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Abstract

The Model-to-Model (M2M) transformation stage in a
Model-Driven Engineering (MDE) tool chain is used to
bridge the large semantic gap between problem-domain ab-
stractions and software artefacts. This transformation is
typically specified in a closed, monolithic way. Since no
two systems have identical requirements, some work has
been done to create explicit support for customisation of the
transformation process based on functional requirements.
The same is not true for non-functional requirements.

The contribution of this paper is a customizable M2M
transformation process that takes as an input the users pri-
orities, in terms of non-functional properties, to select be-
tween design trade-offs in the transformation. These trade-
offs are expressed as contrasting architectural styles, which
describe common patterns of interactions and constraints
with well understood non-functional implications. The tar-
get of the M2M transformation is an Architecture Descrip-
tion Language (ADL) that can be used to express styles.
Model checking tools can be used to ensure that styles are
adhered to during the entire MDE process. This early work
focuses on describing contrasting architectural styles that
address distribution issues, such as fault tolerance.
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1. Introduction

The goal of a Domain-Specific Modelling Language
(DSML) is to allow the system being designed to be
described using abstractions and notation familiar to the
domain expert, and to hide software design issues. A
Model-Driven Engineering tool chain can then be used
to (fully or partially) automate the generation of software
artefacts. When there is a large semantic gap between
problem domain abstractions and software artefacts, a
M2M transformation stage is essential to bridge the gap.
In MDA terminology, this transformation converts a
platform-independent model (PIM) to a platform-specific
model (PSM) [10], where the PIM is the model expressed
in the DSML. The PIM and PSM conform to source and
target metamodels respectively. The value of the PSM is
twofold: firstly, it facilitates analysis, communication and
understanding of the system design at a higher level than
code. Secondly, in the transformation from PSM to code,
the PSM can act as a PIM (independent of programming
language abstractions), allowing multiple mappings from
model to code. This makes the approach more flexible and
more easily adapted to the ‘next big thing’ in programming
models.

Typically, M2M transformations are specified in a
closed manner. Viewing M2M transformations as pattern
matching processes, a given source pattern is converted
into a corresponding target pattern according to fixed
rules. Conceivably, there are situations where different
target patterns are suitable e.g. in different deployment
environments. Some work in the Product-Line Engineering
community using MDE techniques has addressed the
modelling of variants, allowing instance models to select
between functional alternatives (e.g. 2-door or 4-door
variants of a control unit) [11]. While this approach
provides a mechanism for modelling variability based
on functional requirements, no such support exists for
customisation based on non-functional requirements. There
are two primary reasons why such a mechanism is useful.
Firstly, each instance of a software family will have similar
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but different non-functional requirements. For example, in
a family of driver information systems, a driver warning
system should be optimised for performance, while a
real-time traffic data system that collects data from many
vehicles should be optimised for scalability. Secondly, a
system that is intended to be deployed to different platforms
requires optimisations that suit the underlying software and
hardware capabilities. For example, deployment in a sensor
network would apply more stringent resource constraints
than a web application.

In our proposed approach, the target metamodel is an
Architecture Description Language (ADL) and the PSM
is an architectural description of the modelled software
system, expressed in the ADL. We believe there are a
number of benefits to this approach. ADLs provide a
notation that allows the system to be visualized at different
levels of detail. They are based upon precise semantics,
forcing often tacit design decisions to be explicitly ad-
dressed, avoiding vague descriptions that lead to difficulties
and inconsistencies in the mapping to code. Finally, a
combination of powerful existing model checking tools for
ADLs and a round-trip engineering (model-to-code and
code-to-model) infrastructure could be used to ensure code
modifications during development and maintenance do not
violate initial design constraints.

An architectural description consists of the components,
their interfaces, the connectors and the overall configura-
tion of the system. Architectural styles place constraints on
one or many of these elements, in order to induce certain
desired properties. For example, the loose coupling of com-
ponents in the pipe and filter style makes the system more
extensible and facilitates reuse. Very different styles, how-
ever, frequently offer similar benefits and the exact effect
of applying the style is often difficult to quantify. For ex-
ample, consider the styles pipe and filter and event-based
integration. Both are widely agreed to facilitate reuse, but it
is difficult to say which style is better at facilitating reuse.
This makes the automated selection of software architecture
styles from domain-specific models more difficult.

