
Virtual Machine Showdown: Stack versus Registers

by

Yunhe Shi, BSc. MSc.

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Doctor of Philosophy

University of Dublin, Trinity College

November 2007

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Yunhe Shi

September 1, 2007

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Yunhe Shi

September 1, 2007

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Dr David Gregg. His

encouragement, patience, understanding, guidance, and financial support ensured the

completion of this dissertation. Since English is not my native language, he has spent

a considerable time and effort to correct countless grammatical and spelling errors in

my papers and thesis . Without him, it would not have been possible for me to finish

my PhD.

I would like to thank Griffith College Dublin for half of the PhD fee sponsorship.

I would like to thank the staff of the computing faculty at Griffith College Dublin for

their kind supports. Particular gratitude to Eamonn Nolan, Tony Mullins, Kevin Hely,

and Waseem Akhtar.

I would also like to thank the members of the Computer Architecture Group who

have been great company and of great assistance through the years. Particular thanks

to Kevin Casey and Andrew Beatty from the group, with whom I have worked on many

issues relating to the Java Virtual Machine. Thanks also go to Nicholas Nash and Paul

Biggar, who spent their precious time proof-reading the draft of this dissertation.

Special thanks are also due to M. A. Ertl of the Technical University, Vienna, for

his unselfish assistance and ready availability to offer advice throughout the duration

of this project.

Finally, my greatest appreciation is reserved for my parents for their support during

my study for the PhD.

iv

Yunhe Shi

University of Dublin, Trinity College

November 2007

v

Virtual Machine Showdown: Stack versus Registers

Publication No.

Yunhe Shi, Ph.D.

University of Dublin, Trinity College, 2007

Supervisor: Dr. David Gregg

Virtual machines (VMs) enable the distribution of programs in an architecture-

neutral format, which can easily be interpreted or compiled. The most popular VMs,

such as the Java virtual machine (JVM), use a virtual stack architecture, rather than

the register architecture that are most popular in real processors. A long-running

question in the design of VMs is whether a stack architecture or register architecture

can be implemented more efficiently with an interpreter. On the one hand, stack

architectures allow smaller VM code so less code must be fetched per VM instruction

executed. On the other hand, stack machines require more VM instructions for a

given computation, each of which requires an expensive (usually unpredictable) indirect

branch for VM instruction dispatch.

vi

This dissertation extends existing work on comparing virtual stack and virtual

register architectures in three ways. Firstly, we generate very high quality register code.

The result is that our register code has 46% fewer executed VM instructions compared

to optimized JVM stack code, with the bytecode size of the register machine being

only 26% larger than that of the corresponding stack code. Secondly we present a fully

functional virtual-register implementation of the Java virtual machine (JVM), which

supports Intel, AMD64, PowerPC and Alpha processors. This register VM supports

inline-threaded, direct-threaded, token-threaded, and switch dispatch. Thirdly, we

present experimental results on a range of additional optimizations such as register

allocation and elimination of redundant heap loads. On the AMD64 architecture the

register machine using switch dispatch achieves an average speedup of 1.48 over the

corresponding stack machine. Even using the more efficient inline-threaded dispatch,

the register VM achieves a speedup of 1.15 over the equivalent stack-based VM.

The performance of VM interpreters is much affected by indirect branches and

during the course of the work on VM interpreters we identified a strong interaction

between the indirect branch predictor and the trace cache. The dissertation investigates

the related phenomenon, and shows that the interaction between the two components

results in significant improvements in indirect branch prediction. This is particularly

true for codes with many indirect branches, such as VM interpreters.

vii

Contents

Acknowledgments iv

Abstract vi

List of Tables xii

List of Figures xiii

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Our Thesis . 2

1.3 Contributions . 2

1.4 Collaborations . 4

1.5 Overview . 5

Chapter 2 Background 7

2.1 Introduction . 7

2.2 Virtual Machines . 7

2.2.1 High-Level Language VMs . 7

2.2.2 The Pascal P-Code Virtual Machine 9

2.3 The Java Virtual Machine . 9

2.3.1 The Internal Architecture of a Java Virtual Machine 10

2.3.2 Execution Engine . 12

2.3.3 Java Bytecode Instruction Set 13

2.4 Modern Processor Architecture . 14

2.4.1 Cache Memory . 14

viii

2.4.2 Pipelining . 16

2.4.3 Branch Prediction . 17

2.5 Conclusion . 19

Chapter 3 Literature Survey 20

3.1 Introduction . 20

3.2 Virtual Machine Interpreters . 21

3.3 Dispatch Cost Reduction Techniques 23

3.3.1 switch Dispatch . 23

3.3.2 Token-Threaded Dispatch . 26

3.3.3 Direct-Threaded Dispatch . 27

3.3.4 Indirect-Threaded Dispatch . 27

3.3.5 Static Superinstructions . 29

3.3.6 Inline-Threaded Dispatch . 29

3.3.7 Context-Threaded Dispatch . 30

3.3.8 Vmgen Interpreter Generator 32

3.3.9 Summary . 32

3.4 Interpreter Stack Caching . 32

3.5 Register Machines . 36

3.5.1 Stack vs. Register Instruction Sets 36

3.5.2 Register-Based Virtual Machines 38

3.5.3 Virtual Register Organization 40

3.5.4 Java Virtual Machine Related Research 41

3.6 Indirect Branch Prediction . 41

3.6.1 BTB with 2-bit Counters . 43

3.6.2 2-Level Prediction of Indirect Branches 43

3.7 Trace Cache . 45

3.8 Conclusion . 50

Chapter 4 The Trace Cache and Indirect Branch Prediction 51

4.1 Introduction . 51

4.2 Background . 53

4.2.1 Trace Cache . 53

ix

4.2.2 Indirect Branch Prediction . 55

4.3 Indirect Branch Prediction using Trace Cache 55

4.4 Experimental Framework . 59

4.5 Initial Prediction Accuracies . 61

4.5.1 BTB versus Trace Cache with Non-update Policy 61

4.5.2 Trace Cache with Update Policy 63

4.6 Prediction Accuracies of Various Trace Cache Configurations 66

4.6.1 Trace Packing . 67

4.6.2 2-bit Saturating Update Counter 68

4.6.3 Trace Cache Associativity . 70

4.6.4 Trace Cache Size Variance . 72

4.6.5 Trace Cache Line Size Variance 72

4.6.6 Combining Various Configurations 76

4.7 Other Trace Cache Models . 78

4.7.1 Real World Trace Cache . 78

4.7.2 Trace Cache Context Study . 80

4.7.3 Other Predictors . 82

4.8 Related Work . 83

4.9 Conclusion . 84

Chapter 5 Stack Architecture versus Register Architecture 85

5.1 Introduction . 85

5.2 Stack versus Register . 88

5.2.1 Dispatching the Instruction . 89

5.2.2 Accessing the Operands . 90

5.2.3 Performing the Computation . 91

5.3 Translation and Optimization . 91

5.3.1 Translation from Stack to Register 92

5.3.2 Method Invocation . 94

5.3.3 Optimization . 94

5.3.4 Putting it all together . 97

5.4 Conclusion . 98

x

Chapter 6 Experimental Evaluation of Stack/Register Virtual Machines101

6.1 Introduction . 101

6.2 Setup . 101

6.3 Static Instruction Analysis of Register Code 102

6.4 Stack Frame Space . 103

6.5 Dynamic Instruction Analysis of Register Code 104

6.6 Code Size . 106

6.7 CPU Loads and Stores . 108

6.8 Timing Results . 110

6.9 Performance Counter Results . 114

6.10 Dispatch Comparison . 116

6.11 Discussion . 117

6.12 More Optimizations . 118

6.12.1 Redundant Heap Load Elimination 118

6.12.2 Stack Caching for Stack VM . 122

6.12.3 Static Superinstructions . 122

6.12.4 Two-Address Instructions . 123

6.13 Applicability of Results to Related Questions 123

6.14 Conclusions . 125

Chapter 7 Final Thoughts 126

7.1 Experimentation and Systems Research 126

7.2 Stack versus Register Virtual Machines 127

7.3 Future Work . 128

7.3.1 Compiling Source Directly Into Register-Based Code 128

7.3.2 Object Field Access Optimization 129

7.3.3 Register Instruction Architecture 129

7.3.4 Bytecode Verification . 129

7.4 Conclusion . 130

Bibliography 131

xi

List of Tables

4.1 Benchmark statistics . 60

4.2 Baseline model . 60

4.3 Base trace cache model . 61

4.4 Pentium 4 indirect branch prediction results on simple benchmark . . . 79

6.1 Hardware and software configuration 102

6.2 The frame size comparison of register and stack-based VMs 104

xii

List of Figures

2.1 Virtual machine taxonomy. 8

2.2 High-level-language environments. 9

2.3 The Java programming environment. 10

2.4 The Java virtual machine implementation. 11

2.5 The internal architecture of the Java Virtual Machine. 11

2.6 Java frame data structure on the Java stacks. 12

2.7 Direct-mapped cache . 15

2.8 Set-associative cache . 15

2.9 Classic processor pipeline . 16

2.10 Dynamic 1-Bit Predictor . 17

2.11 Dynamic 2-Bit Predictor . 18

2.12 Two-level adaptive branch predictor. 18

3.1 Source and target ISA for an interpreter. 20

3.2 The execution cycle of a VM instruction by an interpreter 22

3.3 switch interpreter dispatch . 23

3.4 switch dispatch in MIPS assembly . 24

3.5 switch-based interpreter flow diagram 25

3.6 Token-threaded interpreter dispatch . 26

3.7 Direct-threaded interpreter dispatch . 28

3.8 Direct-threaded interpreter dispatch in MIPS assembly 28

3.9 Inline-threaded dispatch . 30

3.10 Context-Threaded VM interpreter - Sequential Code 31

3.11 Context-Threaded VM interpreter - VM branch instruction handling . 31

3.12 Comparison of dispatch reduction techniques 33

xiii

3.13 Stack caching . 36

3.14 Lua 5.0 instruction format. 39

3.15 Branch target buffer organization. 42

3.16 Structure of a Tagless Target Cache . 44

3.17 Structure of a Tagged Target Cache . 45

3.18 Two level indirect branch prediction . 46

3.19 Instruction fetch and execute mechanisms 46

3.20 Non-contiguous compiled code in a contiguous trace cache line 47

3.21 Trace cache microarchitecture . 48

4.1 A trace cache line of 3 basic blocks . 54

4.2 Sample loop for case study . 56

4.3 Basic Block Program Flow Diagram . 57

4.4 Trace cache line layout for the case study example 57

4.5 Cache lines in a set-associative trace cache 58

4.6 BTB and TC-No Update pred. rates 62

4.7 Trace cache model with the update policy 64

4.8 BTB and TC-No Update and TC-Update pred. rates 65

4.9 Pred. rates of BTB and TC-Update with trace packing 67

4.10 Pred. rates of BTB, TC-No Update, TC-Update and TC-Update with

2-bcs . 69

4.11 Pred. rates of the TC-Update model with varying set associativity . . . 70

4.12 Pred. rates of the TC-Update model with trace cache size variances . . 71

4.13 Pred. rates of the TC-Update model with cache line size variances . . . 73

4.14 Distribution of indirect branch trace cache line 74

4.15 Pred. rates according to the # of branches in a trace cache line 75

4.16 Indirect branch target prediction accuracy of the combined model . . . 76

4.17 Trace cache hit rates for different configurations. 77

4.18 The percentage of executed instructions from the trace cache 78

4.19 Bimodal direction predication rates with/without a trace cache 81

5.1 The structure of a Java frame . 92

5.2 Stack bytecode to register bytecode translation 93

5.3 Different categories of dynamically executed instructions without opt. . 96

xiv

5.4 The control flow of the example . 97

5.5 Source code for the hashCode() method in the java.lang.String . . . 98

5.6 Original stack VM code and corresponding register VM code 99

6.1 Breakdown of statically appearing VM instructions 103

6.2 Breakdown of dynamically appearing VM instructions 105

6.3 Code size and bytecode loads . 106

6.4 Ratios of increase in bytecode loads to # of dispatches eliminated . . . 107

6.5 Stack frame accesses . 108

6.6 Ratios of stack frame accesses to # of eliminated dispatches 109

6.7 AMD64 timing results . 111

6.8 Intel Pentium 4 timing results . 112

6.9 Intel Core 2 Duo timing results . 112

6.10 IBM PowerPC timing results . 113

6.11 Alpha timing results . 113

6.12 Compress: AMD64 performance counters 115

6.13 Jack: AMD64 performance counters . 115

6.14 AMD64: speedups against the stack switch interpreter 117

6.15 Breakdown of dynamically appearing VM instructions 119

6.16 AMD64 timing results with additional redundant heap load elimination 120

6.17 The same dispatch comparison . 121

6.18 PowerPC timing results with stack caching 121

xv

Chapter 1

Introduction

1.1 Motivation

Virtual machines (VMs) enable the distribution of programs in an architecture-neutral

format, which can easily be interpreted or compiled. The most popular VMs, such

as the Java virtual machine (JVM) and Microsoft .NET’s common language runtime

(CLR), use a virtual stack architecture rather than the register architecture that dom-

inates in real processors.

Interpreters are frequently used to implement virtual machines because they have

several practical advantages over native code compilers. Interpreters are much slower

than the native code produced by just-in-time compilers (even the fastest interpreters

are currently about 5–10 times slower), but they are nonetheless widely used for

lightweight language implementations. If written in a high-level language, interpreters

are portable; they can simply be recompiled for a new architecture, whereas a just-in-

time (JIT) compiler requires considerable porting effort. Interpreters also require little

memory: the interpreter itself is typically much smaller than a JIT compiler [RVJS00],

and the interpreted bytecode is usually a fraction of the size of the corresponding ex-

ecutable native code. For this reason, interpreters are commonly found in embedded

systems. Furthermore, interpreters avoid the compilation overhead in JIT compilers.

For rarely executed code, interpreting may be much faster than JIT compilation. The

Hotspot JVMs [SM01] take advantage of this by using a hybrid interpreter/JIT sys-

tem. Code is initially interpreted, saving the time and space of JIT compilation, and

1

only if a section of code is executed frequently is it JIT compiled. Interpreters are also

dramatically simpler than compilers; they are easy to construct, and easy to debug.

Finally, it is easy to provide tools such as debuggers and profilers when using an inter-

preter because it is easy to insert additional code into an interpreter loop. Providing

such tools for native code is much more complex. Interpreters provide a range of at-

tractive features for language implementation. In particular, most scripting languages

are implemented using interpreters.

A long-running question in the design of VMs is whether a stack architecture

or a register architecture can be implemented more efficiently with an interpreter.

Stack architectures allow smaller VM code so less code must be fetched per VM

instruction executed. However, stack machines require more VM instructions for a

given computation, each of which requires an expensive (usually unpredictable) in-

direct branch for VM instruction dispatch. Several authors have discussed the issue

[Mye77, SM77, MB99, WP97] and presented small examples where each architecture

performs better, but no general conclusions can be drawn without a larger study.

1.2 Our Thesis

The main thesis of this work is that register architectures can be implemented to be

significantly faster than stack architectures when building a virtual machine interpreter.

The main reason is that stack architectures need to shuffle values onto the stack before

they can be operated upon, and results must be stored from the stack to variables. In

contrast, a register architecture allows VM instructions to manipulate local variables

directly. This allows the same functionality to be implemented on a register architecture

using far fewer VM instructions. Given that dispatching VM instructions is expensive

due to the high cost of real-machine indirect branches, the result is that interpreter-

based VMs for register architectures are significantly faster.

1.3 Contributions

This dissertation extends previous work on comparing register and stack machine and

we believe, answers the question of the relative strengths and weaknesses of stack and

2

register machines. We have made a number of contributions.

• Better analysis of the features of register and stack code

In previous work by Davis et al. [DBC+03, GBC+05] register and stack code were

compared by translating optimized stack code into register code. Although the results

were interesting, the quality of the generated register code was poor, and the benefits of

register code were underestimated. We use a much more sophisticated scheme to gen-

erate our register code (although we also follow the route of translation from optimized

stack code) and the result is that our register code requires far fewer VM instructions

to implement the same benchmark programs than either corresponding stack code, or

register code generated using Davis et al.’s method.

• Design, implementation and measurement of the register VM

Previous work made quantitative measures of the stack and register code, but it did

not compare corresponding stack and register VM implementations. This dissertation

presents the design and implementation of a register machine that corresponds closely

to the stack-based Java VM. We present extensive measurements of both machines, us-

ing various interpreter optimization options, and running on several different hardware

architectures. Our results include measurements from hardware performance counters

that allow us to investigate the effect of using a register rather than stack VM on the

microarchitectural behaviour of the interpreter.

• Analysis of the effect of the trace cache on indirect branch prediction

In addition to the core work on virtual machine design, this dissertation also ad-

dresses the closely related problem of indirect branch prediction. Indirect branch pre-

diction has a big impact on VM interpreters because interpreters typically use indirect

branches to dispatch the execution of VM instructions. A particularly interesting inter-

action arises with the trace cache which was designed to increase the fetch bandwidth

for a superscalar processor. One unintended effect of the trace cache is that it can

provide extra context information, which helps indirect branch prediction, particularly

when executing programs with a lot of indirect branches, such as interpreters.

3

1.4 Collaborations

During my PhD study, I collaborated with several colleagues. The papers published

during my PhD research illustrate our collaborations.

• Yunhe Shi, Emre Özer, and David Gregg. Analyzing effects of trace cache config-

urations on the prediction of indirect branches. The Journal of Instruction-Level

Parallelism, Volume 8, 2006.

Emre Özer assisted with the research in the trace cache. He provided his expertise

in processor microarchitectures and helped to give direction to the experiments. He

also contributed considerably to organizing and correcting English in the paper.

• Yunhe Shi, David Gregg, Andrew Beatty, and M. Anton Ertl. Virtual machine

showdown: stack versus registers. In ACM/SIGPLAN Conference on Virtual

Execution Environments, pages 153-163, Chicago, Illinois, June 2005. ACM

Press.

The work in this paper presented our initial results comparing register and stack

VMs. The implementation for this paper was based on “CVM”, an implementation of

the JVM from Sun Microsystems.

Andrew Beatty started an initial implementation of a register VM using Sun’s

CVM, but abandoned the work before it was complete. He helped me to get started

with his implementation and provided useful advice.

Anton Ertl helped to review my earlier draft of the paper and provided some useful

insights into optimizing the VM.

• Yunhe Shi, Kevin Casey, M. Anton Ertl, and David Gregg. Virtual machine

showdown: stack versus registers. In ACM Transactions on Architecture and

Code Optimization (TACO). Forthcoming issue. ACM Press.

For this paper I designed and built an entirely new implementation of the register

machine, based around Cacao, an open source JVM. Cacao is much faster and more

portable than CVM, reducing unnecessary overheads that might impact the results,

and allowing comparisons to be made on a wide variety of architectures.

4

Kevin Casey gave me a lot of assistance in the early stage of my PhD, particularly

in learning to understand the behaviour of VM interpreters. He assisted to correct

and rewrite parts of the TACO journal paper and helped in replying to reviewers’

comments.

Anton Ertl built the original, stack-based version of Cacao, and provided a lot of

expertise in vmgen and Cacao through numerous e-mail exchanges, in order to guide

me through a lot of technical problems.

Lastly, David Gregg supervised and guided me during my entire PhD research.

His invaluable contributions (and countless corrections of English) are recognized in

his joint authorship of all three papers. He also helped considerably in structuring,

correcting, and rewriting sections of this dissertation.

1.5 Overview

The remainder of this thesis is structured as follows:

Chapter 2 This chapter examines the concept of a virtual machine and its implemen-

tation. Some aspects of modern processor architecture are introduced, such as

cache memory, pipelining and branch prediction.

