyer) [8]. The
Radio Propagation model ensures that the TOSSIM simu-
lations appropriately capture many of the phenomena and
effects that are experienced in a live WSN [8]. Local mobil-
ity and interference effects are implicitly incorporated in the

7

Figure 1: RTT per Packet Sequence Number for
a scalable topology (12,34,64,128) with High Link
Connectivity

model’s behaviour.
Two categories were defined to denote node connectivity

scenarios: i) High Link Connectivity (-40dBm gain between
nodes) and ii) Low Link Connectivity (-70dBm). In both
scenarios the effect of the RF model ensures that packets get
lost, thereby allowing for TinyHop’s local repair behaviours
to be executed.

Network topologies have been created for simulation and
evaluation purposes. Nodes are randomly positioned in each
topology and incorporate local mobility. Four different net-
work configurations have been generated. The smallest is a
12 node topology, with end-to-end routes typically 3-4 hops
in length. Intermediate configurations of 32 nodes (6-8 hops)
and 64 nodes (8-15 hops) culminate in a 128 node configu-
ration exhibiting end-to-end routes from 9 to 23 hops in
length. In each topology paths are established according
to scalability, with the origin node identified as node 1 and
the destination node the most remote node in each topology
(12,32,64,128).

The metric used to evaluate the different phases of the pro-
tocol was the RTT (round trip time). Here RTT is the time
taken from when a packet with a specific sequence number
is sent by a given user to when the user receives an acknowl-
edgement of its successful reception at the destination node.
For each user packet to be delivered successfully, TinyHop
may need to perform more than one phase of the protocol.
The RTT for a given packet is therefore the cumulative time
taken in each of the different phases in the protocol for the
successful transmission and acknowledgment of that packet.

For Figures 1 and 2 the New Discovery(ND) and Route
Traversal(RT) protocol phases are artificially emphasised by
setting their retransmission times to 800ms and 500ms re-
spectively. These parameters are usually governed by an
exponential backoff technique.

Simulation run length is set to 500 seconds, with 1 user
packet passed into the TinyHop routing layer every 5 sec-
onds. Each transmitted packet is 35 bytes long and TOSSIM
determines the interhop delay based on the CC2420 transceiver
data transfer rate (250Kbps) and the size of the packet.

The results presented in Figures 1 and 2 explore the scal-
ability performance of the TinyHop protocol. Figure 1’s
results are generated using high link connectivity configura-
tions (i.e. strong internode radio signals) whilst Figure 2’s
results arise from low link connectivity scenarios (i.e. weaker
internode radio signals).

A careful examination of the RTT in every phase of the
protocol shows how scalability affects the route discovery
phase and local repair latency. The different phases of the
TinyHop protocol are: ND (New Discovery) represents a

Figure 2: RTT per Packet Sequence Number for a
scalable topology (12,34,64,128) with Low Link Con-
nectivity

new route discovery phase, LR (Local Repair) identifies that
there has been a local repair within the route discovery
phase, RT (Route Traversal) is when a packet is transmit-
ted using a path and an acknowledgement is received, RTF
(Route Traversal Failure) identifies that an RT packet has
been resent as an acknowledgement was not received, RTM
(Maximum Route Traversal Failure) indicates that the max-
imum attempts to resend an RT packet has been reached and
NDM (New Discovery after Maximum RTF) is when a new
route discovery is launched to find an alternative route.

In Figures 1 and 2, it can be seen that the RTT falls
within determinable ranges. As expected the average RTT
increases as longer paths are created with increases in topol-
ogy sizes. Figures 1 and 2 demonstrate how the level of link
connectivity impacts on connection reliability and protocol
performance. For instance, it is clear that TinyHop offers
better performance in low mobility, or near static, config-
urations. This is as expected from a reactive protocol. In
low link connectivity scenarios (Figure 2), in which greater
mobility is present, TinyHop executes more protocol phases
to deliver a packet (e.g. RT retransmissions, new discovery
process and local repair). Topological scalability mainly af-
fects the reliability of the end-to-end communication - the
RTT level in the 128 nodes topology is higher as the path is
longer and more retransmissions are employed.