Fortunately, a new style can be formed simply by adding
a software architecture constraint to an existing style. It is
thus possible to draw a derivation tree with the null style
as the root, with each child node adding a constraint to its
parent node [2]. A style can then be described as having
non-functional implications relative to its parent, or another
node at the same level of the tree. For example, client-
cache-stateless-server adds a caching mechanism to the
client-stateless-server style. Relative to its parent, it has the
benefits of improving the performance from the perspective
of the user, and using less bandwidth, while it requires more
disk space and, because of the extra cache-checking stage,

has a less predictable latency (undesirable if real-time was
a non-functional requirement). Identifying clear design
trade-offs is thus much easier when using closely-related
styles. In the approach outlined in this paper, assertions
can be made about the non-functional properties (NFPs)
of design trade-offs, as the choice at each trade-off point
involves applying one or the other closely-related style.
More detail on the approach is given in Section 3.

The remainder of the paper is structured as follows. Sec-
tion 2 presents the related work. Section 3 describes the pro-
posed approach to customisation of M2M transformations
based on non-functional requirements. Section 4 briefly in-
troduces a few ADLs that were considered for this project,
then describes the application of the chosen ADL to describ-
ing two simplified styles. Section 5 describes the process
of creating the customisable M2M transformation from the
perspective of the developer. Finally, Section 6 provides a
summary and an overview of planned future work.

2. Related work

The related work can be separated into two cate-
gories: model-driven approaches that provide explicit
support for variability at the modelling stage, and software
architecture-based research that seeks to automate or
guide the selection of architectural styles. In the MDE
community, a number of tools are beginning to emerge
that support Product-Line Engineering. A product line is
described using a model with a set of variation points; an
instantiation of the model thus describes a variant. The
AutoFOCUS tool [11] provides its own component-based
metamodel and a variability metamodel. Product lines are
modelled by “explicitly combining the concepts” from the
two metamodels, so a model contains elements such as
component, port and state, as well as alternative and
variation point. AutoFOCUS allows a product line to
be modelled clearly and intuitively and provides a useful
means of describing variants. Combining abstractions
based on components, state-machines (state, transition)
and product lines produces an amorphous model that may
be difficult to analyse. This combination also involves
weakening the semantics of the AutoFOCUS metamodel
e.g. a port may be linked to several channels from different
alternatives. The most obvious deficiency, however, is
that it provides no explicit support for variability based on
non-functional properties.

openArchitectureWare (oAW) [4] takes an aspect-based
approach to software product lines, allowing the description
of variants of M2M transformations or code generation
templates. Selection of a variant can be done using a
plaintext file (with a plus or minus in front of a variation
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point/aspect to signal its inclusion or non-inclusion) or can
be based on more sophisticated input from a variant man-
agement tool. oAW itself is not aware of mutually exclusive
(either/or) variants and also provides no information on the
non-functional implications of applying an variant. Finally,
it makes a distinction between ‘positive’ and ‘negative’
variability (adding and removing model elements or code),
requiring the user to learn two separate mechanisms to
model a product line.

In the Software Architecture community, numerous ap-
proaches attempt to derive software architecture specifica-
tions, or select suitable architectural styles based on the
structured description of requirements. Grau and Franch
[3] use a goal-oriented modelling language, called the i*
framework, to model both requirements and architectures.
i* provides guidelines for the generation of alternative ar-
chitectures, and some metrics for analysing their suitability,
especially in terms of coupling and cohesion. The use of
the same language for requirements and architecture is con-
fusing, as they address quite different concepts. The actor
(use-case-like) style of modelling architecures is informal
and unlikely to be suitable for analysis. It is also not clear
to what extent the selection of alternative architectures is
automated or guided.

Navarro et al [9] describes the addition of MDE
tool-support to ATRIUM, an aspect-oriented software
development methodology that, among other things, seeks
to automate the generation of prototypical architectures
from a set of ‘aspectual scenarios’. The tool uses a UML
2.0 profile to extend Sequence diagrams to model scenarios,
and these are transformed using the ModelMorf tool [13]
with implicit traceability support. It is questionable whether
the diagrams created at the ‘scenario environment’ stage are
rich enough to generate software architectures from. Also,
there is no explicit support for architectural alternatives,
and the use of an AOSD methodology is enforced. As
the description of the requirements is independent of
a domain-specific language, the mappings to software
architectures are necessarily generic and less likely to
be suitably optimised for their target environment. Our
approach also seeks to place as few constraints as possible
on the systems development life cycle, and is not dependent
on a particular requirements specification methodology.