Chapter 3 This chapter reviews the interpreter-based virtual machine research. A

major component of interpreter execution overhead is dispatch cost. The main

approaches to reducing such dispatch costs are examined. Another component of

execution overhead in a stack-based VM is accessing operands from the operand

stack. Stack caching is introduced as an optimization technique to tackle the

problem. Current research in stack-based versus register-based VMs is intro-

duced. Current research in indirect branch prediction and the trace cache is also

reviewed.

Chapter 4 In this chapter, our experimental research into how the trace cache can

influence the indirect branch prediction is presented. In order to do this, we

vary the trace cache configuration to identify the optimal one for indirect branch

prediction.

5

Chapter 5 In this chapter, we compare a stack-based and register-based architecture

from the viewpoint of an interpreter. Then we introduce the way in which VM

stack code is translated into VM register code. Finally the various optimizations

are presented.

Chapter 6 This chapter presents the experimental results comparing stack and reg-

ister machine. We compare the static and dynamic (run-time) code behavior

of the stack and register machines. We examine the effects of using four differ-

ent VM instruction dispatch methods, and results are presented for five different

hardware platforms. These results are further investigated using hardware perfor-

mance counters on the AMD64 processor. Finally, other possible optimizations

for a register-based VM are investigated, such as the potential for very aggres-

sive common subexpression elimination, the use of static superinstructions, and

two-address register instruction formats.

Chapter 7 In the last chapter, the results of the thesis are summarized, highlighting

some of the most notable contributions. Finally, we identify some interesting

aspects arising from the work that warrant further research.

6

Chapter 2

Background

2.1 Introduction

In this chapter, we give background information on virtual machines and branch pre-

diction, which is related to the research in this dissertation.

2.2 Virtual Machines

Virtual machines (VMs) exist in a variety of forms in computer systems. Smith and

Nair [SN05] classified virtual machines into process VMs and system VMs (See Figure

2.1). Process VMs can be further divided into multi-programmed systems and dynamic

binary optimizer when the same instruction set architectures (ISA) are used in VMs

as the hosted hardware platforms; process VMs can be dynamic translators when VM

ISAs are different from the hosted platforms, one type of which can be high-level

language (HLL) VMs. System VMs can be classic OS VMs and hosted VMs when

the same VM ISA is used as the hosted hardware platforms; System VMs can also

be whole system VMs, including co-designed VMs, when VM ISAs are different from

hosted hardware platforms.

2.2.1 High-Level Language VMs

One clear objective of process VMs is portability. Instead of writing a VM to simulate a

conventional architecture on another one on a case by case basis, a new virtual machine

7

Multi

programmed

Systems

HLL VMs
Co-Designed

VMs

same ISA
different

ISA

Process VMs System VMs

Whole

System VMs

different

ISA
same ISA

Classic

OS VMs

Dynamic

Binary

Optimizers

Dynamic

Translators

Hosted

VMs

Figure 2.1: Virtual machine taxonomy. Within the general categories of process and
system VMs, ISA simulation is the major basis of differentiation. Source: Smith &
Nair [SN05]

(HLL VM) development and execution environment can be designed with a high-level

programming language, a new portable/virtual ISA (V-ISA), a compiler, programming

API and runtime environment. The portable V-ISA is not limited by or tied to any

specific hardware platforms.

Figure 2.2 shows the difference between a conventional platform-specific compilation

environment and an HLL VM environment. In a conventional system, shown in Figure

2.2(a), high-level programming language source code is first compiled into intermediate

code, which is then translated into platform-dependent object code. The object code

is distributed and executed on a targeted platform.

In a HLL VM, as shown in Figure 2.2(b), the portable code (V-ISA) is generated

from the high-level source code by a compiler, which is platform-independent. The

portable V-ISA code is loaded into the virtual machine, which can be either interpreted

or translated into native code. To support a new platform, only the HLL virtual

machine and its library needs to be ported. Some examples of HLL VMs are the

Pascal P-Code virtual machine, Sun’s Java virtual machine (JVM) and Microsoft.NET

common-language runtime (CLR).

8

HLL Program

Intermediate Code

Memory Image

Object Code
(ISA)

Compiler front-end

Compiler back-end

Loader

HLL Program

Portable Code
(Virtual ISA)

Host Instructions

Virt. Mem. Image

Compiler

VM loader

VM Interpreter/Translator

(a) (b)

Figure 2.2: High-level-language environments. (a) Conventional environment where
platform-dependent object code is distributed. (b) HLL VM environment where a
platform-dependent VM executes portable intermediate code. Source: Smith & Nair
[SN05]

2.2.2 The Pascal P-Code Virtual Machine

One of the virtual machines, which had a very big influence on later generations of

virtual machines, is the Pascal P-Code virtual machine. The Pascal source code was

compiled to P-code, which is a stack-oriented instruction set. Then the P-code ran on

a virtual machine. The most popular implementation was the P4 [PD82]. P-code was

the first really successful virtual machine, and it helped establish the concept as a real

alternative for language implementations. Later, a stack architecture was also chosen

for the virtual machine in the Smalltalk programming environment [Kay93, Kra83].

Since then, stack architectures have been used as the intermediate representations for

several popular virtual machines including the Java VM and .NET VM.

2.3 The Java Virtual Machine

The Java Virtual Machine (JVM) is a process HLL VM, which is designed to support

the Java programming language [GJS96]. The Java programming language is a general-

purpose object-oriented concurrent language. The Java platform consists of the Java

programming language, compiler, class library (API), and virtual machine.

At compile-time, as shown in Figure 2.3, Java source code is compiled into interme-

diate V-ISA (bytecode) with meta-information in a class file format. Those class files

are moved locally or transported over a network. In a runtime environment, a Java

9

Compile-time environment Run-time environment

Your program’s source files

A.java B.java C.java

Java
Compiler

A.class B.class C.class

Your program’s class files

A.class B.class C.class

Your program’s class files

Your class files
move locally or
through a
network

Object.class String.class

Java
Virtual

Machine

Java API’s class files

Figure 2.3: The Java programming environment. Source: Bill Venners [Ven99]

virtual machine instance loads the Java application class files and classes from the Java

class library which are used in the application code to run the application.

2.3.1 The Internal Architecture of a Java Virtual Machine

The Java Virtual Machine specification [LY99] defines an abstract stack-based virtual

machine, which can load the Java application classes and API classes and execute

bytecodes. The JVM can be implemented in different ways. One way to implement

the JVM, as shown in Figure 2.4, is on top of an operating system. The class loader

loads application classes and library classes and creates in-memory representations of

classes and bytecodes. The execution engine executes bytecodes on a hosted operating

system and hardware platform.

The Java Virtual Machine specification also defines the standard class file format,

which has cross-platform portability. As long as a Java virtual machine is implemented

on a hosted platform, Java class files can be loaded and bytecodes can be executed.

The internal architecture of a Java virtual machine, as shown in Figure 2.5, shows

the run-time data areas, which include a method area, a heap, Java stacks, PC registers,

and the native method stack.

The method area is the data structure used to store class information and Java

bytecodes. The heap is the dynamic memory area where objects are allocated. Java

stacks are used to store information about method calls. Each method call results in

10

The Java Virtual Machine

Your
program’s
class files

class
loader

The Java API’s
class files

execution
engine

bytecodes

Host operating system

native method invocations

Figure 2.4: A Java Virtual Machine implemented on top of a host operating system.
Source: Bill Venners [Ven99]

class loader subsystem

method area heap Java stacks

PC registers native method stack

class files

runtime data areas

execution
engine

native method
interface

native
method
library

Figure 2.5: The internal architecture of the Java Virtual Machine Source: Bill Venners
[Ven99]

11

Operand
Stack

Frame
data

Local variables

SP

Frame
pointer

Figure 2.6: Java frame data structure on the Java stacks.

a new Java stack frame being pushed to store the local information and the operand

stack for that method. When the method completes, the Java stack frame is popped.

PC registers store the virtual program counter, which points to the code being executed

and the stack pointer of the operand stack for the execution of a thread. The native

method stack is used to record the native method call information. The native methods

are used to implement platform dependent functions.

The Java stack records the history of method calls for the execution engine. For

each method call, there exists a Java frame, which includes local variables for the

method, frame data, and an operand stack for the computation (see Figure 2.6). The

frame data may include program counters (PC) & stack pointer (SP) of the called

method and/or PC and SP of current method.

2.3.2 Execution Engine

The core of a Java virtual machine is the execution engine, which executes the Java

bytecode. The execution engine can be implemented with an interpreter, or a just-in-

time compiler, or both an interpreter and a just-in-time (JIT) compiler (mixed mode).

When an execution engine is implemented by a JIT compiler, it will translate the

Java bytecodes into native code for a processor and then execute the native code.

An execution engine based on an interpreter will carry out the function of each byte-

code instruction by jumping to the segments of the code in an interpreter loop, which

implements the bytecode instruction.

12

In this dissertation, we only consider the interpreter for the Java Virtual Machine

implementation. When the execution engine is implemented using an interpreter, in-

direct branches are needed in order to jump to their corresponding segments inside an

interpreter loop which implement the functions of bytecode instructions. In modern

hardware processors, the indirect jumps are poorly predicted [EG03], which leads to

poor performance of a Java interpreter.

2.3.3 Java Bytecode Instruction Set

The Java Virtual Machine (JVM) is stack-based and its instructions manipulate the

operand stack of a Java stack frame on the Java stack. For a stack-based instruction

set, the operands of an instruction are implicit and any computation has to be done

through a stack.

Java bytecode instructions can be put into the following categories:

• Stack load/store instructions - includes all instructions which load values from

the local variables onto the operand stack and instructions which store values

from the operand stack to the local variables.

• Constant instructions - load constants onto the operand stack.

• Flow control instructions - includes if, switch and unconditional branch instruc-

tions.

• Arithmetic/logical instructions - includes different types of arithmetic instruc-

tions.

• Object access instructions - includes array access instructions and class/object

field access instructions

• Method call and return instructions - includes all invoke static (class) and object

method call and return instructions.

• Stack manipulation instructions - includes all those instructions which duplicate

stack items on the operand stack and stack pointer manipulation instructions

• Exception handling instructions - includes all those instructions which support

Java exception handling

13

• Threading support instructions - includes all those instructions which support

Java threads, such as thread synchronization.

• Type testing/casting

2.4 Modern Processor Architecture

Modern processors’ performance has been improved dramatically since the first gen-

eral purpose computer was created. This performance improvement came from the

advancement of the technology used to build the processors and innovative computer

design. In this section, we are going to introduce some of the concepts and terms

related to this dissertation.

2.4.1 Cache Memory

Cache memory is widely used in computer systems. This is a relatively small area of

memory for storing duplicate information to allow faster access, such as an instruction

cache, or storing a small subset of information due to resource constraints, such as a

branch target buffer. The fast access to a cache item can usually be done by hashing

keys to produce the (possible) location of the item. The cache can be organized in

different ways. Direct-mapped caches organize the cache items as a linear list, as shown

in Figure 2.7. A hash function with keys as parameters will give the exact location of

a cache item. When the hash function produces the same location with different keys,

a conflict (interference) occurs. Set-associative caches organize the items into N sets

and each set has M items, as shown in Figure 2.8. The hash function will give the

location of a set. Then an associative search will continue to match one or more keys.

In this way, the set-associative cache can reduce the possibility of a conflict. Another

type of cache is a fully-associative cache. It is usually not practical to implement a

fully-associative cache in a computer system. A set-associative cache is a compromise

between a direct-mapped cache and a fully-associative cache. In a direct mapped cache,

adding a new item will generally replace an existing item. In a set-associative cache,

one of the more common ways to add a new item is to replace the least recently used

(LRU) existing item in a set.

14

key1

key2

hash
function

Figure 2.7: Direct-mapped cache

N sets

M elements

key1

key2

hash
function

Figure 2.8: Set-associative cache

15

IF ID MEM WBEX

time

stage 1stage2

IF ID MEM WBEX

IF ID MEM WBEX

IF ID MEM WBEX

IF ID MEM WBEX

op1

op2

op4

op5

op3

Figure 2.9: Classic processor pipeline

2.4.2 Pipelining

Even though computer processor architecture has become very complex in modern

processor, the logical steps to execute an instructions remain the same:

• Fetch an instruction from the main memory

• Decode the instruction

• Fetch the needed operands (data) from memory

• Execute the instruction

• Write the results of the instruction back to the memory.

In the early days of processors, instructions were executed sequentially. There

are a lot of instructions in computer programs, which are independent of each other.

Those independent instruction can be executed at the same time without changing

the end results of the program execution. Instruction level parallelism (ILP) can be

exploited to improve the performance of processors. One computer design techniques is

pipelining, which divides the instruction execution into stages and overlaps the stages

of independent instruction execution, as shown in Figure 2.9. In ideal circumstances,

in which all the instructions are independent of each other, only one cycle is needed to

execute each instruction.

16

(1)
predict: T

(0)
predict: N

T

N

T N

Figure 2.10: Dynamic 1-Bit Predictor. When the one-bit state is 1, the branch is
predicted taken. When the state is 0, the branch is predicted to be not taken.

2.4.3 Branch Prediction

Instructions in a programs are not generally independent of each other. There exist

data dependencies and control dependencies (branch effects) [USS97] between the in-

structions. When a branch instruction passes through the pipeline, the path to be

taken is not determined until the instruction is executed, which will stall the whole

pipeline. Speculative instruction execution tries to solve this problem by predicting the

branch direction and continuing execution in the predicted direction. Branch prediction

accuracy has a large impact on the performance of a pipelined processor.

Branch instruction can be a conditional branch or an unconditional branch. Condi-

tional branches have two branch targets: taken (T) or not-taken (N). Static predictors

always predict the branches to be taken or not-taken, or BTFN (Backward Taken;

Forward Not Taken). Dynamic predictors use the previous branch execution results to

make future predictions, which allow branch predictors to adapt to the characteristics

of an application. As shown in Figure 2.10, a 1-bit predictor uses one bit to represent

the state of each branch instruction and uses the state to make a prediction. The bit

for each state is usually stored in a table, such as a branch target buffer (BTB) and the

branch instruction address is used to look up the state in the table. When the state is

one, the branch is predicted to be taken. After the branch is actually resolved (taken

or not taken), the state will be updated as shown in Figure 2.10. A 2-bit predictor

uses 2-bits to represent the state of each branch instructions and use the state to make

future predictions, as shown in Figure 2.11.

1-bit or 2-bit predictor only considers the branch’s own history (taken or not taken)

itself. The branch history of a branch is the execution path (T-N-T...) before the

17

(10)
predict: T

(01)
predict: N

T

N

N
(11)

predict: T
T

N

(00)
predict: N N

T

N

T

saturated saturatedunsaturated unsaturated

Figure 2.11: Dynamic 2-Bit Predictor. When the significant bit of the state is 1, the
branch is predicted taken. When the significant bit of the state is 0, the branch is
predicted to be not taken.

01 1 1
Branch
history
register

shift direction

1 0

sign of
latest
resolved
branch

0 1

0000

1011

0 01111

...

...

msb lsb

index

predict (0)
Not taken

Figure 2.12: Two-level adaptive branch predictor.

branch. The two-level adaptive predictor, as shown in Figure 2.12, takes into account

the branch history before the one currently being predicted. The branch history register

holds the history of previously executed branches. Each time a branch’s direction is

resolved, its direction (taken: 1 or not taken: 0) is shifted to the least significant bit

of the branch history register. The branch history register is used as an index into the

branch pattern table, which holds a 2-bit counter (state) similar to Figure 2.11.

With advancements in manufacturing technology, which allows larger predictors,

and research in branch prediction, the two-level adaptive branch predictor can give a

prediction accuracy of over 90% [USS97].

One type of unconditional branch is the direct jump. The direct jump has only one

target and transfers the execution of a program from one location to another. Another

type of unconditional branch instruction is the indirect branch. These branches have

18

more than one target, which may depend on some computed value. Indirect branches

are not very common (less than 1% [DH98]) in regular programs. However they are

quite common (up to 13% [EG01]) in the implementation of interpreters. Indirect

branches can be unpredictable (up to 95% [EG03]) when a branch target buffer (BTB)

is used.

2.5 Conclusion

In this chapter, we have presented the concepts relating to virtual machines and exam-

ined the internal structure of the Java Virtual Machine. Branch prediction in modern

pipelined processors is critical to their performance. Various predictors have been

introduced.

In the next chapter, we examine existing research in these two areas.

19

Chapter 3

Literature Survey

3.1 Introduction

As discussed in the last chapter, an interpreter is one of the ways to implement the

execution engine of a HLL VM. In this chapter, we examine the interpreter optimiza-

tions relating to the dispatch cost reduction, the stack caching for stack-based VMs,

register-based VMs, indirect branch prediction, and trace cache.

Source (Virtual) ISA

Execution Engine (Interpreter)

Host (Native) ISA

Figure 3.1: Source and target ISA for an interpreter.

20

3.2 Virtual Machine Interpreters

Interpreters have a long and rich history. As shown in Figure 3.1, an interpreter can

understand the source (virtual) ISA (usually referred to as bytecodes) and interpret

those virtual ISA on a hosted platform. The interpreter-based VM abstracts away the

underlying details of hosted platforms and makes the implemented high-level program-

ming language portable across different hardware platforms as long as the VM has

been ported to them.

There are many different types of interpreters. Some interpreters (MIPSI [SA97]

and SimpleScalar [ALE02b]) simulate the ISA of new hardware, which does not yet

exist, or to port binary applications compiled for one hardware platforms to run on

another one. Some other interpreters (Java [LY99], Perl, Tcl, Lua [IdFC05]) are used

to implement higher level programming languages.

When an interpreter is used to implement a high-level language, there are two ways

to convert the high-level source code into a sequence of virtual machine instructions

or bytecodes understandable by the interpreter. The translation of the source code

into VM code can be either off-line (JVM [LY99]) or during runtime (Perl and Lua

[IdFC05]). VM instructions for higher-level portable languages like Java are usually

designed with the intention of easing interpretation. The opcodes are usually encoded

with one byte (256 possible VM instructions) in interpreters, such as Java [LY99] and

Smalltalk [GR83].

An interpreter is an attractive option for VM implementation because it is easy to

implement and port to different platforms. However, an interpreter suffers from the

drawback of low performance when compared to native code compiled directly from

the source programming language. Many researchers [RLV+96, EG03, BVZB05, PR98]

have studied ways to improve the performance of an interpreter. We will focus on the

two categories of improvement which are relevant to our research in this dissertation.

The first category is related to interpreter implementations, such as the dispatch mecha-

nism. The second category is related to the VM instruction architecture design choices,

such as the choice between virtual register machine instruction format or virtual stack

machine one.

The core of a virtual machine (VM) is an execution engine, which behaves like a

real processor. The execution engine, which can be implemented with an interpreter,

21

...

iload a

iload b

iadd

istore c

...

VM Code

Interpreter
Engine

Thread
Stack

Heap

IP

(1) Fetch

Hardware

(2) Decode

(3) Fetch Operands
(5) Store result

(3) Fetch Operands
(5) Store result

(4) Execute

Figure 3.2: The execution cycle of a VM instruction by an interpreter. (1) Fetch an
instruction pointed by IP, (2) Decode the VM instruction by finding out its implementa-
tion, (3) Fetch the source operands for the instruction, (4) Execute the implementation
of the instruction inside the interpreter loop, (5) Store the results back. The thread
stack holds the virtual register and the operand stack for a particular method call. The
heap will store more global data structures like an object representation

fetches, decodes and executes VM instructions, as shown in Figure 3.2. Inside a virtual

machine, an interpreter (execution engine) has a virtual instruction pointer to the VM

code currently being executed. In order to execute a VM instruction, an interpreter

first fetches an instruction by using the instruction pointer, decodes the instruction

(find the segment of code which implements the VM instruction in the interpreter

loop), and then executes the code in the segment to carry out the function of the VM

instruction. The last step includes the fetching the operands of the instruction and

storing any results. There are two types of operand locations for VM instructions.