The protocol overhead when sending and receiving has
also been evaluated. In Table 2 the same path, with ori-
gin set to node 1 and destination set to node 12, is discov-
ered for all different scalable scenarios (12,32,64,128). This
table highlights the overhead amplification factor that re-
sults from increasing the number of nodes in the evaluation
scenario. Table 3 summarises the overhead information as-
sociated with Figures 1 and 2. In these configurations the
origin is always node 1 and the destination is the most dis-
tant node in each of the scenarios (12,32,64,128). Finally,
the impact of multiple distinct communications simultane-
ously traversing different paths in a 64 nodes scenario with
low link connectivity is shown in Table 4. Comparing data
from Tables 2 and 3, it is clear how scalability and link
connectivity directly affect the overhead accruing to both
received and sent packet counters. The topological scenario,
link connectivity and discovered path length proportionately
affect the number of broadcast and unicast packets lost. In
low connectivity, or high local mobility, scenarios, routes
may not exist for periods of time and the destination node
may be unreachable (see Table 3, 128/L column). On the
other hand longer paths (see Table 3 with higher number of
hops) increase the number of packets received by the desti-
nation (RT received) as retransmissions and alternate route

8

Table 2: Topology Scalability: predetermined origin
and destination nodes (1->12)

Nodes/Connectivity(High|Low) 12/H 12/L 32/H 32/L 64/H 64/L 128/H 128/L
Overhead Sent 918 1030 892 1279 934 1056 1193 1704

Overhead Received 3475 4293 4814 5703 4195 5542 5127 6923
Lost Packets(Broad/Unicast) 5b/23u 34b/45u 26b/19u 208b/58u 55b/20u 62b/50u 193b/23u 580b/57u

Avg. Num. Hops 4 4 4 5 4 4 4 5
Num. RT send 99 99 99 98 99 99 99 99

Num. RT received 107 117 104 112 105 116 111 125
Num. RT ack 98 96 99 92 99 99 98 99

Max. Routing Table Size 2 4 1 8 1 1 2 5

Table 3: Topology Scalability: different paths: 12
Nodes (1->12), 32 Nodes (1->32), 64 Nodes (1-
>64), 128 Nodes (1->128)

Nodes/Connectivity(High|Low) 12/H 12/L 32/H 32/L 64/H 64/L 128/H 128/L
Overhead Sent 919 1030 2175 3480 4564 9728 12551 22663

Overhead Received 3475 4293 8477 13280 17076 33292 45118 73805
Lost Packets(Broad/Unicast) 5b/23u 34b/45u 111b/45u 933b/163u 405b/78u 3946b/296u 3551b/174u 12548b/535u

Avg. Num. Hops 4 4 8 8 15 15 25 23
Num. RT sent 99 99 99 99 99 96 99 89

Num. RT received 107 117 117 121 118 99 127 66
Num. RT ack 98 96 95 24 93 54 71 21

Max. Routing Table Size 2 4 5 31 8 >50 35 >50

discoveries occur more often for the same packet sequence.
The“RT ack”metric gives an insight into the number of user
sequence packets successfully delivered. “RT sent” measures
the number of user packets sent. Thus the number of route
discoveries launched can be gauged by the difference be-
tween the two numbers. These discovery processes mainly
arise from link connectivity issues along the route, but are
also influenced by the number of hops which affects the de-
livery ratio and the number of route discovery phases needed
(see Table 3, columns 64/L and 128/L). Contrasting the dif-
ferent link connectivity scenarios, it can be concluded that
TinyHop is more sensitive (in terms of performance) to con-
nectivity than path length. This is further evident in the
number of routing tables entries, which increase with lower
connectivity as more route discovery phases are performed.
As expected, multiple paths created at the same time (see
Table 4) also increase the overhead, in addition to the num-
ber of routing entries in the nodes.