3. Customisable transformation

This section outlines the MDE tool chain and workflow
proposed in this paper (see Figure 1). In our proposed
approach, the domain expert creates a domain-specific
model of the system, which conforms to a DSML. A
user (who may or may not be the domain expert) chooses

between a number of design trade-offs, expressed in terms
of non-functional properties, which forms the NFP policy
specification. This model (DSM) and specification are
input into the M2M transformation engine, where the NFP
policy is used to select between a number of trade-offs in
the transformation. The output of this stage is a software
architecture description which conforms to an ADL. This
description can then be used to generate software arte-
facts (e.g. code, CORBA Component Model deployment
descriptors, Web Service Description Language) at the
model-to-text (M2T) stage. While supported by this
approach, mappings to multiple platforms and round-trip
engineering are outside the scope of this paper.

The M2M transformation developer has access to a
repository of architectural styles in the form of reusable
component and connector types. These are used while
specifying the M2M transformation, to create the patterns
in the target model. Section 5 describes in more detail what
the customisable transformation specification might look
like in a declarative M2M language. The developer has the
option to reuse these styles without modification, use inher-
itance to extend existing styles or develop target patterns
that conform to no style. The M2M developer specifies
trade-off (variability) points, where complementary styles
can be applied (to provide the same functional behaviour)
depending on the non-functional priorities of the system.
A model checker is applied to the M2M specification to
verify that each style has been applied correctly and that
each trade-off choice leaves the system in a consistent
state. When this is the case, the non-functional implications
associated with the contrasting styles are reflected in
additional options in the NFR policy specification. For
example, in a trade-off between Client-Stateless-Server
and Remote Session, the policy specification will show the
options Scalability Vs. Simplicity of Client.

Note that this methodology does not dictate how styles
are collected in the repository, and how it is verified that
they offer the non-functional properties that are associated
with them. Also, complementary styles need to be chosen
that have non-functional implications relative to each other.
Future work will focus on not just the non-functional impli-
cations but also the applicability of styles. While the NFPs
related to a style are true in general, there are functional
characteristics of systems that often make the application of
a style unsuitable. For example, it is generally agreed that
the pipe and filter style is unsuitable for systems that have
frequent user interaction.
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Figure 1. Proposed MDE Tool chain

4. Software architecture and style description

4.1 Choice of ADL

An ADL is required to provide explicit support for
modelling components, their interfaces, connectors and
configurations. Component configuration should also
support hierarchy, to handle models of anything but the
most trivial systems. Many ADLs are tightly coupled to the
platform that they were developed to describe. These have
been classified as implementation constraining [7]. As our
approach aims at targeting multiple platforms, it requires a
non-implementation constraining ADL. Explicit support for
software architecture styles is also required. Finally, precise
behavioural semantics are necessary for facilitating analysis
as well as capturing all the behaviour that a DSML specifies.

With these criteria in mind, three of the most widely
used ADLs were considered: ACME [12], Rapide [6] and
WRIGHT [1]. Rapide is a popular ADL, which has been
used to model numerous real-world system and supports di-
rect simulation of its specifications. It is based on poset se-
mantics, with semantics definable for both components and
connectors and is implementation-independent. Connectors
are not first-class entities and are specified in-line, so are not
named or reusable. Configuration is likewise done inline,
which raises issues of scalability, and there is no support for
styles.

ACME was initially designed as an architecture in-
terchange language, and supported the lowest common
denominator of other ADLs. It thus supports compo-
nents, connectors and hierarchical configurations. It is
implementation-independent and has been extended to ex-
plicitly support styles [8]. While its simplicity is appealing,
it lacks the semantics to be applicable to every domain.
Despite this, it has good tool support, including analysis
tools.

The WRIGHT ADL supports the description of compo-
nents, connectors and configurations using CSP-like seman-
tics. It is non-implementation constraining and has explicit
support for styles with both structural and behavioural in-
variants. WRIGHT thus satisfies all of the requirements
stated above, and was selected for this initial study. How-
ever, it has not been previously used to generate software
artefacts.