The first type of operand location is virtual registers or an operand stack, which are

typically implemented as an array in the memory. The second type of operand location

can be some data structures, such as an object representation, in the heap in the run-

time data areas. From the point view of hardware, the interpreter itself is the only code

executed. The VM application code, the operands in local variables and on the operand

stack, and object representation on the heap are just inputs to the code (interpreter)

executed natively on the hardware platform.

22

typedef enum {

 add /* ... */

} Opcode;

void engine()

{

 static Inst program[] = { add /* ... */ };

 Inst *ip = program;

 int *sp;

 for (;;)

 switch (*ip++) {

 case add:

 sp[1]=sp[0]+sp[1];

 sp++;

 break;

 /* ... */

 }

}

Figure 3.3: switch interpreter dispatch. Source: [EG03]

3.3 Dispatch Cost Reduction Techniques

Interpreter instruction dispatch involves extracting the opcode of an instruction and

finding the corresponding interpreter segment which implements the instruction. In-

struction dispatch is an overhead of executing VM instructions. For fine-grained VM

instruction set architecture like Java bytecodes [LY99], more than 40% [RLV+96] of

executed native instructions can be related to instruction dispatch. Moreover, in-

struction dispatches perform a large number of indirect branches (3.2% - 13% of

all executed native instructions) and the high misprediction of indirect branches are

very expensive (62% of execution time without a predictor) [EG03]. Much research

[Bel73, EG03, BVZB05, PR98] has been carried out to minimize the cost of dispatch.

3.3.1 switch Dispatch

The most common and easy way to implement interpreter dispatch is by using a big

switch statement inside a loop, as shown in Figure 3.3, with one switch label for each

VM instruction inside the loop, such as add.

For the switch based interpreter shown in Figure 3.3, the dispatch native MIPS

23

$L2: #for (;;)

 lw $3,0($6) #$6=instruction pointer

 #nop

 situ $2,$8,$3 #check upper bound

 bne $2,$0,$L2

 addu $6,$6,4 #branch delay slot

 Sll $2,$3,2 #multiply by 4

 addu $2,$2,$7 #add switch table base ($L13)

 lw $2,0($2)

 #nop

 j $2

 #nop

 ...

$L13: #switch target table

 .word $L12

 ...

$L12: #add:

 ...

 j $L2

 #nop

Figure 3.4: switch dispatch in MIPS assembly. Register n is denoted by $n, the
destination operand of an instruction is the leftmost register, and comments start with
#. Source: [EG03]

24

load opcode

range check?

load jump address
from the switch table

indirect branch

add

Figure 3.5: switch-based interpreter flow diagram

assembly code is shown in Figure 3.4. First, the opcode of a VM instruction is loaded.

The opcode is checked to see if it is within the range of available switch labels. Then

the opcode is used to look up the jump address (corresponding to a VM instruction

label) in a switch table. Finally one indirect branch jumps to the VM instruction’s

implementation. Moreover, there will be a direct jump at the end of each case (a VM

instruction implementation) to go to the beginning of the interpreter loop. Because only

one indirect branch exists in the whole interpreter to jump to all the labels (instruction

implementation), there will be only one entry in the branch target buffer (BTB) in most

modern processor. The BTB will store the previous target of an indirect branch, which

will provide the target for the following execution of the same indirect branch. Unless

all instructions are the same in the VM code streams, the BTB will give incorrect

predictions.

As shown in Figure 3.5, the jump to an instruction implementation segment in an

interpreter loop is translated to only one indirect branch on a hosted platform when

switch is used. On modern processors, indirect branches are very hard to predict

and are a cause of performance loss in virtual machines due to pipeline stalls when

25

typedef void *Inst;

typedef enum {

 add /* ... */

} Opcode;

void engine()

{

 static Inst program[] = { add, /* ... */ };

 static Inst dispatch_table[] = { &&add /* ... */ };

 Inst *ip = program;

 int *sp;

 goto dispatch_table[ip++]; /* dispatch first VM inst. */

 add:

 sp[1]=sp[0]+sp[1];

 sp++;

 goto dispatch_table[ip++]; /* dispatch next VM inst. */

}

Figure 3.6: Token-threaded interpreter dispatch. Source: [EG03]

a pipelined processor speculatively executes in the wrong direction [EG03]. There is

much research on restructuring the interpreter loop to improve the indirect branch

prediction of an interpreter, such as direct-threaded code [Bel73, Ert93] or to reduce

the number of indirect branches by reducing the number of executed instructions, such

as superinstructions [Ell05, EGKP02, CGEN03].

3.3.2 Token-Threaded Dispatch

There are some programming languages (such as assembly, Fortran, and GNU C) that

support labels as values. These languages allow the value (code address) of a label in

a variable. In GNU C, the && operator followed by a label gives a memory location

(address) of the code after the label. Token-threaded dispatch [Kli81] takes advantage

of labels as values in some compilers, such as gcc, in order to restructure the interpreter

loop so that the dispatch will happen after the execution of a VM instruction, as

shown in Figure 3.6. A dispatch table holds all the VM instruction implementation

addresses in an interpreter. The opcode of the next instruction is used to look up

the address of the implementation segment in the dispatch table. One very important

26

characteristic of threaded code is that there is no need for a loop to execute the VM

code. When the execution of one VM instruction ends, the dispatch code at the end

of the instruction will dispatch to the next instruction in the code stream. There are

multiple indirect branches (one for each VM instruction) in the native code compiled

from the interpreter. On modern processors with a BTB, multiple entries exist in the

BTB. As long as a given instruction will be followed by the same instruction next time

in the code stream, a correct prediction will be made.

Compared to switch dispatch, the range-check1 and the direct jump are elimi-

nated. One big advantage of token-threaded dispatch is to keep the bytecode program

unchanged while benefiting from better indirect branch prediction.

3.3.3 Direct-Threaded Dispatch

Direct-threaded dispatch [Bel73, Ert93] goes one step further to eliminate the table

lookup operation in the token-threaded dispatch, as shown in Figure 3.7. In order

to do this, the VM code needs to be transformed into direct-threaded code, in which

the opcodes (usually one byte) for VM instructions will be changed into the addresses

(usually 4 bytes on 32-bit hardware platform) of instruction implementation in the in-

terpreter. Direct-threaded dispatch uses memory addresses as the opcodes of instruc-

tions to jump to their corresponding implementation directly. The main drawbacks of

this approach are an additional translation step and the larger code size for the VM

instruction representation, because the size of absolute memory addresses in a 32-bit

processor is 4 bytes while it is 8 bytes on a 64-bit processor.

An inspection of MIPS assembly code (Figure 3.8) shows that the direct-threaded

dispatch overhead is only four native instructions while switch dispatch, as shown in

Figure 3.4, requires eight native instructions.

3.3.4 Indirect-Threaded Dispatch

Indirect-threaded dispatch [Dew75] uses an additonal level of indirection to achieve a

space saving for VM code. Unlike direct-threaded dispatch [Bel73], the opcode of a

1The range check is created by the compiler to make sure that the target of the indirect branch
is one of the switch label before a table loop-up is carried out. In many cases, the designer of an
interpreter are certain that opcodes will be within the range and the check is not necessary.

27

typedef void *Inst;

void engine()

{

 static Inst program[] = { &&add /* ... */ };

 Inst *ip = program;

 int *sp;

 goto *ip++; /* dispatch first VM inst. */

 add:

 sp[1]=sp[0]+sp[1];

 sp++;

 goto *ip++; /* dispatch next VM inst. */

}

Figure 3.7: Direct-threaded interpreter dispatch. Source: [EG03]

lw $2,0($4) #get next inst., $4=inst.ptr.

addu $4,$4,4 #advance instruction pointer

j $2 #execute next instruction

#nop #branch delay slot

Figure 3.8: Direct-threaded interpreter dispatch in MIPS assembly. Register n is de-
noted by $n, the destination operand of an instruction is the leftmost register, and
comments start with #. Source: [EG03]

28

VM instruction points to a struct. The struct has an address pointer to the actual

VM instruction implementation and the immediate values and/or operand(s) for the

instruction. Effectively, the VM code will be translated into a list of pointers to the

structs. Repeating operand(s) and/or immediate value(s) will contribute to the space

saving. However, because of a level of indirection, indirect-threaded dispatch is not be

as efficient as direct-threaded dispatch.

3.3.5 Static Superinstructions

Static superinstruction optimization [Bad95, Hug82, Pro95, Ell05, CGE05] tries to find

recurring instruction sequences and combine them together to form new superinstruc-

tions. The superinstruction carries out all the operations of the original sequence of

component instructions. Thus all the dispatches within a superinstruction are elimi-

nated. Moreover, the compiler will be in a better position to optimize the implementa-

tion segments of a superinstruction because of longer native code sequences. The main

difficulty with superinstruction optimization is to find the right recurring sequences

(superinstructions). Dynamic profiling examines the executed sequences of VM in-

structions of applications and tries to find the most frequently occurring sequences.

The main problem with dynamic profiling is that the recurring sequences discovered

in this way are highly biased, which means the superinstruction found in a applica-

tion could be totally useless in another one. On the other hand, static profiling only

examines the static code to discover the frequently recurring sequences. Casey et al.

[CGE05] found that static profiling usually finds a better set of superinstructions and

hundreds of superinstruction are required to gain good performance improvement. For

most bytecode VMs, the size of opcodes is only one byte, which allows for 256 opcodes,

most of them already used by VM instructions. So superinstruction optimization works

best with direct-threaded code because opcodes in VM instructions are encoded with

address pointers (4 bytes on 32-bit platform and 8 byte on 64-bit platform) and allow

more than 256 opcodes (instructions).

3.3.6 Inline-Threaded Dispatch

After the interpreter core is compiled into native code on a hardware platform, each

VM instruction’s associated native implementation in the interpreter core consists of

29

iadd impl.

dispatch code

iload impl.

dispatch code

istore impl.

dispatch code

(1) iload a
(2) iload b
(3) iadd
(4) istore c

VM Code

Interpreter Core
Native Code

istore impl.

iadd impl.

iload impl.

iload impl.

Dynamically Generated
Native Code Sequence

(1)

(2)

(3)

(4)

Figure 3.9: Inline-threaded dispatch. The VM instruction sequence to implement the
arithmetic assignment: c = a + b is on the left. The interpreter core native VM
instruction implementation is copied to form the corresponding native code sequence
to carry out c = a + b

the native code to carry out the function of that VM instruction and the native code

required to dispatch to the next VM instruction (Figure 3.9). For a straight line ba-

sic block of VM instructions, inline-threaded dispatch [PR98] dynamically copies the

native executable code of the interpreter code segments for VM instructions in the se-

quence without the dispatch native code and concatenates the copied executable code

together to form a straight line of native code. Then the new dynamically created

native code for the straight line of VM instruction will be executed whenever the same

sequence of VM instructions needs to be executed. In this way, all the instruction

dispatch code is eliminated for the sequence. Figure 3.9 shows the VM instruction se-

quence to do c = a + b: iload a, iload b, iadd, istore c. Generally speaking,

one block of native code will usually be created for each basic block in VM code.

Inline-threaded dispatch is probably the fastest dispatch mechanism so far. How-

ever, it sacrifices portability and code size to gain performance benefits for the inter-

preter.

3.3.7 Context-Threaded Dispatch

Context-threaded dispatch [BVZB05] tries to align the virtual PC of the VM code

with the hardware program counter to leverage the hardware prediction resources. A

30

Figure 3.10: Context-Threaded VM interpreter Sequential Code. Source: [BVZB05]

Figure 3.11: Context-Threaded VM interpreter - VM branch instruction handling.
Source: [BVZB05]

31

straight line of VM code is converted into a sequence of function calls (Figure 3.10).

Now, the costly indirect branches are replaced with function calls and returns, which

take advantage of the hardware return-address stack to make very accurate prediction.

Inlining is required to handle the VM branch instructions. VM call and return in-

struction are handled specially to align the virtual PC and hardware PC (Figure 3.11).

Native code generation is required during runtime to generate the native functional

calls, handle VM branches and VM calls/returns.

3.3.8 Vmgen Interpreter Generator

Interpreters for different dispatch mechanisms share a lot of common code templates.

Vmgen [EGKP02] is an interpreter generator which can be used to produce an inter-

preter with switch, token-threaded, and direct-threaded dispatches. The generator

uses an instruction specification file, either in stack-format or register format, as an

input. It mainly supports stack-based architectures, and includes stack-caching and

superinstruction.

3.3.9 Summary

Figure 3.12 shows all the dispatch cost reduction techniques discussed in this section

in terms of efficiency and complexity. Generally speaking, the more complex a dis-

patch method is, the less portable it is. The switch statement is the least complex and

most portable dispatch method for building an interpreter. When ANSI C is the only

available programming environment, switch is the only option. On the other end of the

spectrum, inline-threaded and context-threaded are the most complex and efficient dis-

patch mechanisms. It requires more effort to port inline-threaded and context-threaded

interpreters and specific hardware platform knowledge is required. Superinstructions

usually require direct-threaded dispatch to allow more than the 256 opcodes available

in bytecodes to achieve the benefits of dispatch reduction.

3.4 Interpreter Stack Caching

Interpretation of a VM instruction consists of three parts:

32

Complexity

Efficiency

switch

direct-threaded

inline-threaded

superinstruction

indirect-threaded

token-threaded

context-threaded

Figure 3.12: Comparison of dispatch reduction techniques

33

• Accessing operands of the VM instruction

• Performing the function of the VM instruction

• Dispatching to the next instruction

Most virtual machines (Pascal P-Code VM [PD82], Smalltalk [GR83], Java [LY99])

and Microsoft.NET CLR [ECM02]) use stack-based VM instruction architecture. VM

instructions implicitly access the operands from the top of an operand stack using a

stack pointer (SP) and/or the local variables. The operand stack and the local variables

are typically an array of memory locations.

For a stack-based VM, all computation is done through the operand stack. For

example, the arithmetic expression c = a + b will produce the Java bytecode instruc-

tions: iload a, iload b, iadd, istore c. The first two instructions push the num-

bers a and b from local variables onto the operand stack. These two iload instructions

will first load the local variables (memory locations) into the physical registers of a real

processor and save the values back to the operand stack (memory location). The iadd

instruction pops the values of a and b from the operand stack (memory locations →

physical registers), adds them, and pushes the results back onto the operand stack

(move from a physical register into a memory location). The istore c instruction will

load the value from the operand stack (memory location) into a register and then save

the value into a VM local variable (memory location). There is a lot of data traffic

between the physical registers and memory locations (the operand stack and the local

variables).

One important characteristic of stack-based VMs is that the top of an operand

stack is consumed very quickly by the following instructions. Instead of moving the

data between physical processor registers and the operand stack (main memory), stack-

caching [Ert94, Gri01, PWL04] for a stack-based VM uses physical registers in a real

processor as an extension to the operand stack to keep the top N elements of the operand

stack. For example, the results of the iadd do not have to be saved on the operand

stack and later to be loaded again to move the result to the local variable c. Stack

caching has the potential to cut down the traffic between the physical registers and the

operand stack (memory locations).

Given N registers used for the stack caching, there are N + 1 cache states. There

could be between 0 and N top elements of the operand stack stored in the physical

34

registers. The register cache can overflow and underflow. Overflow happens when

there are already N values stored in the register and a new value is pushed onto the

operand stack. Underflow happens when an instruction needs to access some operands

which are not in the register cache. There are two ways to maintain the register cache.

The first way [PWL04] is to keep the top of the operand stack in a fixed register,

such as the register R
n
, as shown in Figure 3.13. When a new value is pushed onto

the operand stack, the existing values are shifted down: R
n
→ R

n−1, ..., R2 → R1,

R2 → (SP + 1). The number of shifts depends on the cache state. If the cache is full,

the shift will go all the way and one item will be moved to the operand stack. On the

other hand, the values from the operand stack will be loaded into the register cache if

it is not full after the execution of an instruction. The second way [Ert94] is just to

regard the register cache as an integral part of the operand stack. R1 is the next item

above the item pointed by the stack pointer (SP), as shown in Figure 3.13. New items

pushed will be loaded into R1, R2, ..., and R
n
. If the register cache is full, the shift

operation will still happen. There will be no prefetching to fill the register cache from

the operand stack when the register cache is not full.

In different cache states, the techniques used to access the operands of instructions

can be different. There are two schemes [Ert94] to implement stack caching in an

interpreter: static stack caching and dynamic stack caching. Static stack caching

uses the compiler to analyze the cache states and produce the necessary VM code to

maintain the cache state and dispatch to the next instructions. Dynamic stack caching

needs one interpreter loop for each register cache state. The interpreter will keep track

of the cache state and dispatch to the appropriate interpreter loop. One problem with

this approach is code explosion because of the replication of the same interpreter for

different cache state. Code sharing [PWL04] can can help to solve this problem.

An interesting variation of stack caching [Gri01] uses the data types of the item in

the register cache as the cache state. Only one item is kept in the register. However,

the item will be in different registers when the data type is different.

On hardware platforms with limited physical registers, such as Intel X86 processors,

it is extremely difficult to dedicate even one physical register to stack caching.

35

...

Rn

R1

R2

Physical Registers

Operand Stack

SP

Figure 3.13: Stack caching

3.5 Register Machines

Current computer processors (Intel, AMD, PowerPC) use register-based architectures.

On the other hand, virtual machine (VM) implementations have been predominately

stack-based (Smalltalk [GR83], Java [LY99], and Microsoft.Net CLR [ECM02]) since

Pascal’s P-machine [PD82].

3.5.1 Stack vs. Register Instruction Sets

Real Stack Computers

Stacks are widely used in computer science. An evaluation stack is used to compute

the value of arithmetic expressions. In a processor, a call stack saves the traces of

subroutine calls and returns.

A stack computer with a stack-based instruction set [Koo89] uses a stack to store

the operands (temporaries) for instructions (computation). In a stack computer, most

of the instructions have implicit operands on the top of the operand stack. Any result

36

produced by an instruction will be pushed onto the operand stack. There are two

important instructions load and store. The load instruction pushes a value from an

arbitrary RAM location onto the top of the computational stack and the store instruc-

tion saves a value from the top of the computational stack into a memory location.

The main advantages of a stack-based instruction set are:

1. Very high code density compared to other form of instruction sets (such as

register-based instruction sets)

2. Simplicity of the instruction set

3. Simple compiler implementation to generate stack-based code from source pro-

gramming language.

Real Register Computers

A register machine uses the registers to store the operands (temporaries/result) of

instructions (computation). In a register machine, the operands (register/memory

location) must be encoded as part of an instruction. Most compilers for register ar-

chitectures will use registers as much as possible because accesses to the registers are

faster and a limited number of registers allow for shorter encoding of the instructions.

Generating code for a register machine is more complex and a sophisticated register

allocator is often needed to make best use of a limited number of registers to maximize

the performance of a source program.

Comparison

There have been many arguments between stack and register-oriented instruction set

architectures. Glenford J. Myers [Mye77] compared register architectures, stack ar-

chitectures, and storage to storage architectures. He used assignments and simple

arithmetic expressions as examples to draw the conclusion that stack architectures are

not superior and that storage to storage architectures (more close to VM register ar-

chitecture) are more desirable. In reply to Myers [Mye77], Schulthess and Mumprecht

[SM77] argue that Myers’s examples only represent a subset of programming language

usage cases. It is more difficult to draw any definitive conclusions.

37

3.5.2 Register-Based Virtual Machines

There have been several virtual machines (Dis [WP97], Perl 6 [Fag05] , Lua 5.0

[IdFC05], Mamba [PA02], and Rain VM [Bro06]) implemented with register instruction

set architectures.