5. CONCLUSIONS
TinyHop, a reactive routing protocol for end-to-end com-

munication between wireless sensor network nodes, is pre-
sented. The protocol is purposed for applications employing
a peer-to-peer paradigm but has much broader applicability.
TinyHop seeks to minimize overheads in the communication
process while offering reliability of packet delivery in a Peer-
to-Peer environment. It utilises a local repair mechanism to
achieve bidirectionality within the route discovery process.
TinyHop has been implemented in TinyOS 2.x for micaZ
motes (utilising the CC2420 radio transceiver). TinyHop is
currently being extended to utilise a broader range of rout-
ing metrics, such as power consumption and link quality,
and is being deployed on a live testbed.

Acknowledgement
This publication has emanated from research conducted with
the financial support of Science Foundation Ireland.

Table 4: Topology Scalability: multiple origin and
destination nodes: multiple paths.

Multipath (High Connectivity,64 Nodes) 1 Path (2->59) 2 Path (2->59)|(26->54) 3 Path (2->59)|(26-54)|(19-44)
Overhead Sent 3235 4584 7845

Overhead Received 13897 19855 31540
Lost Packets (Broad/Unicast) 333b/57u 325b/82u 1070b/176u

Avg. Num. Hops 11 11|7 11|8|7
Num. RT sent 99 99|99 99|99|99

Num. RT received 113 117|114 118|107|126
Num. RT ack 93 94|99 88|95|97

Max. Routing Table Size 8 7 22

6. REFERENCES
[1] TinyOS. Alliance TinyOS version 2.x, December 2007.

http://www.tinyos.net/tinyos-2.x/.

[2] J. Chang and L. Tassiulas. Maximum lifetime routing
in wireless sensor networks. IEEE ACM T Network,
12(4):609–619, 2004.

[3] J. Xu, D. A. Sumy, B. Vojcic. An overview of routing
protocols for Mobile Ad Hoc Networks. In Ultra
Wideband Wireless Communication, 341–427. 2006.

[4] K. Fritsche. TinyTorrent: Combining BitTorrent and
SensorNets. The University of Dublin, Trinity College,
Dublin, Ireland, Tech. Rep. TCD-CS-2005-74, 2005.

[5] C. Gomez, P. Salvatella, O. Alonso, and J. Paradells.
Adapting AODV for IEEE 802.15.4 Mesh Sensor
Networks: Theoretical discussion and performance
evaluation in a real environment. In WOWMOM ’06:
Proc. 2006 Int. Symp. on World of Wireless, Mobile
and Multimedia Networks, 159–170, Washington, DC,
USA, 2006. IEEE Computer Society.

[6] D. Johnson and D. Maltz. Dynamic Source Routing in
Ad Hoc Wireless Networks. Mobile Computing,
353(153-181):152, 1996.

[7] K. Kim, S. Park, G. Montenegro, and S. Yoo.
6LoWPAN Ad Hoc On-Demand Distance Vector
Routing (LOAD).
draft-daniel-6lowpan-load-adhoc-routing-01, IETF, 7,
2005.

[8] H. Lee, A. Cerpa, and P. Levis. Improving Wireless
Simulation through Noise Modeling. Proc. of the 6th
Int. Conf. on Information Processing in Sensor
Networks, 21–30, 2007.

[9] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM:
Accurate and Scalable Simulation of entire TinyOS
Applications. Proc. 1st Int. Conf. on Embedded
Networked Sensor Systems, 126–137, 2003.

[10] C. Perkins and E. Royer. Ad-Hoc On-demand
Distance Vector Routing. Proc. of the 2nd IEEE
Workshop on Mobile Computing Systems and
Applications, 2:90–100, 1999.

[11] V. Raghunathan and C. Srivastava. Energy-aware
Wireless Microsensor Networks. IEEE Signal Proc
Mag, 19(2):40–50, 2002.

[12] R. Shah, S. Roy, S. Jain, and W. Brunette. Data
MULEs: Modeling and analysis of a three-tier
architecture for sparse sensor networks. Ad Hoc
Networks, 1(2-3):215–233, 2003.

[13] Tymo source code repository. Tymo: DYMO
implementation for TinyOS, December 2007.
http://tymo.sourceforge.net.

9