4.2. Design trade-off case study

This section describes two complementary styles of
replication, active and passive, and describes their structural
invariants using WRIGHT. This case study assumes there
is a model element in the DSML representing a server
structure that requires replication. This model element can
be mapped to either of the replication styles depending
on the desired non-functional properties of the modelled
system. In the passive replication style, at any time there is
one primary replica manager that handles communication
to all front-ends. When the primary replica manager
completes the operation, it sends a copy of the updated data
to all the backups. If the primary fails, one of the backups
is then promoted to act as the primary. In the active repli-
cation scheme, front-ends multicast their request to every
replica manager. Replica managers play equivalent roles,
processing the request independently but also identically.
If one crashes, there is no impact on performance as the
remaining managers can still respond. Passive and active
replication are illustrated in Figure 2.

These two styles exhibit very different non-functional
properties. Active replication can handle f response failures,
as long as there are 2f + 1 replica managers, the passive
scheme cannot handle response failures, as there is only
one responder (the primary replica manager). The active
scheme also usually responds quicker, as there are fewer
interactions before a response is sent. It also experiences
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no ‘downtime’ in the event of a crash failure, with its
disadvantage being that it requires more processing power
and space. The trade-off could be summarised, in terms of
non-functional properties: Performance and Availability
(Active) versus Cost (Passive). In order for these styles
to be used in the customisable M2M transformation, it is
necessary to express their invariants using WRIGHT. In this
simplified example, the details of group communication and
failure models are overlooked and the structural invariants
will be used only. The invariant for passive replication is
that all front-ends connect to the same replica manager. For
active replication, the invariant is that each front-end con-
nects to all of the replica managers. Assuming Components
FrontEnd and ReplicaManager have already been defined,
we describe the connector RequestResponse that will be
used to connect FrontEnds and ReplicaManagers. Note
that passive and active replication actually require different
connectors in WRIGHT, which could both inherit from
the generic RequestResponse connector. This connector
description is used for illustration purposes only:

Connector RequestResponse

Role FE = r̄equest → response → FE u
∮

Role Server = request → r̄esponse → Server ]

∮
Glue = FE.request → S̄erver.request → Glue

Server.response → F̄E.response → Glue

]

∮
The roles describe the pattern of interaction required of the two

components attached to the connector. The glue indicates how
the behaviour of the roles corresponds, and represents a full be-
havioural specification of the connector. The FE role initiates
the request (indicated by the overbar) and observes a response.
It then makes an internal choice (indicated by the u symbol) be-
tween making another request or successfully terminating (

∮
). An

internal choice is a choice made without consulting the environ-
ment, indicating that clients decide when to initiate a request. The
second role observes the request and initiates a response. It then
makes an external choice (]) between handling another request
or successfully terminating. This external choice means that the
server must react to its environment (the client), and handle re-
quests when needed. The active replication style constraint can
then be expressed thus:

∀comp : Components | Type(comp) = ReplicaManager;

∃conn : Connectors | Type(conn) = RequestResponse

• r : Role; p : Port | ((comp, p)(conn, r)) ∈ Attachments

which states that every component of the type ReplicaManager
is attached to a connector of type RequestResponse. Attachments

is the set of all attachments in the configuration. Attachments are
always expressed as a pair of pairs ((Component, Port)(Connector,
Role)). A port of a component indicates an interaction that it can
take part in. A component also includes a full behavioral specifica-
tion, like Glue called Computation. This must match the behaviour
specified in the Role of the Connector for the attachment to be
valid. The passive replication style constraint can be expressed as:

∃primaryRM :

Components | Type(primaryRM) = ReplicaManager•
∀conn : Connectors | Type(conn) = RequestResponse;

r : Role, p : Port | ((primaryRM, p)(conn, r))

∈ Attachments

which states that there exists a component of the type Repli-
caManager that is attached to every RequestResponse connector.
When these styles are added to the style repository, they are associ-
ated with the non-functional implications which they have relative
to their contrasting style (see Figure 5).

5. Specifying customisable transformations

The previous section showed how software architectures and
styles are described in the WRIGHT ADL. This section describes
how they are used to create customisable transformations. Figure
3 illustrates how a transformation might be specified in a declar-
ative M2M language. The either/or trade-off points behave like
if/else constructs in a programming language, allowing multiple
or options to be connected. In specifying the consequent patterns
in ADL, the developer can reuse the pre-specified component and
connector types available (e.g. ReplicaManager and RequestRe-
sponse above).