Dis

Dis [WP97] is a virtual machine with a register architecture created at Bell Labs

to support application portability. The extra memory traffic of a stack-based VM

was given as the reason for using the register-based VM. From their experiences of

implementing a stack computer in the AT&T Crisp microprocessor, Winterbottom et

al. [WP97] believed that a stack architecture is inherently slower that a register-based

machine. Moreover, it was argued that closer resemblance of VM instructions and real

processor instruction allows easier JIT compilation. Dis uses a three-address instruction

encoding. The first source and the last destination operand can be memory addresses

or arbitrary constants while the second operand is limited to smaller constants and

stack offsets to reduce code size. Each operand specifies an address either in the stack

frame of the executing procedure or in the global data of its module.

The Parrot Virtual Machine

Perl 6 [Fag05] moves away from its earlier stack-based versions to a new register archi-

tecture. It is intended to support multiple languages including Perl itself. It has many

higher-level features such as objects, thread synchronization support and garbage col-

lection. The designers [Fou07] of Perl 6 give some of the following reasons for moving

to the register architecture:

1. Fewer register-based VM instructions are required than those of a stack VM.

2. More research in optimization for register-based hardware to take advantage of.

3. Break away from the tradition of stack VM implementation to innovate.

Parrot originally used a scheme similar to a real processor. It had four groups

(integers, floating-point numbers, strings and PMCs) of 32 registers. In the later

38

OP A B C

0 ... 5 6

OP A Bx

OP A sBx

... 13 14 ... 22 23 31...

Figure 3.14: Lua 5.0 instruction format. Source: [IdFC05]

evolution, the number of registers became unlimited to eliminate register spills. The

virtual registers of the Parrot VM are stored in a register frame. These frames can be

pushed and popped onto a virtual register stack.

Lua 5.0

Lua is a scripting language widely used in game industry. Lua 5.0 [IdFC05] moved to

register-based architecture partly because of earlier work on register machines in our

group. There are 35 instructions in Lua’s virtual machine. Virtual registers are kept

in the run-time stack, which is implemented with an array. Constants and upvalues

are also stored in arrays. Lua 5.0 uses 32 bits instruction encoding, as shown in Figure

3.14. The first 6-bits are the opcode. The next 8 bits are the first operand (A) and

always present. The second (B) and third (C) operands are 9 bits. These second and

third operands can be combined into one larger operand. Performance comparisons

between Lua 5.0 and 4.0 show around a 20% improvement.

Mamba

Mamba [PA02] is a new VM for Python. The new register instruction set enables the

number of VM instructions to be reduced to 18 from 103 stack-based VM instructions.

The reduced instruction set size is achieved by moving the functionality from the

instructions into the objects that the instructions act upon. There is a maximum of

4096 registers in the Mamba virtual machine. All the registers are the same; they

can be used with any instructions. The first 64 registers are global; their contents are

visible across function calls. The remaining registers (4032) are local; their values are

saved before a function call and restored after the return from the call. All instructions

(except move) use one byte (8-bits) to encode the operand. The move instruction uses

39

a 12-bit operand encoding, enabling accesses to all of the registers.

Rain Virtual Machine

The Rain VM [Bro06] is implemented with a register architecture for concurrency. The

decision was made based on research done for this dissertation [SGBE05] to demon-

strate that a register interpreter-based VM has better performance than a stack VM.

In the Rain VM, the instruction set uses 32-bits to encode two-address instructions.

The first byte is the opcode and the second one is a sub-opcode. The third and fourth

bytes are source and destination operands. The registers are addressed by one byte

(256 registers). The Rain VM initially allocates 8 or 16 registers. The VM can increase

the number of registers as needed. It uses context pointers to quickly switch between

threads. Part of the context information is related to register blocks. It is not clear

from the paper whether Rain VM creates a new register block or saves/restores the

register block for each method/function call/return.

3.5.3 Virtual Register Organization

There are various ways to organize the virtual registers in a virtual machine. Some VMs

(such as earlier versions of the Parrot VM [Fag05] and Mamba [PA02]) have a fixed

number of general purpose registers or even a fixed number of registers for different

data types, like a real processor. The state of the registers has to be saved/restored for

function calls and returns. Another problem with a fixed number of registers is that a

register allocator is needed and virtual register spilling can happen. This can cause a

lot of memory copy operations. Other VMs (such as the current version of the Parrot

VM [Fag05]) create a new set of registers on a stack for each method call. Usually the

number of required registers can be determined when compiling the source code. The

number of addressable registers is limited by the size of operands (typically one byte).

256 registers are usually more than enough for modern object-oriented programming

languages which encourage small methods. A register allocator is not needed, although

one can be used to minimize the number of registers to save some space. Furthermore,

all the VM registers are not physical registers in a real processor. They are typically

represented using an array and indexed by an integer (register number).

40

3.5.4 Java Virtual Machine Related Research

Davis et. al. [DBC+03, GBC+05] began the first large-scale quantitative study of stack

vs. register instruction set architectures on the Java virtual machine. They translated

the stack-based Java bytecodes into register ones. All the stack push/pop instructions

were translated into move instructions. A simple copy propagation algorithm was

applied to eliminate the redundant move instruction in the register architecture. Of

the resulting register code, the number of executed VM instructions could be reduced

by 35% while the bytecode loads increased by 45%. There were no timing results.

3.6 Indirect Branch Prediction

Branch instructions in a program are used to transfer the execution of a program from

one part to the other. There are mainly two types of branch instructions: conditional

branch instructions and unconditional branch instructions. Unconditional branch in-

structions can be further divided into unconditional direct jump instructions and un-

conditional indirect jump (indirect branch) instructions. A conditional branch instruc-

tion has two directions of program control flow: the fall-through target (the next

instruction) and the jump target (encoded in relative or absolute address as part of the

instruction). An unconditional direct jump has only one target. An indirect branch

(indirect jump) is a type of branch instructions, whose targets are determined by a

computed value in a register. Indirect branch instructions in a processor can have

more than two possible branch targets.

On modern wide-issue and deeply pipelined processors, speculative execution be-

yond branch instructions is necessary to better take advantage of available hardware

resources and gain more benefits from instruction-level parallelism. The penalty is very

high when the speculative execution goes in the wrong direction. When this happen,

all the work done beyond a branch has to be flushed and restarted in the new direction

of execution.

Conditional branches can be predicted very accurately (over 97%) [YP93]. Un-

conditional branches will always be taken and can be predicted very accurately using

branch target buffer (BTB) because of their static targets. Indirect branch prediction

has received relatively little attention because there are a relative low percentage of

41

.

.

.

.

.

.

.

.

.

Branch
Instruction

Address

Branch
Prediction
Statistics

Branch
Target

Address

Figure 3.15: Branch target buffer organization. Source: [PS93]

them in general applications. For example, only one out of 12 benchmarks in SPEC-

Cint200 has over 1% indirect branches in executed instructions [SÖG06]. The trend

towards object-oriented programming languages will increase the numbers of indirect

branches (2% in C++ programs) [DH98]. Interpreters as a category of applications

usually have a much higher percentage (up to 13% of executed instructions) [SÖG06].

The most widely available branch target prediction mechanism in current proces-

sors is the branch target buffer (BTB). The branch target buffer is a small cache (see

Section 2.4.1) that retains the addresses of recently executed branches and their targets

[SL84, PS93]. The BTB can reduce the performance penalty of branch instructions by

predicting those branches and caching information about their most recent targets. As

shown in Figure 3.15, there will usually be three types of information stored in a BTB:

a tag identifying a branch instruction (usually the branch instruction address), branch

prediction statistics to help make branch predictions, and the target address of the

branch instruction. Typically, a branch instruction address is used to index into a as-

sociative set in the BTB, which contains multiple entries. Then the branch instruction

address is compared. If a matching entry is not found in the set, no prediction is made.

After the branch is resolved, the information about the branch instruction is added to

the relevant set. If the branch instruction can be found in the set, a prediction can be

made. After the branch is resolved, information about the branch is used to update the

42

corresponding entry. For an indirect branch instruction, the direction of the branch is

always taken. However, the target address of corresponding entry will be updated if

the predicted target address is incorrect.

The default BTB misprediction update policy is not very effective (51.8% prediction

rate for SPECint 95 [CHP97]). It will always predict the previous target address as

the target address of the same indirect branch instruction when it is executed again.

3.6.1 BTB with 2-bit Counters

Galder and Grunwald proposed a BTB with 2-bit counters (BTB-2bc) to improve

the indirect branch prediction for C++ programs [CG94]. BTB-2bc stores a 2-bit

counter for each indirect branch in the BTB. The branch target will only be updated

after two consecutive mispredictions of the branch target. The scheme reduces the

misprediction rate from an average of 28.1% for the standard BTB to 24.9%. The

BTBs with 2-bit counters perform well when a few targets dominate and there is only

an occasional target change. Polymorphic branches occasionally switch their target, a

situation observed in object-oriented programs [AH96]. However, Chang et al. [CHP97]

found that 2-bit strategy is not very successful in predicting the targets of indirect

branches in C programs such as the SPECint95.

3.6.2 2-Level Prediction of Indirect Branches

A 2-level conditional branch predictor can reach the prediction rate of 95-97% [YP93].

The success of 2-level conditional branch prediction inspired an interest in indirect

branch prediction research [CHP97, DH98].

Chang et al. [CHP97] proposed a two-level indirect branch target prediction with

a target cache (similar to a BTB). The branch instruction address and branch his-

tory/path history are hashed to index the target cache, as shown in Figure 3.16

and 3.17. This makes it possible for the same indirect branch with different histo-

ries (same/different indirect branch target) to coexist in the target cache. A tagless

(direct-mapped, see Section 2.4.1) target cache, as shown in Figure 3.16, uses an in-

direct branch instruction’s address and history information to index to a BTB entry.

Two indirect branch instructions may be mapped to the same BTB entry. Thus it

will create interferences (conflict) between different branch instructions. A tagged

43

......

History Information

Branch Address

hash
function

Target Cache

Target address

Figure 3.16: Structure of a Tagless Target Cache. Source: [CHP97]

(set-associative, see Section 2.4.1) target cache , as shown in Figure 3.17, solves the in-

terference problem by first indexing into a set in a set-associative target cache. Then a

tag, usually the branch address, is used to select the right indirect branch instructions.

The pattern history uses the target address of previous branches. The pattern history

using the indirect branch target address is particularly effective for SPECint95 Perl,

which is an interpreter. Change et al. [CHP97] showed that a 16-way set associative

tagged target cache with pattern history can reduce the execution time of gcc and Perl

by 12.66% and 4.74% respectively.

Driesen et al. [DH98] also used a two-level indirect branch predictor. The branch

predictor has a global (shared) history pattern which consists of past indirect branch

target addresses. They compared different schemes for two-level indirect branch pre-

diction and found that a global history pattern and per-address table resulted in the

lowest misprediction rate of 6.0% [DH97]. The global history pattern together with

the indirect branch address is hashed to index into a history table (similar to BTB

with 2-bit counter update policy) to make the indirect branch target prediction. In

their study, only two consecutive mispredictions of the indirect branch target will cause

the target to update in the BTB. They started from unlimited resources (no hardware

constraints on predictor size or organization) to discover the best strategy for making

the indirect branch prediction. The best unconstrained predictor achieved a mispredic-

tion rate of 5.8% while a fully-associative branch target buffer (BTB) only achieved a

best-case misprediction rate of 24.9%. For a 4-way associative table, the misprediction

rate of the best hybrid predictor improved to 8.98% for 1K entries and 5.95% for 8K

44

History Information

Branch Address

Index
function

Set

Tag

? ?

Branch Target

Figure 3.17: Structure of a Tagged Target Cache. Source: [CHP97]

entries.

It is important to note that the past path/pattern history provides context for

improving indirect branch prediction. The global path history consisting of previous

indirect branch target addresses performs better than other history schemes [DH98,

CHP97]. For an interpreter, the global path history helps to align the virtual code

sequence to the predictor’s history state.

3.7 Trace Cache

The pipeline of a superscalar processor can be divided into instruction fetch/decode

and instruction execution, as shown in Figure 3.19. The instruction issue buffers are

the interface between instruction fetch mechanism (producer) and instruction execution

mechanism (consumer). Instruction fetches are usually done sequentially by increment-

ing the instruction pointer. Branch instructions redirect the instruction fetching to new

locations. Thus branch instructions act as feedback to the instruction fetch mechanism

from the instruction execution mechanism.

As the issue width of a superscalar processor increases, more and more instructions

45

Global History Pattern
P targets Branch

Address

History Table

Figure 3.18: Two level indirect branch prediction. Source: [DH98]

Instruction
Fetch &
Decode

Instruction
Execution

Instruction
Issue

Buffer(s)

branch outcomes/jump addresses

Figure 3.19: Instruction fetch and execute mechanisms, separated by instruction
buffers. Source: [RBS96]

46

A B

T

C

T

Compiled Binary Code
In Instruction Cache

A B C

A Trace Cache Line of
Executed Instructions

Figure 3.20: Non-contiguous compiled code in the instruction cache is shown on the
left. The same code in a contiguous trace cache line is shown on the right. The
execution order is basic block A, B and C in non-contiguous location in their compiled
form. The trace will be stored sequentially in a trace cache line after it is executed for
the first time.

needs to be fetched per-cycle to satisfy the instruction demands of the instruction

execution engine. There are only 4 to 5 instructions in a basic block in most integer

code. For a superscalar processor, an issue rate of over 4 instructions per cycle means

fetching instructions across basic blocks per cycle to keep the pipeline full. A single

branch predictor can predict the target of one branch instruction. Instruction fetch

can begin from the target address until the next branch instruction. With a single

branch predictor, only one basic block can be fetched from the instruction cache and/or

memory per cycle because the target of the next branch is still unknown. More than

60% of branch instructions are taken branches. Fetching instructions across basic

blocks means accessing non-contiguous code in their compiled form, as shown in left

part of Figure 3.20. Even though the instruction cache can be enhanced to fetch

multiple basic blocks per cycle from the instruction cache with a multi-branch predictor

[CMMP95, SJSM96], it will create complexity and add latency at the critical path of

the instruction fetch mechanism.

The trace cache [RBS96, PFP97] was proposed as a scheme to improve instruction

fetch bandwidth in order to fully exploit instruction level-parallelism with low latency

and complexity. The basic idea is to capture snapshots of the executed instruction

stream and to store them in a special cache (trace cache), as shown in the right part

of Figure 3.20. Later on, the same execution sequences stored in a trace cache line

is predicted to be in the next execution path; the cached and contiguous code in the

trace cache line consisting of multiple basic blocks can be issued into the instruction

issue buffers in one cycle.

47

Functional
Units

Multiple
Branch

Predictor

ICacheTrace Cache

Fetch Address

Fill Unit

Selection Logic

Hit/Partial Hit

Predicted
Path

MUX
Next Fetch
Address

Decoder

Indirect Branch Target Address

Trace Cache Fetch Address of Indirect Branch

Figure 3.21: Trace cache microarchitecture

A trace cache consists of multiple trace cache lines. Each trace cache line has n slots

for storing dynamic instruction sequences with no more than m basic blocks (branches).

Each trace cache line has the following information [RBS96]:

1. valid bit : indicates this is a valid trace.

2. tag : the tag field identifies the starting address of the trace.

3. branch flags: a single bit for each branch within the trace to indicate the path

followed after the branch (taken/not take).

4. branch mask : indicate (1) the number of branches in the trace and (2) whether

or not the trace ends in a branch.

5. trace fall-through address.

6. trace target address.

7. The alternative target addresses for the conditional branches before the last

branch instruction which ends the trace cache line. These target addresses are

needed in Patel et al’s trace cache performance improvement technique - partial

matching [PFP97].

48

The trace cache works together with the existing instruction cache to supply in-

structions to the execution engine of a processor, as shown in Figure 3.21. When an

instruction is needed, the fetch address of the instruction is sent to both instruction

cache and trace cache. The multiple branch predictor will supply the direction of the

branches in the following instruction stream given the fetch address. The fetch address

is used to index into the trace cache to see whether a trace is available at the fetch ad-

dress. If one is found, its branch flag (execution path) is compared with those made by

the multi-branch predictor. The trace cache line predicted to be in the right execution

path will be delivered to the instruction issue buffer. Otherwise, the instruction cache

will supply the needed instructions. A fill unit will collect instruction traces retired

from the functional units. Those traces can then be added to the trace cache or can

be used to update the existing traces.

Since its introduction into mainstream microarchitecture research in 1996, the trace

cache was studied mainly as a high instruction delivery mechanism for superscalar

processors.

Patel et al. [PFP97, FPP97, PEP98, PFP99, Pat99] focused on approaches to

improve the fetch rates of the trace cache. They examined issues and techniques

related to the partial-matching of trace cache lines, new indexing functions to create

path associativity, inactive issue with a partial-matching trace cache line, issuing dual

path trace segments, branch promotion of highly predictable trace, and trace packing to

allow more replication of execution traces. The set-associativity and updating policies

of trace caches were also studied. The fill unit was studied to find out whether it is

better to collect traces when instructions are issued to, or retired from, the execution

unit.

Rotenberg et al. [RBS96] first demonstrated that the trace cache has better per-

formance and lower latency than existing instruction cache enhancement mechanisms

for improving the instruction fetch rate per cycle. They went further to propose a

new microarchitecture - the trace processor [RJSS97], which is trace-centric. In the

proposed trace processor, a next trace predictor will make the predictions instead of

a multi-branch predictor. The control, register and memory dependencies are handled

at the trace level using value prediction.

One important part of using a trace cache is to make multiple branch predic-

tions. One way to do this is to extend existing two level single branch predictors

49

to predict multiple branches in one cycle without losing too much prediction accuracy

[RBS96, PFP97]. The next stream predictor [SFR+02] is able to predict a sequence of

executed instructions starting from the target of one taken branch to the next taken

branch. Coupled with an optimized code layout, the 40KB stream predictor is 22%

better in mispredictions per instruction than the best evaluated gskewed predictor.

In a next trace predictor [JRS97], a trace is treated as basic units. The next trace

predictor predicts explicitly sequences of traces instead of individual branches inside,

which are predicted implicitly. From the results of six chosen benchmarks, the average

misprediction rate of next trace predictor is shown to be 26% lower than the most

aggressive previously proposed multiple-branch predictor.

3.8 Conclusion

In this chapter, we first reviewed the techniques for reducing the dispatch cost of an

interpreter. Then we looked at stack-caching - a way to reduce the cost of operand

accesses in a stack-based interpreter. Unlike real processors, register-based VM is not

the predominate choice for VM implementation. We compared the difference between

the two architectures and studied some existing register VM implementations. Finally,

we reviewed the trace cache and some variations.

In the next chapter, the research on the effect of the trace cache on indirect branch

prediction is presented.

50

Chapter 4

The Trace Cache and Indirect

Branch Prediction

4.1 Introduction

Instruction-level parallel (ILP) processors, whether superscalar or VLIW, require a

large number of functional units to extract higher ILP from applications. A wider

execution engine demands a wider instruction fetch unit that must potentially match

the width of the functional units in order to fully utilize them. This means that

the instruction fetch unit must fetch a very large number of instructions from the

instruction cache across several basic blocks at every cycle. In general, these basic

blocks are placed in non-contiguous locations in the instruction cache. More than

one cache access may have to be performed in order to fetch all the required basic

blocks. This non-contiguous fetching places limits on the number of instructions that

can be fetched in a single cycle (of reasonable length). Hence, the trace cache has been

proposed as an alternative approach to fetching multiple basic blocks in a single cycle.

The trace cache is a microarchitectural technique for increasing instruction fetch

bandwidth of a superscalar processor. The processor collects snapshots of the executed

instruction stream and stores them as trace cache lines along with branch target ad-

dresses. This way, instructions from non-contiguous execution path are placed into

contiguous locations in the trace cache. When a trace cache line is predicted to be the

next execution path, the entire trace cache line can be fetched in a single cache access.

51

In general, most general purpose C and Fortran programs have low numbers of in-

direct branches, and conditional branches and function returns are the most important

types of branches to predict. However, the frequency of using indirect branches will be

much higher in future applications [DH99, SFF+02], although conditional branches will

continue to outnumber indirect branches in most applications. For example, object-

oriented programs use larger numbers of indirect branches to implement virtual func-

tion calls. Dynamically linked libraries are also called using indirect branches. Finally,

an increasing number of program languages are being implemented using virtual ma-

chines that are implemented partially (such as Sun’s standard client JVM) or wholly

using interpretation, a technique that involves very large numbers of indirect branches.

Thus, higher indirect branch prediction accuracy rates will be sought in future ILP

processors.

We observe that in an ILP processor with a trace cache, it is possible to improve

the indirect branch prediction accuracy of programs using the trace cache to make

indirect branch predictions instead of using a branch target buffer. Furthermore, using

this scheme involves in very simple modifications to the trace cache hardware structure

without using any extra hardware tables.

In this chapter, we show how the trace cache can capture some of the context in-

formation used by two-level indirect branch predictors [CI01][DH98][KK98]. Although

the improvement in accuracy is much lower than that achieved by a two-level indirect

branch predictor, the cost is also much lower. If one has already decided to implement a

trace cache, then it can be used to significantly improve indirect branch prediction over

a BTB at little or no additional cost. We are not attempting to compete with two-level

indirect branch predictors or next-trace/next-stream predictors [JRS97] [SFR+02]. We

merely show that some fraction of the benefits of two-level prediction can be captured

by the trace cache, a result that is not widely known.

The main contribution of this chapter is an exploration of the observation that

the trace cache captures context information about the control-flow of the program.

This context information can have an impact on the accuracy of other predictors, in

this case the indirect branch predictor. Capturing this sort of context information

is, to our knowledge, a mostly unintended side effect of the trace cache. Although

others have noticed the same effect in other contexts (see Section 4.8), the results

are under-reported and not well-known. Our results are interesting primarily because

52

of the practical effect on prediction accuracy. However it is also interesting because

it demonstrates how different microarchitectural features can interact in unexpected

ways.

Based on our initial observation, we have a number of smaller contributions, which

come from exploring variations of the trace cache. 1) We propose to update the indirect

branch target address in the trace cache if a trace cache line ends with an indirect

branch instruction. We will motivate the use of the update policy for the rest of the

chapter. 2) We show that a 2-bit saturating update counter associated with an indirect

branch target address at the end of each cache line can improve prediction accuracy

in much the same way that such counters are used in other predictors. 3) We measure

the impact of each individual trace cache configuration or strategy on the prediction

of indirect branches such as using trace packing or varying cache size, line size and

associativity.

4.2 Background

Most trace cache research [Pat99][RLPN+99][RBS99][RBS96] has focused on how differ-

ent configurations of the trace cache can help improve the instruction fetch bandwidth

of superscalar processors. Jacobson et al. [JRS97] predicts indirect branch target ad-

dresses using the next-trace predictor along with all other branch types in trace caches.

Santana et al. in [SFR+02] and [SRLPV04] uses the next-stream predictor, which is

quite similar to the next-trace predictor, to predict indirect branch target addresses.

Both the next-trace and next-stream predictors use large tables to predict all types

of branches in a single branch prediction framework. On the other hand, we propose,

in this chapter, a simple updating mechanism in the trace cache that can moderately

improve the indirect branch prediction rate without any extension in the BTB mecha-

nism.

4.2.1 Trace Cache

The trace cache is a microarchitectural technique for increasing instruction fetch band-

width of a superscalar processor. The model of the trace cache in this chapter is based

on the description in Patel’s PhD dissertation [Pat99]. A trace cache system consists

53

of an instruction cache, the trace cache, a multiple-branch predictor and a fill unit.

The trace cache contains 2x trace cache line entries (x > 0) and supplies the functional

units with stored trace cache lines. Each trace cache line (Figure 4.1) stores multiple

basic blocks for an execution path, namely it can contain up to n instructions with

no more than m conditional branches. The line is accessed by only a fetch address

of the first instruction in the first basic block. It is possible to make the trace cache

path-associative, which allow the storage of multiple trace cache line starting with the

same address. But for simplicity, we don’t implement that feature because the the

set-associative trace cache can have the same effect. Each trace cache line contains

the starting address of a trace, the path information (the number and directions of

branches), the target address of the basic blocks to generate the next fetch address

even for the partial match of a trace. In the case of a trace cache miss, the instruction

cache provides instructions to the functional units.

Basic
Block 1

Target
Address 1

Start
Address

Path
Info.

Basic
Block 2

Target
Address 2

Target
Address 4

Target
Address 3

Basic
Block 3

Figure 4.1: A trace cache line of 3 basic blocks

The multiple-branch predictor, which is based on a two-level branch predictor, is

used to predict m branches simultaneously for a trace cache line [Pat99, P3]. The

branch target buffer (BTB) provides target addresses for the predicted-taken branches

in case of trace cache miss. The BTB saves only one target for each taken branch. A

target address in the BTB is updated when the target address changes. For return in-

structions, a return address stack (RAS) is used. Each time a function call is executed,

its return address is pushed onto the RAS. The branch predictor uses the RAS to get

the return address for a return instruction.

The fill unit forms execution traces and places them into the trace cache as in-

structions retire from the functional units. A trace is terminated when it contains n

instructions or m conditional branches or an indirect branch, return or a trap instruc-

tion. If there is a trace cache line starting at the same address, the new trace cache

line replaces the existing trace cache line only when it is longer or follows a different

execution path (i.e. keep-longest write policy).

54

4.2.2 Indirect Branch Prediction

Indirect branch instructions are control instructions whose target addresses are loaded

into registers. Thus, they can have multiple branch targets and this makes them very

hard to predict [CG94][CHP97][CI01][KK98]. The most commonly used predictor for

indirect branches in current processors is the BTB, which caches only one target address

for each indirect branch instruction. The predicted target address is updated when the

actual target changes.

Two-level indirect branch predictors combine the address of the branch with a

history register of recent branch targets. They are effective because there is often a

correlation between the outcome of different indirect branches. The history register

stores context information on the outcome of these other branches, allowing indirect

branch prediction rates of more than 90% [CI01][DH98][KK98]. To achieve the very

best prediction accuracy, a two-level indirect branch predictor should be used. However,

such predictors can be large and complicated.

4.3 Indirect Branch Prediction using Trace Cache

The trace cache can store multiple indirect branch targets in different trace cache lines

ending with the same indirect branch instruction. Each trace cache line stores two

pieces of context information that are useful for indirect branch prediction. First, ev-

ery trace cache line has a starting address, which provides some context information

for any indirect branch in the line. Secondly, if there are conditional branches before

an indirect branch in a trace cache line, the directions of these conditional branches

provide a context or path history for the indirect branch target. Although this context

information is not as complete as the information in a two-level indirect branch pre-

dictor, we show in this chapter that it can be used to provide better predictions than

a BTB.

The inherent property of storing multiple indirect branch targets in different trace

cache lines ending with the same indirect branch in the trace cache provides us with a

storage unit capable of storing multiple target addresses for an indirect branch. Thus,

we propose to explore this inherent property of trace cache to attain higher indirect

branch prediction rates by incrementally adding new functionalities such as updating

55

indirect branch target address in the trace cache lines, adding a 2-bit saturating update

counter, associated with an indirect branch target address, to each trace cache line,

using trace packing and tuning the trace cache parameters such as cache size, cache

associativity and cache line size.

The trace cache described by Patel [Pat99] does not update indirect branch ad-

dresses stored at the end of each trace cache line after the indirect branch instruction

is executed. If the indirect branch target is mispredicted, it is not updated in the trace

cache line unless the old trace cache line is replaced by the new one if the trace cache

write policy is always overwrite [Pat99].

for (i = 16; i >= 0; i--) {

offset = i & 7;

switch(intArray[offset]) {

case 0: x = y + z; break;

case 1: x = y * z; break;

case 2: x = x + y + z; break;

case 3: x = y - z; break;

}

}

Figure 4.2: Sample loop for case study

An example of a switch statement inside a loop in Figure 4.2 is presented to

demonstrate the effects of the trace cache on the indirect branch target prediction.

The targets of the switch statement are decided by an array holding 8 integer numbers.

The loop simply iterates through the same integer array elements (targets) 16 times.

Figure 4.3 shows the basic blocks and program flow chart constructed from ma-

chine code. Here; A, B, C, X0, X1, X2 and X3 denote the basic blocks in the program.

The conditional branch at A and indirect jump at B are the switch- related instruc-

tions. The direct jump is the jump instruction for break statements in cases. The

conditional branch at C is the loop test instruction. Finally, X#(0-3) is the basic block

associated with each case statement.

First, let us assume that we use only a BTB to predict branches. If the array

contents are (0, 1, 2, 3, 0, 1, 2, 3), the indirect branch prediction accuracy becomes 0%

because the indirect branch target is updated in the BTB after each iteration. If the

56

A(6)

N

B(4)

X0(2) X1(3) X2(3) X3(2) X4(2)

T

Indirect Jump

Conditional
branch
(Range check)

C(3)

N

T

Direct jump

Conditional
branch
(Loop test)

default case

Figure 4.3: Basic Block Program Flow Diagram

array contents are (0, 1, 2, 3, 3, 2, 1, 0), then the prediction accuracy rises to 18.75%.

X0C A B

X1C A B

X2C A B

X3C A B

Trace
Cache
Lines

Figure 4.4: Trace cache line layout for the case study example

When the trace cache is used as shown in Figure 4.4, basic blocks A and B become

replicated a number of times. Trace cache lines must always end at an indirect branch,

so each of the successors of the indirect branch in block B (i.e. blocks X0..X3) becomes

the start of a trace cache line. Each of these trace cache lines include their own copies

of basic blocks A and B. Therefore, the indirect branch at the end of block B is split

into four different instances, each with context information about the most recent

outcome of the same indirect branch. In this case, the trace cache is equivalent to a

two-level indirect branch predictor with a history length of one. The trace cache lines

and their indirect branch targets are perfectly correlated and the indirect branch target

57

prediction rate becomes 75% with or without the updating policy for the branch target

sequence of (0, 1, 2, 3, 0, 1, 2, 3). However, the prediction accuracy drops to 25% with

no updating and 0% with the updating policy if the branch target sequence is (0, 1, 2,

3, 3, 2, 1, 0).

Updating or not updating indirect branch targets can have significant impact on

the prediction of indirect branches depending on the target address access pattern.

The update policy can outperform the non-update policy if one target is repeatedly

accessed. For instance, the prediction accuracy is only 18.75% for the non-update but

68.75% for the update policy if the target address pattern is (0, 1, 2, 1, 1, 1, 1, 1).

A

B C

X

A

B

X

T1

A

C

X

T2

Trace Line1 Trace Line2

(a) (b)

Indirect Branch

Figure 4.5: Trace cache lines starting with the same address may end with the same
indirect branch instruction in a set-associative trace cache.

If the trace cache is designed as set-associative, then it can have different trace cache

lines starting with the same address leading to the same indirect branch instruction.

For instance, Figure 4.5a shows a control flow graph of a program that ends with

the same indirect branch instruction. Here; A, B, C and X represent basic blocks

where A is the starting and X is the ending blocks. Two traces are shown in Figure

4.5b in which the trace lines 1 and 2 follow ABX and ACX paths and each having

the same indirect branch instruction in X but with two different target addresses (i.e.

T1 and T2). If two trace cache lines paths somehow correlate to their corresponding

targets, the indirect branch prediction accuracy can be improved. Now, let us assume

that we choose to update indirect branch targets in the trace cache lines when they

change. If the ABX and ACX paths always take the indirect branch targets T1 and

T2, respectively, then the indirect branch prediction accuracy drastically improves.

However, the indirect branch prediction accuracy can be very poor for the following

58

sequence:

ABX → T2, ABX → T1, ABX → T2 . . .

or

ACX → T1, ACX → T2, ACX → T1 . . .

4.4 Experimental Framework

The SPECint2000 benchmark suite and six virtual machine interpreter benchmarks

[EG01] are used to evaluate different trace cache configurations/strategies and their

influences on the indirect branch target prediction. Reduced data sets [KL02] are used

as inputs for SPECint2000 benchmarks that run to completion. Table 4.1 shows

the major characteristics of benchmarks. Num Instr. and % Indirect Branches repre-

sent the total number of dynamic instructions and the percentage of dynamic indirect

branch instructions (excluding return instructions) in the total number of dynamic in-

structions. Note that in most of these programs indirect branches account for a small

proportion of total instructions.

We implemented our trace cache model in sim-bpred in the SimpleScalar 3.0d

[ALE02a] simulator. The baseline model is the microarchitecture model that has a

2-level conditional branch predictor and branch target buffer (BTB) for predicting in-

direct branches but has no trace cache. Table 4.2 shows the configuration of the

baseline model.

The indirect branch prediction accuracy of the BTB in the baseline model is com-

pared with the base trace cache model whose simulator parameters are shown in Table

4.3. The base trace cache model uses the conditional branch prediction, BTB and RAS

parameters of the baseline model as given in Table 4.2. However, unlike the baseline

model, indirect branch predictions are more complicated. Indirect branch predictions

are made using the trace cache lines, provided there is a trace cache hit. In the case

of a trace cache miss, the BTB is instead used to make the indirect branch prediction.

Thus, the overall indirect branch prediction rate is a combination of the rate achieved

using the trace cache, and the rate for the BTB where trace cache missed occur.

An important question when measuring the performance of computer systems is

summarizing data in an appropriate way. The most common way to average results

59

Table 4.1: Benchmark statistics

SPECint2000 Num Instr. % Indirect Branches
twolf 972,726,535 0.02%
vortex 1,153,664,377 0.03%
gap 761,346,123 0.77%
bzip2 1,819,780,259 0.000007%
vpr 1,566,703,859 0.00023%
gzip 1,361,319,057 0.00002%
perlbmk 2,061,197,349 1.47%
eon 1,070,281,136 0.61%
parser 4,527,012,522 0.0001%
crafty 834,909,899 0.25%
mcf 793,869,356 0.01%
gcc 5,117,054,875 0.34%

VM Interpreter Input Set Num Instr. % Indirect Branches
gforth benchgc 64,395,745 13.01%
li boyer 183,304,695 1.13%
ocamlc ocamllex 69,738,732 11.35%
ocamlc-switch ocamllex 122,559,342 6.46%
perl jumble 40,496,306 0.71%
scheme48 build 113,143,169 3.29%

Table 4.2: Baseline model

No Trace cache
2-level conditional branch predictor Global History Size = 8
2-level conditional branch predictor Pattern History Table Size = 1024-entry
BTB size = 512 × 4
Return Address Stack (RAS) Size = 8-entry

60

Table 4.3: Base trace cache model

1024-entry directed-mapped Trace cache
Trace Cache Write Policy: keep-longest
Trace lines of 16 instructions with at most 3 branches
No updating of indirect branch targets in the trace cache

from several different benchmarks is to simply use the arithmetic mean. However, in

this chapter we primarily measure prediction rates, and a more statistically meaningful

average for rates is the harmonic mean [Lil00]. The harmonic mean H of the positive

real numbers a1, ..., an
is defined to be:

H =
n

1

a1

+ 1

a2

+ ... + 1

an

(4.1)

One downside of the harmonic mean is that very small values tend to dominate the

result. Furthermore, as most hardware designers are more familiar with the arithmetic

mean, and that there are often significant differences between the two measures, we

show both means in all charts. However harmonic mean is the more meaningful mea-

sure, and that is the one used in the text. For convenience, corresponding arithmetic

mean values are shown in brackets after.

4.5 Initial Prediction Accuracies

4.5.1 BTB versus Trace Cache with Non-update Policy

Figure 4.6 shows the indirect branch target address prediction accuracies for a model

with a BTB (i.e. BTB) and the trace cache model with the non-update policy (i.e.

TC- No Update). The last two columns in the figure shows the arithmetic and har-

monic means of prediction accuracies across all benchmarks. The results for bzip2, gzip

and vpr are not shown in the following figures because the indirect branch prediction

accuracy does not change at all due to the extremely small number of indirect branch

instructions.

In BTB, the BTB stores only one branch target for each indirect branch instruction

61

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

tw
ol

f

vo
rte

x
ga

p

pe
rlb

m
k

eo
n

pa
rs

er

cr
af

ty
m

cf
gc

c

gf
or

th li

oc
am

lc

oc
am

lc
-s

w
itc

h
pe

rl

sc
he

m
e4

8

A
R
IT

H
M

ETIC
 M

EA
N

H
AR

M
O
N
IC

 M
E
AN

In
d

ir
e
c
t

b
ra

n
c
h

 p
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

BTB TC- No Update

Figure 4.6: Indirect branch target prediction accuracies for the BTB and trace cache
with non-update policy

62

and updates the branch target when it changes. BTB outperforms TC- No Update in

these benchmarks: twolf, vortex, gap, eon, parser, crafty, gforth, ocamlc and perl. Not

updating the target of the indirect branch when it mispredicts has a very negative

impact on these benchmarks. This limits the trace cache’s ability to adapt to changing

program behavior.

On the other hand, the prediction accuracies in TC- No Update is higher than

BTB for perlmbk, gcc, li, ocamlc-switch and scheme48. In particular for ocamlc-switch

and scheme48, the advantage of some context information outweighs the significant

disadvantage of not updating indirect branch targets when the behavior of the program

changes. These virtual machine interpreters consist of code very similar to that in our

example in Figure 4.2. The single indirect branch has a large number of targets, but

there is a correlation between the previous outcome of this branch and the current one.

Thus, prediction accuracy improves considerably.

The behavior of perlmbk and li is somewhat different. In both benchmarks, there

is actually a benefit from not updating the branch target when it is incorrect. We

investigated li and found out that there are indirect branches with a number of different

targets, but where one target is more frequent than the others. If this most frequent

outcome can be found, the best strategy is to stick with it, rather than update on

every misprediction. Our experiments indicate that this target is finding its way into

the trace cache, and the strategy of not updating is effective.

Overall, the harmonic mean (arithmetic mean in brackets) of indirect branch pre-

diction accuracies across all benchmarks are 11% (52.88%) for BTB and 29% (49.85%)

for TC- No Update. Note that the harmonic mean accuracy for the BTB is heavily

dominated by the very low accuracies for ocamlc-switch and scheme48. In many cases

the BTB is actually more accurate than using the trace cache. This shows that the

model using the trace cache can predict indirect branches more accurately than the

BTB in some, but not all, cases.

4.5.2 Trace Cache with Update Policy

In the base trace cache model in Table 4.3, we use the keep-longest policy for writing

to the trace cache since it is shown to be best policy by Patel [Pat99] for maximizing

fetch bandwidth. However, if the always overwrite policy, which always overwrites the

63

trace cache lines, was used, then updating the indirect branch target addresses would

be handled automatically. However, Patel showed that the always overwrite policy is

very ineffective and wasteful in terms of cycle times spent for overwriting.

Functional
Units

Multiple
Branch

Predictor

ICacheTrace Cache

Fetch Address

Fill Unit

Selection Logic

Hit/Partial Hit

Predicted
Path

MUX
Next Fetch
Address

Decoder

Indirect Branch Target Address

Trace Cache Fetch Address of Indirect Branch

Figure 4.7: Trace cache model with the update policy

Hence, we slightly modify the trace cache microarchitecture by adding the capability

of updating indirect branch targets in the trace cache lines as shown in Figure 4.7.