Checking and compiling of the specification then occurs in
three stages. Firstly, the transformation is checked that it is valid
according to the rules of the M2M language. Secondly, each
consequent pattern must, when applied, describe a consistent
configuration. For example, the interaction (Computation in
WRIGHT) that the component supports must match one of the
roles specified in the connector. The WRIGHT ADL prescribes
how this checking can be done. Finally, the developer can
choose to check either/or consequent patterns for conformity to
contrasting architectural styles. If both patterns conform to their
respective styles, the non-functional implications associated with
the styles are then reflected in additional options in the user policy
specification.

Supporting trade-offs in M2M transformations requires a
small syntax extension to existing languages. Figure 4 shows an
ATLAS transformation language (ATL) [5] rule that specifies a
transformation from a model element conforming to the DWS
metamodel to a group of model elements in the WrightADL
metamodel. The code after the from keyword specifies the
antecedent pattern, which in this case is a ContextElement with a
boolean attribute requiresReplication set to true. The consequent
pattern (after the to keyword), creates seven model elements
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Figure 2. Passive (left) and Active (right) Replication

Figure 3. Customisable Model-to-Model Transformation

that create a configuration that meets the constraints imposed
by the passive replication style. The rule is applied only once,
and in natural language states that ‘if any ContextElement is
encountered that requires replication, create a configuration that
provides replication functionality in the software architecture.’
Three components of type ReplicaManager are created. One
of these (named PrimaryRM) is connected directly to the front
end using a connector of type RequestResponse. The two other
replica managers (backupRM1 and backupRM2) are connected
to the primary replica manager only, through connectors of type
SynchroniseRM. The component FrontEnd is created in this
example rule for illustration purposes only, and in a complete
transformation specification would probably be created in another
rule. The definition of the complementary rule replicatedCon-
text2ActiveReplication is omitted here for the sake of brevity.

This example demonstrates that existing transformation lan-
guage rules convert one antecedent pattern to one consequent pat-
tern. However, an extension is required to support selection be-
tween consequent patterns based on an input NFP policy speci-
fication. This example also demonstrates that the transformation
can be defined concisely and largely in a declarative manner, with
the complex formal specification of component and connector be-
haviour contained separately in the ADL repository, only being re-
ferred to here using their type name. Once the ADL type has been
defined in the repository, it can be completely reused in multiple

transformation rules.
Figure 5 shows how the active replication style might be rep-

resented in the style repository. The invariant is described in both
natural language and using the preferred ADL. The non-functional
implications of applying a style are always described relative to a
direct parent or sibling in the tree of styles. In this case, Active
and Passive Replication are siblings in the tree of data replication
styles. Non-functional implications expressed are either positive
or negative, indicated by a plus or minus sign.

6. Summary and future work

This paper proposed a novel MDE toolchain based around a
customisable M2M transformation, which allows the selection of
alternative software architectures depending on non-functional pri-
orities. The M2M developer creates a transformation by reusing
predefined components and connectors to produce patterns that
conform to a software architecture style. The non-functional prop-
erties of these styles are then presented to the modeller as options.
The input to the transformation is a DSML that describes a family
of software systems with variability in terms of NFR.

The tool chain offers many of the benefits associated with
model-driven techniques: 1) it allows the system to be described
using abstractions and notation from the problem domain, 2) it
supports the application of proven best practices in design, 3) it fa-
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Figure 4. Sample ATL transformation rule, creating a pattern that conforms to the passive replication
style

Figure 5. Active replication entry in the style repository

cilitates system analysis early in the software development lifecy-
cle and 4) it automates the generation of software artefacts. These
four benefits are often cited, but rarely delivered in an integrated
tool chain.

6.1. Future work

Future work will first focus on collecting more complementary
styles and describing them using the WRIGHT ADL. A model-to-
model transformation language has yet to be selected. The require-
ments from that language are that it can match complex model
element patterns and support the generation of behavioural con-
straints. The approach then needs to be applied to one or more
case study DSMLs. In the longer term, we are looking at the pos-
sibility of making the customisable M2M transformation aware of
the deployment target. This may add an interesting dimension, as

the technology and hardware available may constrain the choice
of software architecture style. Also, the idea of implementing a
round-trip engineering process, where the implementation code
can be checked to see that it still conforms to the invariants, is
another area for further study.
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