When the indirect branch instruction is executed and retired, its computed target

address (i.e. Indirect Branch Target Address) and the fetch address of the trace cache

line to which the indirect branch instruction belongs arrive at the fill unit. The fetch

address can be sent to the pipeline as a part of the indirect branch instruction or can

be acquired from the reorder buffer since updating the indirect branch target addresses

in the trace cache occurs at retire time. If the trace cache line is still in the cache, then

the fill unit overwrites the indirect branch target address at the end of the trace cache

line. No target updating is performed if the trace cache line has been thrashed from

the cache.

Figure 4.8 shows the trace cache with the update policy along with the BTB and

TC- No Update models. Updating indirect branch targets in the trace cache performs

better than not updating them for twolf, vortex, gap, eon, parser, crafty, gforth, ocamlc

and perl. This is expected because for these benchmarks, the BTB model also performs

better than the TC- No Update.

64

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

tw
ol

f

vo
rte

x
ga

p

pe
rlb

m
k

eo
n

pa
rs

er

cr
af

ty
m

cf
gc

c

gf
or

th li

oc
am

lc

oc
am

lc
-s

w
itc

h
pe

rl

sc
he

m
e4

8

A
R
IT

H
M

ETIC
 M

EA
N

H
AR

M
O
N
IC

 M
E
AN

In
d

ir
e
c
t

b
ra

n
c
h

 p
re

d
ic

ti
o

n
 a

c
c
u

ra
c
ie

s

BTB TC- No Update TC - Update

Figure 4.8: Indirect branch target prediction accuracies of the BTB and the trace cache
models with the non-update and update policies

65

In contrast, TC- Update is worse than TC- No Update in perlmbk and li. The

limited amount of context information provided by the trace cache gives little benefit

to these programs, and recall from Section 4.5.1 that these benchmarks benefit from

not updating the branch targets.

On the other hand, using TC- Update in gcc, ocamlc-switch and scheme48 improves

the prediction accuracies. This is expected because indirect branch target addresses in

these benchmarks change relatively frequently as the program runs, and the updating

predictor can take account of these changes. Furthermore, all these programs benefit

significantly from the context information provided by the trace cache. Thus, the

chance of getting a target address hit for the same indirect branch in the TC- Update

model is much higher than that of the TC- No Update model. As a consequence,

TC- Update outperforms both BTB and TC- No Update in gcc, ocamlc-switch and

scheme48.

Overall, the average indirect branch prediction accuracy of TC-Update across all

benchmarks now becomes 42% (57.35%), which is 13% (7.5%)-points better than the

TC- No Update. In fact, it is even higher than BTB by about 31% (5%)-points on

the average. Thus, in the following sections, all the benchmarks will update indirect

branch targets.

4.6 Prediction Accuracies of Various Trace Cache

Configurations

The goal of the trace cache is to provide sufficient bandwidth to the execution pipeline

within the constraints of not taking up too many resources, or causing the design to

become so complex that it impacts on clock speed. Several enhancements to the trace

cache have been proposed to improve its fetch bandwidth, many of which increase its

size and complexity. Many of these enhancements affect the storage of instructions

in the trace cache, and thus have the potential to have a knock-on effect on indirect

branch prediction. The main purpose of these optimizations is, however, to improve

fetch bandwidth, not indirect branch prediction.

In this section, the configuration of the trace cache model with indirect branch

target updating is varied incrementally in order to show the effects of each configuration

66

on the indirect branch prediction accuracy. The variations in the configuration consist

of applying trace packing, adding 2-bit saturating update counters per trace cache

line, varying trace cache set associativity, cache size, cache line size, and finally the

combination of all.

4.6.1 Trace Packing

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

tw
ol

f

vo
rte

x
ga

p

pe
rlb

m
k

eo
n

pa
rs

er

cr
af

ty
m

cf
gc

c

gf
or

th li

oc
am

lc

oc
am

lc
-s

w
itc

h
pe

rl

sc
he

m
e4

8

A
R
IT

H
M

ETIC
 M

EA
N

H
AR

M
O
N
IC

 M
E
AN

In
d

ir
e
c
t

b
ra

n
c
h

 p
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

BTB TC-No Update TC-Update TC-Update with Trace Packing

Figure 4.9: Indirect branch target prediction accuracies of the BTB and the TC-Update
model with trace packing

Trace packing [Pat99] puts as many instructions as possible into a trace cache line

by fragmenting fetch blocks. The fragmentation offers a way to form different trace

cache lines, particularly in a loop. Thus, it enables the fill unit to increase the potential

of creating more trace cache lines ending with a particular indirect branch instruction.

However, it increases the chance of contentions in the trace cache since a large number

of trace cache lines can be created.

Figure 4.9 shows the indirect branch prediction accuracies of the previous models

along with TC-Update with Trace Packing. Most of the benchmarks enjoy improvement

67

in the prediction accuracies as compared to the TC-Update model. This is the result

of indirect branches being split into more separate instances, each with more context

information. The improvement is particularly high in perl by 8 percentage points and

scheme48 by about 7 percentage points. On the other hand, the prediction accuracies

of vortex, crafty and li become worse than the TC-Update and even BTB models. We

believe this is mostly due to trace cache capacity misses caused by the increased number

of trace cache lines created by trace packing. However, we found the phenomenon

difficult to study, because the breaking of trace cache lines can vary considerably during

the running of the program. Overall, the average indirect branch prediction accuracy

of the TC-Update model with trace packing across all benchmarks is now 45% (57.95%)

which is 34.38% (8%), 34.38% (5%) and 3.18% (0.6%) points better than the TC-No

Update, BTB and TC-Update models, respectively.

4.6.2 2-bit Saturating Update Counter

We also propose to extend trace cache lines with 2-bit saturating counters along with

indirect branch target addresses in order to increase indirect branch prediction. When

a new trace cache line ending with an indirect branch is created, it is placed into the

trace cache and the 2-bit update counter at the end of the line is set to 1. The update

counter is incremented if the indirect branch target is predicted correctly. Otherwise, it

is decremented. When the same trace cache line is accessed again, the indirect branch

target is not updated until the update counter in the trace cache line reaches zero.

This technique is widely used both in conditional branch predictors and in BTBs to

improve prediction accuracy. In BTBs it is particularly effective for monotonic indirect

branches, that is branches that almost always jump to the same target, but occasionally

jump to another target.

This method of updating indirect branch targets prevents a frequent target from

being removed from the trace cache line unless it is shown to be incorrect more than

once. This enables benchmarks whose indirect branch targets are biased to one or

two specific targets such as perlmbk, li, gcc, ocamlc-switch and scheme48 to keep these

predicted targets in the face of mispredictions. On the other hand, it may reduce the

responsiveness of the indirect branch predictor to changes in behavior, as in vortex.

Figure 4.10 shows that the prediction accuracies of all benchmarks improve by us-

68

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

tw
ol
f

vo
rte

x
ga

p

pe
rlb

m
k

eo
n

pa
rs

er

cr
af

ty
m

cf
gc

c

gf
or

th li

oc
am

lc

oc
am

lc
-s

w
itc

h
pe

rl

sc
he

m
e4

8

AR
IT

H
M

E
TIC

 M
EAN

H
AR

M
O
N
IC

 M
EAN

In
d

ir
e
c
t

b
ra

n
c
h

 p
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

BTB BTB with 2-bit Counters TC-No Update TC-Update TC-Update with 2-bit Counters

Figure 4.10: Indirect branch target prediction accuracies of the BTB, TC-No Update,
TC-Update and TC-Update with 2-bit update counters

69

ing 2-bit saturating update counters with respect to the TC-Update model. Overall,

the average indirect branch prediction accuracy of the TC-Update with 2-bit Counters

across all benchmarks is now 45%(59.06%) which is 16%(9%), 34%(6%), 31%(2.72%)

and 3%(2%) points better than the TC-No Update, BTB, BTB with 2-bit Counters

and TC-Update models, respectively.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

tw
ol

f

vo
rte

x
ga

p

pe
rlb

m
k

eo
n

pa
rs

er

cr
af

ty
m

cf
gc

c

gf
or

th li

oc
am

lc

oc
am

lc
-s

w
itc

h
pe

rl

sc
he

m
e4

8

A
R
IT

H
M

E
TIC

 M
EA

N

H
A
R
M

O
N
IC

 M
EA

N

In
d

ir
e

c
t

b
ra

n
c

h
 p

re
d

ic
ti

o
n

 a
c

c
u

ra
c

y

TC-Update Direct-mapped TC-Update 2-way TC-Update 4-way TC-Update 8-way

Figure 4.11: Indirect branch target prediction accuracies of the TC-Update model with
varying set associativity

4.6.3 Trace Cache Associativity

We also vary trace cache set associativity to measure the effects of a set associative

trace cache on the indirect branch prediction. In a set-associative trace cache, multiple

cache lines starting at the same address can co-exist in the trace cache. Using Patel’s

scheme [Pat99], different trace cache lines starting with the same address are mapped

to the same set. The starting address is used to identify the set, and the pattern of m

conditional branches is used to identify the line within the set. This allows the trace

cache with path associativity to hold multiple cache lines having the same starting

70

address and ending with the same indirect branch instruction because we can index

a trace cache line into a set using its starting address and use its branch history to

identify whether it is unique. Thus, each will be more specialized versions of the

indirect branch, with more context information embedded in the trace cache line.

Figure 4.11 shows the indirect branch prediction accuracy for 2, 4 and 8-way

set associative trace caches with updating. Almost all of the benchmarks show slight

improvements in the prediction accuracy as associativity increases. Overall, the av-

erage indirect branch prediction accuracies of the TC-Update model with 2,4 and

8-way set-associative trace caches across all benchmarks are now 42.63%(57.82%),

42.80%(57.93%) and 42.98(58%), respectively.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

tw
ol

f

vo
rte

x
ga

p

pe
rlb

m
k

eo
n

pa
rs

er

cr
af

ty
m

cf
gc

c

gf
or

th li

oc
am

lc

oc
am

lc
-s

w
itc

h
pe

rl

sc
he

m
e4

8

A
R
IT

H
M

ETIC
 M

EA
N

H
AR

M
O
N
IC

 M
E
AN

In
d

ir
e
c
t

b
ra

n
c
h

 p
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

TC - Update 1024-entry TC - Update 512-entry TC - Update 256-entry TC - Update 128-entry TC - Update 64-entry

Figure 4.12: Indirect branch target prediction accuracies of the TC-Update model with
64, 128, 256, 512 and 1024-entry trace caches

One complication with interpreting the effects of increased associativity on indirect

branch prediction is that there are two effects at work. First, associativity may allow

more instances of the same branch with separate targets, as described above. Secondly,

associativity simply increases the hit rate of the trace cache (see Figure 4.17) which

71

is also likely to increase indirect branch prediction accuracy. Given the very small

increase in accuracy, it is difficult to separate the two effects.

4.6.4 Trace Cache Size Variance

The cache size of 1024-entry direct-mapped trace cache has been used in the prior

runs. We gradually reduce its size from 1024 entries to 512, 256, 128 and 64 entries to

capture the sensitivity of the indirect branch prediction to the reduction in the cache

size. Clearly, the main goal of varying the trace cache size is to find the optimal balance

of hit rate and hardware resources. However, varying the size also has a small impact

on indirect branch prediction because it affects the trace cache hit rate. The higher

the hit rate, the more indirect branches are likely to be predicted by the trace cache

(and thus have the benefits of limited path context information) rather than the BTB.

Figure 4.12 shows the prediction accuracy results of cache size variance. The

overall prediction accuracy percentage point difference between 1024-entry and 64-

entry trace caches is slightly greater than 3% (1%). Thus, with a smaller cache size

such as 256 entries, it is possible to attain nearly the same indirect branch prediction

accuracy across all benchmarks as a 1024-entry direct-mapped trace cache.

4.6.5 Trace Cache Line Size Variance

So far, we have used a fixed trace cache line size of 16 instructions with 3 branches.

The cache line size configuration is also varied to measure its effect on the prediction of

indirect branches. We use three other cache line configurations: 20 instructions with 4

branches, 24 instructions with 5 branches and 32 instructions with 6 branches. Clearly,

the longer the trace cache line, the more context information on recent conditional

branch outcomes is stored into it. However, longer lines also lead to more conflict

misses, assuming a fixed total size for the trace cache.

Figure 4.13 shows the comparison of the trace cache models with four different

cache line sizes. Out of these four cache line configurations, the 24-instruction-5-branch

model performs the best for indirect branch prediction. It is important to note, however

that this configuration does not give the highest trace cache hit rates. On the contrary,

Figure 4.17 shows the hit rates for various trace cache configurations and we see that

the configuration with five branches per trace cache line has the worst hit rate of all

72

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

tw
ol

f

vo
rte

x
ga

p

pe
rlb

m
k

eo
n

pa
rs

er

cr
af

ty
m

cf
gc

c

gf
or

th li

oc
am

lc

oc
am

lc
-s

w
itc

h
pe

rl

sc
he

m
e4

8

A
R
IT

H
M

ETIC
 M

EA
N

H
AR

M
O
N
IC

 M
E
AN

In
d

ir
e
c
t

b
ra

n
c
h

 p
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

TC- Update 3-branch TC- Update 4-branch TC- Update 5-branch TC- Update 6-branch

Figure 4.13: Indirect branch target prediction accuracies of the TC-Update model with
3-branch, 4-branch, 5-branch and 6-branch cache line sizes

73

the variants we examined. Thus, while such a trace cache is interesting because it gives

us some indication of the limits on improvements in indirect branch prediction using

our scheme, it is highly unlikely to be implemented in practice. The main goal of a

trace cache is fetch bandwidth, and so it will be designed to maximize this bandwidth

rather than to improve branch prediction.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

tw
ol
f

vo
rte

x
ga

p

pe
rlb

m
k

eo
n

pa
rs

er

cr
af

ty
m

cf
gc

c

gf
or

th li

oc
am

lc

oc
am

lc
-s

w
itc

h
pe

rl

sc
he

m
e4

8

1 Branch 2 Branches 3 Branches 4 Branches

Figure 4.14: Breakdown of all used trace cache lines ending with an indirect branch
based on the number of branches in a trace cache line

Improvements in branch prediction accuracy using the trace cache come from the

inclusion of a limited amount of context information in the prediction. In Figure 4.14

we show the amount of context used in trace cache predictions in a trace cache with

up to four branches per line. We show the number of branches in the trace cache line

for each indirect branch prediction made using the trace cache. One branch in the

line means that the indirect branch is the only branch in the line. Greater numbers

of branches show that more path context is being used. The figure indicates that on

average around 90% of predictions are made with one or two branches per line.

Figure 4.15 show the accuracy of indirect branch predictions made with varying

74

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

tw
ol
f

vo
rte

x
ga

p

pe
rlb

m
k

eo
n

pa
rs

er

cr
af

ty
m

cf
gc

c

gf
or

th li

oc
am

lc

oc
am

lc
-s

w
itc

h
pe

rl

sc
he

m
e4

8

AR
IT

H
M

ETIC
 M

EAN

H
AR

M
O
N
IC

 M
EAN

1 Branch 2 Branches 3 Branches 4 Branches

Figure 4.15: Breakdown of the prediction rates for all used trace cache lines ending
with an indirect branch based on the number of branches in a trace cache line

75

number of branches per line. There is a clear trend showing a strong correlation between

the amount of path context information captured by branches and the accuracy of the

prediction. This is consistent with results in two-level branch predictors which use

much greater amounts of context than we are able to capture [CI01][DH98][KK98].

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

tw
ol
f

vo
rte

x
ga

p

pe
rlb

m
k

eo
n

pa
rs

er

cr
af

ty
m

cf
gc

c

gf
or

th li

oc
am

lc

oc
am

lc
-s

w
itc

h
pe

rl

sc
he

m
e4

8

AR
IT

H
M

ETIC
 M

EAN

H
AR

M
O
N
IC

 M
EAN

In
d

ir
e

c
t

b
ra

n
c

h
 p

re
d

ic
ti

o
n

 a
c

c
u

ra
c

y

BTB BTB with 2-bit Counter TC- No Update TC - Update Combined

Figure 4.16: Indirect branch target prediction accuracy of the combined model of 1024-
entry, 8-way, 20-instruction-4-branch line size, updating, 2-bit saturating counters and
trace packing in comparison to the BTB, TC-No Update and TC-Update models

4.6.6 Combining Various Configurations

In this section, we present the results of a trace cache model with various trace config-

urations together. The combined configuration model includes branch target updating

policy, 2-bit saturating update counter per trace line and trace packing. Also, we select

the best performing parameter from cache size, cache associativity and cache line size.

These are 1024-entry, 8-way set associativity and 20 instructions with 4 branches. This

model gives the best overall prediction accuracy of the models we investigated. Thus,

76

it gives us some idea of the limit on improvement in branch prediction accuracy that

is possible using these techniques.

Figure 4.16 shows the prediction accuracy results of the combined model in com-

parison with the BTB, BTB with 2-bit Counters, TC-No Update and TC-Update mod-

els. Overall, the average indirect branch prediction accuracy of the Combined model

across all benchmarks is now 46.60% (61.27%), which is about 35.75% (8.40%), 32.76%

(6.65%), 17.77% (11.43%), and 4.56% (3.92%) points better than the BTB, BTB with

2-bit Counters, TC-No Update, and TC-Update models, respectively.

Figure 4.17 shows the trace cache hit rates for several different combinations that

we have tested. Similarly, Figure 4.18 shows the percentage of instructions executed

that come from the trace cache. In all cases, the size of the trace cache is 1024 entries.

The figure clearly shows that the best approach for optimizing the hit rate that we

have examined is to use the base trace cache (16 instructions, 3 branches per line) in

an 8-way associative configuration. This configuration is not the one that maximizes

prediction accuracy, but it is the one that is most likely to be used, as the main objective

of a trace cache is to improve fetch bandwidth.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

tw
ol
f

vo
rte

x
ga

p

pe
rlb

m
k

eo
n

pa
rs

er

cr
af

ty
m

cf
gc

c

gf
or

th li

oc
am

lc

oc
am

lc
-s

w
itc

h
pe

rl

sc
he

m
e4

8

AR
IT

H
M

ETIC
 M

EAN

H
AR

M
O
N
IC

 M
EAN

TC - Update TC - Update 4-Branch TC - Update 5-Branch

TC - Update 6-Branch TC - Update with Trace Packing TC - Update 2 Way

TC - Update 4 Way TC - Update 8 Way Combined

Figure 4.17: Trace cache hit rates for different configurations.

77

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

tw
ol
f

vo
rte

x
ga

p

pe
rlb

m
k

eo
n

pa
rs

er

cr
af

ty
m

cf
gc

c

gf
or

th li

oc
am

lc

oc
am

lc
-s

w
itc

h
pe

rl

sc
he

m
e4

8

AR
IT

H
M

ETIC
 M

EAN

H
AR

M
O
N
IC

 M
EAN

TC - Update TC - Update 4-Branch TC - Update 5-Branch

TC - Update 6-Branch TC - Update with Trace Packing TC - Update 2 Way

TC - Update 4 Way TC - Update 8 Way Combined

Figure 4.18: The percentage of executed instructions from the trace cache

4.7 Other Trace Cache Models

4.7.1 Real World Trace Cache

The implementation of the trace cache described in this chapter is based on Patel’s

PhD dissertation [Pat99]. However, other configurations are possible. For example,

the Intel Pentium 4 processor [BBH+04] uses a trace cache and two separate BTBs.

One of the two BTBs works as normal, but the other is dedicated to branches stored

in the trace cache, and appears to be addressed by the location of the branch in the

trace cache rather than the branch’s address in main memory.

In such a model, if we assume that there is a dedicated BTB entry for each branch

in the trace cache, the effect on indirect branch prediction will be the same as our

TC-Update model (see section 4.5.2). Initial experiments using hardware performance

counters on the Pentium 4 suggest that the indirect branch prediction accuracies on

small test programs with particular indirect branch behaviour are much higher than

78

one would expect with a simple BTB, and that the context stored by the trace cache

is reducing the number of indirect branch mispredictions.

To demonstrate this effect, we ran a variant of the program in Figure 4.2 on a

lightly loaded Pentium 4 machine. In the switch statement in the inner loop we used

eight different cases rather than four, so that the compiler implemented the statement

with an indirect branch, rather than a tree of conditional branches. We used an array

containing values (0,1,2,3,4,5,6,7), so that the target of the next branch can be predicted

perfectly, provided we know the outcome of the previous one. We also increased the

number of iterations of the loop to ten million in order to make the effect more visible.

We used the perfex utility to access hardware performance counter measures of the

process.

Table 4.4 shows the range of results from running this program with the same

inputs 10,000 times. The runs are divided into rows, grouped according to the number

of indirect branch mispredictions that occurred in that run. In 78.54% of cases, there

are fewer than 260 indirect branch mispredictions. Among more than ten million

indirect branches, this is a misprediction rate of almost 0%. This is exactly the result

that we would expect. The trace cache captures sufficient context information to

identify the most recent outcome of the indirect branch. In this particular program,

this is enough information to perfectly predict the next outcome, as we explained in

section 4.3. Thus, the Pentium 4 behaves exactly as our model predicts in almost 80%

of the cases of running this program.

Range of Percentage Average % Average
mispredictions of total misprediction cycles
0 – 260 78.54% 0.0017% 64,432,642
261 – 250,000 0.58% 1.14% 66,442,092
250,000 – 500,000 8.88% 4.05% 75,394,126
500,000 – 750,000 7.71% 6.04% 80,425,580
750,000 – 1,000,000 3.24% 8.48% 86,027,876
>1,000,000 1.06% 12.10% 94,912,349
Total 100% 1.24% 67,673,178

Table 4.4: Pentium 4 indirect branch prediction results on simple benchmark

In the remaining 21.46% of cases there are between 3,993 and 3,090,300 mispredic-

79

tions, representing a misprediction rate of 0.04% to 30.1%. We see that most of these

cases involve 250,000 to 750,000 branch mispredictions. We suspect that the main rea-

son why the indirect branch is less predictable on some runs is that a trace cache line

in the Pentium 4 contains only six microinstructions (pre-decoded RISC translations of

x86 instructions). To capture useful context, a trace cache line needs to contain both

a control-flow and an indirect branch. We suspect that in some cases random effects

are causing a poor choice of starting point for some of the trace cache lines, which

result in less context being captured by the trace cache. This is especially likely with

short trace cache lines, because the amount of context captured is already likely to

be small. However, even where a relatively large number of mispredictions occur, the

misprediction rate is very much lower than for a simple BTB which would mispredict

almost 100% of the time on this program. Table 4.4 also shows the average running

time (in cycles) for each group in the final column, which increase sharply in line with

the increase in indirect branch mispredictions.

It is important to recall, however, that Intel releases relatively little information

about the microarchitecture of their processors. We know that the Pentium 4 has

a separate BTB for branches in the trace cache [BBH+04]. We also know that the

Pentium 4 does not have a two-level branch predictor [GRA+03]. However, it is not

possible to state categorically that the processor is working as exactly as we describe,

although it certainly appears to work in this way. For this reason, we do not examine

more complicated programs running on the Pentium 4. There are simply too many

unknown variables.

4.7.2 Trace Cache Context Study

In order to demonstrate that the trace cache context can help the branch prediction,

we run the benchmarks with a PC-indexed bimodal branch predictor with no global

history. If the trace cache is used, a trace cache hit overrides the branch predictor

(multiple branch predictor is not used and the single branch predictor is only used for

I-cache fetch path). A trace cache hit predicts branches implicitly for each embedded

branch. The trace cache is configured as the direct-mapped one with 1024 entries,

which means only one trace cache line for the same starting fetch address based on our

trace cache implementation. We use two schemes here:

80

Scheme 1: we embed 2-bit saturating counters in the trace cache lines in the same

way as used in the bimodal branch predictor and replace a trace cache line only if it

contains one or more weak counters or the new trace cache line is longer the existing

one.

Scheme 2: we don’t embed 2-bit saturating counters in the trace cache line and a

trace cache line is updated using the same updating policy (ie. keep-longest policy) in

the earlier experimentation.

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

tw
ol
f

vo
rte

x
ga

p

pe
rlb

m
k

eo
n

pa
rs

er

cr
af

ty
m

cf
gc

c

gf
or

th li

oc
am

lc

oc
am

lc
-s

w
itc

h
pe

rl

sc
he

m
e4

8

AR
IT

H
M

ETIC
 M

EAN

H
AR

M
O
N
IC

 M
EAN

Trace Cache - Scheme 1 Trace Cache Scheme 2 No Trace Cache

Figure 4.19: Bimodal direction predication rates with/without a trace cache (1024
direct-mapped with 3 branches)

Figure 4.19 shows that the direction prediction rates with a trace cache (scheme

1 and 2) do indeed show slight improvement (around 1%) over those without a trace

cache, probably because of limited context information. There aren’t two much differ-

ence between the two schemes with trace cache.

81

4.7.3 Other Predictors

The other main branch prediction model for the trace cache is to use a next-trace/next-

stream predictor [JRS97] [SFR+02], rather than predict individual branches. These give

much better prediction accuracies for indirect branches than any predictor described

in this chapter, at the cost of a significant increase in complexity. In comparison,

the effect we measure gives a much smaller improvement in indirect branch prediction

accuracy, although at very low cost beyond that required for the trace cache. However,

it is important to note that the main contribution of this chapter is not to advocate

using the trace cache to get better indirect branch prediction, rather than some other

approach. Our main contribution is to explore the observation that the trace cache

captures context information about the control-flow of the program, and this can have

a significant impact on other predictors that do not use such context.

An interesting piece of future work would be to measure the effect of our scheme

on the overall performance of the processor in instructions per cycle (IPC). We believe

that the impact on IPC is likely to be small because (1) indirect branches make up

a relatively small number of overall executed instructions and (2) the improvement in

prediction accuracy is modest. However, if the trace cache is used for prediction, it

raises the possibility of trace cache misses and branch mispredictions tending to occur

simultaneously. The overall effect on IPC is not clear.

Although this chapter has examined the effect of the trace cache on indirect branch

prediction, there may be a similar impact on other forms of prediction. A wide variety

of predictors have been proposed in the literature, including load address predictors,

load value predictors and data dependence predictors. In each of these predictors there

is typically a table of recent values, which is indexed by some function of the address

of a particular instruction in main memory.

In a processor with a trace cache the option arises of accessing these tables with

the location in the trace cache rather than the address in memory. For example, it

may be more efficient to use the location in the trace cache, as this would require no

further work to map it back to the original location in memory. (Mapping back to

this original address would be necessary to maintain the classical behaviour of such a

predictor). It seems likely that this is the reason that Intel chose to have a separate

BTB for branches in the trace cache in their Pentium 4 architecture.

82

However, as we have shown in this chapter, if there are separate entries in a predictor

for each copy of an instruction in the trace cache, there can be a significant impact

on predictor accuracy. In the case of indirect branches, the impact is mostly positive,

because the trace cache captures context about the recent control flow of the program.

In fact, this may even have been the motivation for the separate BTBs in the Pentium 4

architecture. Furthermore, choosing to index a table by trace cache location rather

than location in memory creates a further dependence: the prediction accuracy or the

use of any such predictor will depend on the trace cache hit rate. Since the trace

cache will be sized and organized for fetch bandwidth, the overall effect on prediction

accuracy may be worse than could be achieved with other design goals. Being aware of

and measuring such effects is important for any processor designer considering design

alternatives surrounding the trace cache.

4.8 Related Work

In a broader discussion of trace cache design, Rotenberg [Rot05] notes that the sequence

of branch outcomes stored in a trace cache line implicitly captures some execution path

context. Thus, we are not the first to remark on this effect. However, there is no in-

depth investigation of this phenomenon.

Peleg and Weiser [PW95] embed one-bit or two-bit counters inside traces, so that

the trace cache does branch prediction merely by the act of supplying a trace. Accuracy

may be slightly better than a pure bimodal predictor, because the same branch may

be in multiple traces. Thus, the counters also become replicated and some measure of

the context-sensitivity of a two-level predictor may be captured by their scheme.

Branch promotion [Pat99] move the predictions of some very predictable branches

to the trace cache. This has the effect of reducing pressure in the external predic-

tor. Another effect is that branches are replicated in the trace cache because the

same branch can appear in multiple lines, potentially increasing accuracy because each

specialized version is biased independently.

Lee et al [LWY00] investigated value prediction using a trace processor where value

prediction is decoupled from the instruction fetch stage. Part of their scheme is to use

a trace cache in which the instructions that will use value prediction are pre-identified.

In such a scheme it is possible for multiple instances of the same instruction to appear

83

in different trace cache lines, with implications for prediction accuracy.

4.9 Conclusion

In this chapter, we have discussed the effects of using the trace cache on the indirect

branch prediction in ILP processors. If the target addresses in the trace cache lines

are used to predict indirect branches, the accuracy can be significantly different from

that that achieved with a simple branch target buffer. The main reason for this is that

the trace cache captures context about the recent control flow of the program. To our

knowledge, this effect was not foreseen in the original design of the trace cache, and

has remained underreported since then.

With a simple mechanism of updating indirect branch target addresses in the trace

cache lines, we have shown that indirect branch prediction accuracy can be moderately

improved with very little or no cost at all. We have analyzed various trace cache con-

figurations and strategies such as applying trace packing, adding 2-bit update counters

per trace cache line, varying trace cache set associativity, cache size and cache line size

and tune them to measure the positive/negative effects of each configuration/strategy

on indirect branch prediction accuracy. Finally, we have constructed a model combined

with the best performer from each configuration/strategy.

Our experimental results have shown that the harmonic mean indirect branch pre-

diction accuracy, across several benchmarks, using a trace cache model with trace cache

parameters tuned for the highest prediction accuracy and updating indirect branch tar-

get addresses can be up to 35.75% better than the BTB, and up to 17.77% better than

that of a trace cache with no updating indirect branch target addresses.

Although this chapter has examined the effect of the trace cache on indirect branch

prediction, there may be a similar impact on other forms of prediction. For example,

a load value predictor might be affected if there were separate entries for each copy

of a given load in the trace cache. Measuring this effect would be important for any

processor designer who wishes to address their predictor using locations in the trace

cache rather than the address of the original instruction in main memory.

In the next chapter, the comparison of stack and register virtual machine is pre-

sented.

84

Chapter 5

Stack Architecture versus Register

Architecture

5.1 Introduction

Whereas the previous chapter dealt with indirect branch prediction in general, this

chapter returns to the core research problem of this dissertation, which is the rel-

ative performance of interpreter-based implementations of register and stack VMs.

Inevitably, indirect branch prediction plays a key role in the trade-offs between the two

architectures, because as we showed in section 3.3, interpreters use indirect branches

to implement VM instruction dispatch, so they execute very large numbers of indirect

branches.

To briefly recap from section 3.5, a long-running question in the design of VMs

is whether a stack architecture or a register architecture can be implemented more

efficiently with an interpreter. On the one hand, stack architectures allow smaller

VM code so less code must be fetched per VM instruction executed. On the other

hand, stack machines require more VM instructions for a given computation, each of

which requires an expensive (usually unpredictable) indirect branch for VM instruction

dispatch. Several authors have discussed the issue [Mye77, SM77, MB99, WP97] and

presented small examples where each architecture performs better, but no general

conclusions can be drawn without a larger study.

The first large-scale quantitative results on this question were presented by Davis

85

et al. [DBC+03, GBC+05] who translated JVM stack code to a corresponding register

machine code. A straightforward translation strategy was used with simple compiler

optimizations to eliminate instructions that become unnecessary in register format. Of

the resulting register code, around 35% fewer VM instructions were needed to perform

the same computation than the stack code. However, the resulting register VM code

was around 45% larger than the original stack code and resulted in a similar increase

in bytecodes fetched. Given the high cost of unpredictable indirect branches, these

results strongly suggest that register VMs can be implemented more efficiently than

stack VMs with an interpreter. However, this work did not include an implementation

of the virtual register architecture, so no real running times were presented.

This dissertation extends the work of Davis et al. in two respects. First, our

translation from stack code to register code and subsequent optimization are much more

sophisticated. We use a more aggressive copy propagation approach to eliminate almost

all of the stack load and store VM instructions. We also optimize redundant constant

load and other common subexpressions and move loop invariants out of loops. The

result is that an average of more than 46% of executed VM instructions are eliminated.

The resulting register VM code is roughly 26% larger than the original stack code,

compared with the 45% for Davis et al. We find that the increased cost of fetching more

VM code requires an average of only 1 extra CPU load per executed VM instruction

eliminated. Given that VM dispatches are much more expensive than CPU loads, this

indicates strongly that register VM code is likely to be much more time-efficient when

implemented with an interpreter. The cost of this gain is the slightly increased VM

code size.

A second contribution, which appears in Chapter 6, is measurements of running

times and code behaviour for a fully functional, interpreter-based implementation of

a register JVM. We present comparative experimental results for four different VM

instruction dispatch mechanisms on twelve different benchmark programs from the

SPECjvm98 and Java Grande benchmark suites. Our results include measurements

from hardware performance counters that allow us to investigate the effect of using a

register rather than a stack VM on the microarchitectural behaviour of the interpreter.

While we present experimental results on interpreter running times and code size for

stack and register VMs, there are other factors to consider in the choice of code format.

Compiling source code to stack-based bytecode is usually simpler than compiling to

86

register code, one of the reasons being that there is no need for a register allocator.

If the compilation has been simple, stack code is also usually relatively simple to

decompile. Similarly, stack-based bytecode may be better suited than register code as

a source language for JIT compilation, at least partly because there is no assumption

about the number of available registers. Apart from execution speed and suitability

for JIT compilation, there are other issues in the choice of code format:

Code Size One of the attractions of a stack VM is that the code is quite compact,

due to the absence of explicit register arguments. In the next chapter, we present

work that shows that the bytecode for a register VM is only 26% larger than

stack bytecode. In the case of Java, however, the bytecode only accounts for

about 18% of a class file [AP98]. Nonetheless, various techniques such as those

employed by JAX [TSL+02] can be employed to reduce the constant-pool size.

As a result bytecode can occupy as much as 75% of the memory footprint in some

embedded systems [CSCM00].

There are other options for the code format. For example, compressed syntax-

tree based representations [KF99] are around twice as compact as stack-based

bytecode, and are often considered a better source language for JIT compilation

because they retain most of the high-level information from the source code.

However, such tree based encodings are difficult to interpret efficiently, so they

are most suitable when the VM will be implemented using only a JIT compiler.

Compressed Code Size It is also important to recall that code size is not only im-

portant because of the memory consumed, but also because programs may need

to be sent over networks, so smaller code may arrive more quickly and use less

bandwidth. In the case of Java, although the constant pool is usually large, the

contents tend to be easily compressed, repeating text, highly suitable for the

JAR file format commonly used for class file transport. Typically class files are

compressed to about 50% of their original size and schemes have been proposed

that compress class files even further, up to 10% to 25% of their original size

[Pug99]. It is worth noting that, in the case of Java, as its role has changed since

its inception as a language for dynamic content in web-browsers, this feature has

become less important. It may be a more significant requirement in other VMs,

depending on their role.

87

Preparation Time Much work has been done in the JVM in the area of bytecode

verification, a task which is greatly simplified by the simpler stack IR. One area

which a VM designer may wish to consider, but which we do not examine in this

dissertation, is the issue of how much more difficult bytecode verification becomes

when dealing with a register IR.

Portability We do not envisage a huge difference between a stack-based IR and a

register-based one, as long as neither make assumptions about the underlying

hardware.

Complexity of Implementation As we note elsewhere, a stack IR can be an easier

compilation target (the complexity of the compiler being the issue here). From a

VM interpreter point of view, a stack IR and register IR in terms of complexity

of implementation seem, from our experience, to be roughly equivalent. It is a

different issue if one is choosing an IR with a view to the complexity of the JIT

in a VM (if present). For a naive inlining JIT, a register IR is clearly preferable

while for a more sophisticated JIT, a stack IR may be preferred.

The choice of IR for the work presented in this dissertation was driven primarily

by a different concern to those discussed above. In order to perform a meaningful

comparison between a stack VM and register VM, it was decided to keep the instruction

sets as similar as possible. In an environment where experimental issues are not the

driving force, the choice of IR is likely to be made on the basis of a combination of

these issues.

5.2 Stack versus Register

The cost of executing a VM instruction in an interpreter consists of three components:

dispatching the instruction, accessing the operands and performing the computation.

In this section we consider the influence of these three components on the running time

of VM interpreters.

88

5.2.1 Dispatching the Instruction

In instruction dispatch, the interpreter fetches the next VM instruction from mem-

ory and jumps to the corresponding segment of its code that implements the fetched

instruction. A given task can often be expressed using fewer register machine instruc-

tions than stack ones. For example, the local variable assignment a = b + c might be

translated to stack JVM code as iload c, iload b, iadd, istore a. In a virtual

register machine, the same code would be a single instruction iadd a, b, c. Thus,

virtual register machines have the potential to significantly reduce the number of in-

struction dispatches.

Instruction dispatch is typically implemented in C with a large switch statement,

with one case for each opcode in the VM instruction set. Switch dispatch is simple

to implement, but is rather inefficient. Most compilers produce a range check and an

additional unconditional branch in the generated code for the switch. In processors

using a branch target buffer (BTB) for indirect branch prediction, there is only one

entry in BTB for all indirect branch targets. Thus, the indirect branch generated by

most compilers is highly (around 95% [EG03]) unpredictable on architectures using

BTB for indirect branch prediction. The main advantages of switch dispatch are that

the bytecode executed by the VM is compact, and it can be implemented using any

ANSI C compiler.

An alternative to the switch statement is token threaded dispatch. Threaded dis-

patch takes advantage of languages with labels as first class values (such as GNU C and

assembly language) to optimize the dispatch process, at the expense of the portability

of the interpreter source code. Token-threaded dispatch uses the opcodes to lookup

the target address of their implementation in a dispatch target address table. This

enables the range check and additional unconditional branches to be eliminated, and

permits the code to be restructured to improve the predictability of the indirect branch

dispatch (to around 45% [EG03]). On architectures with BTBs for indirect branch pre-

diction, each instruction implementation has its own indirect branch instruction and

thus, multiple entries of indirect branch targets can exist in the BTB.

Another alternative is direct threaded dispatch. Direct-threaded code directly en-

codes the jump addresses as the opcodes of instructions and thus further reduces the

cost of dispatch. The code to be interpreted is translated from bytecode into threaded

89

code. In threaded code, VM opcodes are no longer bytes, but are instead addresses of

the executable native code within the interpreter that performs the computation that

corresponds to the original VM opcode. Thus the table lookup from token threaded

code can be eliminated, further reducing the cost of dispatch. Direct threaded dispatch

requires first class labels, a translation step, and the VM code size increases by up to

a factor of four on a 32 bit machine or eight on a 64 bit machine.

An even more sophisticated approach is inline threaded dispatch [PR98] which copies

executable machine code from the interpreter and relocates it to remove the dispatch

code entirely. This requires an even more complicated translation from bytecode,

much greater memory requirements, and is even less portable than the other forms of

threaded dispatch. It is, however, the fastest VM instruction dispatch mechanism, and

we present results for it in this dissertation.

Another alternative is context threading [BVZB05] uses subroutine threading to

change indirect branches to call/returns, which better exploits the hardware return-

address stack to reduce the cost of dispatches. However, this approach requires some

mechanism to generate native executable machine code at run time. We have not im-

plemented this dispatch mechanism, although we believe that it is slightly less efficient

than inline threading, which eliminates indirect branches entirely.

As the cost of dispatches falls, any benefit from using a register VM instead of a

stack VM falls. However, switch and token threaded dispatch are the most commonly

used interpreter techniques because two of the main motivations for using an interpreter

are to avoid additional translation steps, and to maintain the small size of bytecode. If

ANSI C must be used (as is the case in the interpreters for many scripting languages)

then switch is the only efficient alternative.

5.2.2 Accessing the Operands

The location of the operands must appear explicitly in register code, whereas in stack

code, most operands1 are found relative to the stack pointer. Thus, the average register

instruction is longer than the corresponding stack instruction, register code is larger

than stack code, and register code requires more memory fetches to execute. Small

code size and small numbers of memory bytecode fetches are the main reasons why

1Not all stack VM instruction operands are on the stack, eg. immediate operands and local variables

90

stack architectures are so popular for VMs.

From the viewpoint of a VM interpreter, a stack VM must keep track of the bytecode

instruction pointer (IP), the stack pointer (SP), and the frame pointer (FP) while a

register VM only needs the IP and FP. Thus, when the register VM is implemented

using an interpreter on a real processor, one variable fewer is required in the inner loop

of the interpreter than for the stack VM. This reduces real machine register pressure,

and may result in less spilling and reloading of variables. On platforms with small

numbers of architected registers, such as Intel x86 processors which have only eight

general purpose registers, this reduction in register pressure may impact performance.

Moreover, a stack VM must update SP as values are pushed or popped.

5.2.3 Performing the Computation

Given that most VM instructions perform a simple computation, such as adding or

loading, this is usually the smallest part of the cost. The basic computation has to

be performed regardless of the instruction format. However, eliminating loop invariant

and redundant loads (common subexpressions) is only possible on a register VM2. In

Section 5.3.3, we exploit this property to eliminate repeated loads of identical values

in a register VM.

5.3 Translation and Optimization

In this section we describe a system of translating JVM stack code to virtual register

code and its optimization in a just-in-time manner. However, it is important to note

that we do not advocate JIT translation (or any particular run-time translation) from

stack format to register format as the best or only way to use virtual register machines.

It is a possibility, maybe even an attractive one, but our main intention in doing this

work is to evaluate free-standing virtual register machines. Run-time translation is

simply a mechanism we use to compare stack and register versions of the JVM easily.

2In theory, the stack VM can benefit from eliminating complex common subexpressions by storing
the computational results in local variables and reloading those values onto the operand stack when
needed. In practice, we don’t find any such complex common subexpressions, which may be due to
the optimization already done by Java compiler. The stack VM won’t benefit from simple redundant
loads because the value will be loaded onto the stack anyway.

91

In a realistic system, we would use only the register machine, and compile for that

directly. It is also important to note that we use standard, well-known JIT compiler

techniques for this translation. We are interested in the results of the translation, not

the translation itself.

5.3.1 Translation from Stack to Register

stack pointer

index

index

Operand
Stack

Frame
Data

Local
Variables

Frame
Data

Virtual
Registers

Stack Architecture Register Architecture

Figure 5.1: The structure of a Java frame

Our implementation of the JVM pushes a new Java frame onto a run-time stack

for each method call. The Java frame for a stack architecture contains local variables,

frame data, and the operand stack for the method (see Figure 5.1). In the stack JVM,

a local variable is accessed using an index, and the operand stack is accessed via the

stack pointer. In the register JVM, both the local variables and operand stack can be

considered as virtual registers for the method. There is a simple mapping from stack

locations to register numbers, because the height and contents of the JVM operand

stack are known at any point in a program [Gos95]. In practice, the number of virtual

registers (local variables and stack slots) in a method will only be limited by the size

of the operand to specify the register number. However, it is desirable to minimize the

size so that the Java frame will be small.

In the stack JVM, most operands of an instruction are implicit; they are found on

the top of the operand stack. Most of the stack JVM instructions are translated into

corresponding register JVM instructions, with implicit operands translated to explicit

operand registers.

Figure 5.2 shows a simple example of bytecode translation. The bytecode adds two

92

integers from two local variables and stores the result back into another local variable.

Stack bytecode Register bytecode
iload 1 move r1 -> r10

iload 2 move r2 -> r11

iadd iadd r10 r11 -> r10

istore 3 move r10 -> r3

Figure 5.2: Stack bytecode to register bytecode translation. Assumption: current
stack pointer before the code shown above is 10. The registers after -> are destination
registers

There are a few exceptions to the above one-to-one translation rule:

1. pop and pop2 can be eliminated immediately because they are not needed in the

virtual register machine code. For example, a lot of invoke instructions (method

calls) push onto the operand stack a return value that is not used by the follow-

ing instruction and pop/pop2 instruction are needed in stack JVM to maintain

consistency of the operand stack.

2. Instructions that load a local variable onto the operand stack or store a value

from the operand stack in a local variable are translated into move instructions.

3. Stack manipulation instructions (e.g. dup, dup2 . . .) are translated into ap-

propriate sequences of move instructions by tracking the state of the operand

stack.

4. The iinc instruction in the stack JVM is used to increment a local variable by a

constant value. iinc is an interesting VM instruction in stack JVMs because the

computation is done without the operand stack. The computation should push

an operand and a constant, add, and store the result to a local variable. It can

be regarded as a type of register VM instruction that is available in the stack

JVM. We translate an iadd or isub into an iinc VM instruction if one of its

operands is a small integer constant (i.e. it is preceded by a VM instruction that

pushes a small integer constant onto the stack).

93

5.3.2 Method Invocation

JVM methods invocation instructions, such as invoke virtual are unusual in that

they take a variable number of operands from the stack. As with other instructions,

we include the locations of these operands in the register version of the instruction.

The result is that method invocation instructions are variable length in the register

VM. The number of bytes in the instruction depends on the number of items that the

original method call takes from the stack when the method call is made.

In a stack JVM, operands (parameters) always come from the top of the stack, and

become the first local variables of the called method. A common way to implement

a stack JVM is to overlap the current Java frame’s operand stack (which contains a

method call’s parameters) and a new Java frame’s local variables.

In the register JVM, we don’t overlap the Java frames to pass method parameters.

Instead, we copy all the parameters from the virtual registers in the calling method’s

Java frame into the virtual registers in the Java frame for the new (called) method.

We considered a similar mechanism in our virtual register machine as in a stack JVM.

We would place the parameters for a method invocation in consecutive registers, in the

highest numbered registers for the method. Instead of copying the values of these regis-

ters into the stack frame of the called method, we could simply move the frame pointer

to point to the first of these parameters. Although this would provide an efficient

parameter passing mechanism, it prevents us from copy propagating into the source

registers (parameters) of a method call. Even though the operands of method invoca-

tion VM instructions are contiguous after initial translation, once we have performed

copy propagation and other optimizations this ordering is lost. However, the benefits

of our optimizations are much greater than the small loss in efficiency of parameter

passing.

5.3.3 Optimization

In the stack architecture, computation is done through the operand stack. The operands

of an instruction are pushed onto the operand stack before they can be used, and results

are stored from the operand stack to local variables to save the value. In the register

architecture, most of the operand stack load and store instructions are redundant. The

main objective of optimization is to take advantage of the opportunities provided by

94

a virtual register machine architecture. There are two main categories of redundant

loads.

• Loads and stores between operand stack and local variables are translated into

move instruction in register code. On average, more than 42% (see Figure 5.3) of

executed VM instructions in the SPECjvm98 and Java Grande benchmark suites

(including library code) consist of loads and stores between local variables and

the operand stack.

• Redundant loads of constant values and other arithmetic common subexpressions:

In the stack architecture, constants are loaded onto the operand stack each time

when needed for computation. The same constant could be loaded multiple times

in a method, which is required on a stack-based architecture. Before optimiza-

tion, an average of 6% (see Figure 5.3) executed instructions are constant load

instructions.

In order to make a fair comparison, we try:

• Not to perform optimizations that do anything other than take advantage of the

register architecture. Such optimizations would give the register VM an unfair

advantage over stack code.

• to keep the instruction set and their implementation in the interpreter the same

except for the adaptation to the new instruction format and those differences

mentioned in the Section 5.3.1.

An important question is whether the resulting comparison is fair. If we applied

the same optimizations to the stack code, would it also be improved? In fact, the Soot

optimization framework [VRHS+99] was used to translate stack JVM code to three-

address code. They applied more aggressive optimizations than we use, and translated

the resulting code back to stack JVM code. In order to achieve any improvements in

running time, they needed interprocedural optimizations (which we do not perform).

They concluded that intraprocedural optimizations generally have very little effect on

Java bytecode, on the basis that these intra-procedural optimizations can only work

on scalar optimizations. This strongly suggests that the differences in performance we

95

measure are the result of inherent differences between stack and register code, rather

than the result of applying optimizations to one and not the other.

A similar question could be asked about the quality of the register code. If we

were to design a register machine from scratch and generate code for it from source,

we might produce a more efficient VM implementation. However, it is essential to our

comparison that there are as few differences as possible between the stack and register

VM. Otherwise, our results might be affected by other implementation issues.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Compress

Jess

Db

Javac

Mpegaudio

Mtrt

Jack

MolDyn

RayTracer

Euler

MonteCarlo

Search

Average

Pop Move Constant Others

Figure 5.3: Different categories of dynamically executed instructions after translation
without optimization

• Copy propagation: Copy propagation [Muc97] is applied to eliminate move in-

structions in basic blocks. The stack pointer is used to find out whether an

operand on the stack is alive or dead. Forward copy propagation is used to elim-

inate operand stack loads and backward copy propagation is used to eliminate

operand stack stores.

• Global redundant load elimination: An immediate dominator tree is used to

discover and eliminate redundant constant load instructions and other common

subexpressions globally.

96

0 31 2 4 5

Figure 5.4: The control flow of the example

• Loop invariant motion: An immediate dominator tree and loop information are

used to discover and move constant load instructions and other loop-invariant

instruction out of loops.

5.3.4 Putting it all together

The runtime process for translating stack bytecode and optimizing the resulting register

instructions for a Java method are as follows:

1. Translate original bytecode into virtual register intermediate representation and

build a factored control flow graph [CGHS99]

2. Apply local copy propagation on basic blocks [Muc97]

3. Build a dominator tree [LT79] and enhance the intermediate representation with

SSA form [CFR+91]

4. Remove dead code [CFR+91]

5. Apply global copy propagation

6. Apply global redundant load elimination

7. Apply loop invariant code motion [Muc97]

8. Virtual register allocation [Mös00, BCT94] and remove SSA φ functions

9. Write the optimized register code into virtual register bytecode in memory.

In order to better demonstrate the effect of the optimizations, we present the fol-

lowing example (see Figure 5.5 for Java source code and Figure 5.6 for corresponding

bytecodes) with 6 basic blocks and one loop (see Figure 5.4 for its control flow graph).

In Figure 5.6:

97

public int hashCode()
{
 if (cachedHashCode != 0)
 return cachedHashCode;

 int hashCode = 0;
 int limit = count + offset;
 for (int i = offset; i < limit; i++)
 hashCode = hashCode * 31 + value[i];
 return cachedHashCode = hashCode;
}

Figure 5.5: Source code for the hashCode() method in the java.lang.String(GNU
Classpath 0.90) class.

• The VM instruction operands with # are immediate operands.

• Virtual register numbers are indicated with an initial r.

• Field identifiers are shown using the names of the fields.

• In each instruction, the register number after -> is the destination register.

• The stack VM instructions are numbered 1 to 37.

• The instruction numbers in the register code show the stack instruction from

which each register instruction originated.

All the local load and store VM instructions have been eliminated by the translation

to register code. Constant load instruction 20 is loop invariant and has been moved

out of the loop to its preheader. A total of 37 VM instructions has been reduced to

just 19. Most importantly, the number of VM instructions in the loop (basic blocks 3

and 4) has been reduced from 13 to 6.

5.4 Conclusion

In this chapter, we first discuss the motivation to our research in the interpreter-

based virtual register machine. Then the stack instruction architecture and the register

instruction architecture is contrasted from the point of view of an interpreter. Next,

the runtime translation of Java stack-based bytecodes into register-based bytecodes is

presented and their instruction format differences are described. The optimizations

98

Stack VM Code Register VM Code
Basic block(0): Basic block(0):
01. ALOAD_0 02. GETFIELD r0.cachedHashCode -> r1
02. GETFIELD cachedHashCode 03. IFEQ r1 basic_block_2
03. IFEQ basic_block_2

Basic block(1): Basic block(1):
04. ALOAD_0 05. GETFIELD r0.cachedHashCode -> r1
05. GETFIELD cachedHashCode 06. IRETURN r1
06. IRETURN

Basic block(2): Basic block(2):
07. ICONST_0 20. ICONST #31 -> r1
08. ISTORE_1 07. ICONST_0 -> r6
09. ALOAD_0 10. GETFIELD r0.count -> r2
10. GETFIELD count 12. GETFIELD r0.offset -> r3
11. ALOAD_0 13. IADD r2 r3 -> r2
12. GETFIELD offset 16. GETFIELD r0.offset -> r7
13. IADD 18. GOTO basic_block_4
14. ISTORE_2
15. ALOAD_0
16. GETFIELD offset
17. ISTORE_3
18. GOTO basic_block_4

Basic block(3) Basic block(3)
19. ILOAD_1 21. IMUL r6 r1 -> r3
20. BIPUSH #31 23. GETFIELD r0.value -> r5
21. IMUL 26. CALOAD r5 r7 -> r5
22. ALOAD_0 27. IADD r3 r5 -> r6
23. GETFIELD value 29. IINC r7 #1 -> r7
24. ILOAD_3
26. CALOAD
27. IADD
28. ISTORE_1
29. IINC 3, #1

Basic block(4) Basic block(4)
30. ILOAD_3 32. IF_ICMPLT r7 r2 basic_block_3
31. ILOAD_2
32. IF_ICMPLT basic_block_3

Basic block(5) Basic block(5)
33. ALOAD_0 36. PUTFIELD r6 -> r0.cachedHashCode
34. ILOAD_1 37. IRETURN r6
35. DUP_X1
36. PUTFIELD cachedHashCode
37. IRETURN

Figure 5.6: Original stack VM code and corresponding register VM code for the
hashCode() method in the java.lang.String(GNU Classpath 0.90) class

99

made possible by the register instruction architecture are presented. Next, the overall

process of translation and optimization are described. Finally, the hashcode() method

in java.lang.String class from the Java class library is presented as an example to

demonstrate the changes from stack-based bytecodes to register-based bytecodes.

In the next chapter, we are going to present our experimental results and analysis.

100

Chapter 6

Experimental Evaluation of

Stack/Register Virtual Machines

6.1 Introduction

In the last chapter, we analyzed the difference between virtual stack VM and virtual

register VM. In this chapter, we experimentally compare the interpreter-based stack

and register virtual machine.

6.2 Setup

For the present work, we used the Cacao 0.95 (interpreter only with JIT disabled)

as a base VM to implement the virtual register machine1. Cacao, released under the

GPL, uses GNU Classpath as its class library and has a Boehm-Demers-Weiser garbage

collector. Additionally, since version 0.93, Cacao has included a vmgen [EGKP02] in-

terpreter generator, used to define the virtual register machine instruction set and

generate the interpreter. Both the virtual register and virtual stack interpreters sup-

ports inline-threaded [PR98], direct-threaded, token-threaded, and switch dispatches.

We use the SPECjvm98 client benchmarks [SPE98] (size 100 inputs) and Java

1Cacao changes different types of constant instructions (such as iconst 0 and iconst 1) into one
generic one (such as iconst #immediate). In order to make a fair comparison between stack and
register implementations, we retain all those forms of constant instructions, forgoing this default Cacao
transformation.

101

Processor OS Compiler
AMD Athlon(tm) 64 X2 Dual Core Processor 4400+ Linux 2.6.14 GCC 4.0.3
Intel(R) Pentium(R) 4 CPU 2.26GHz Linux 2.6.13 GCC 2.95
DEC Alpha 800MHz SimulateLCA4 Linux 2.6.8 GCC 3.3.5
IBM PowerPC 1066MHz Linux 2.6.18 GCC 4.0.2
Intel(R) Core(TM)2 CPU 2.13GHz Linux 2.6.18 GCC 3.2.3

Table 6.1: Hardware and software configuration

Grande [BSW+00] (Section 3, data set size A). Methods are translated to register

code the first time they are executed; thus all measurements in the following analysis

include only methods that are executed at least once. The measurements include both

the benchmark program code and the Java library code (GNU Classpath 0.90) executed

by the VMs.

Table 6.1 shows the hardware and software configuration for the experiments. In

the rest of the chapter, we refer to these different processor architectures as AMD64,

Intel Pentium 4, Alpha, PPC, and Intel Core 2 Duo.

6.3 Static Instruction Analysis of Register Code

Figure 6.1 shows the breakdown of statically appearing VM instructions after convert-

ing to register code (translating and optimizing). On average 1.8% of VM instructions

are pop or pop2 instructions. These can simply be translated to nop instructions in

the register VM and eliminated, because they move the stack pointer, but do not move

any values or perform any computation. A significant number of statically appearing

move instructions are eliminated. Originally, moves account for 31% of VM instruc-

tions, but this is reduced to only 0.32% (of the original instructions) after translation.

Similarly, optimization results in the elimination of constant load instructions, from an

average of 28% of total statically appearing VM instructions down to 18% (of the orig-

inal instructions) after translation. Eliminating other common subexpressions allows

a further 2.1% of static VM instruction to be optimized away. Overall, an average of

44% of static VM instructions are eliminated.

102

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Compress

Jess

Db

Javac

Mpegaudio

Mtrt

Jack

MolDyn

RayTracer

Euler

MonteCarlo

Search

Average

Nop/Pop eliminated Move Eliminated Constant Eliminated Others Eliminated

Move Remaining Constant Remaining Others Remaining

Figure 6.1: Breakdown of statically appearing VM instructions before and after opti-
mization for all the benchmarks.

6.4 Stack Frame Space

Each method in the stack JVM has both a set of local variables and an operand stack.

In order to perform computations, values must be copied from the local variables to

the operand stack. Thus, within the interpreter, the stack frame for each method must

contain two separate regions for local values which cannot be used interchangeably.

The register VM, on the other hand, has only a single, unified set of registers which

can both store local values and be used to perform operations on those values. Thus,

there is potential for the register VM to require fewer slots in the stack frame than the

stack VM.

As part of the translation from stack to register code we apply a simple graph-

colouring register allocation to pack the values which were previously split between the

locals and the evaluation stack into a smaller number of virtual registers. Table 6.2

shows the average number of stack frame slots required in a method for the locals and

operand stack in the stack machine and for the virtual registers in the register machine.

On average, methods for the stack VM require 5.47 slots. The corresponding number

for our register VM code is 4.61. It is important to note, however, that the register VM

103

Register without Register with
Benchmark Stack redundant load redundant load
Compress 5.29 3.86 4.17
Jess 5.13 3.74 4.03
Db 5.33 3.89 4.20
Javac 6.34 4.72 5.02
Mpegaudio 5.56 4.14 5.37
Mtrt 5.38 3.97 4.28
Jack 5.19 3.83 4.26
MolDyn 5.62 4.14 4.49
RayTracer 5.60 4.07 4.32
Euler 5.57 4.09 4.44
MonteCarlo 5.31 3.90 4.13
Search 5.34 3.85 4.26
Average 5.47 4.02 4.41

Table 6.2: The comparison of required stack/local variable slots (virtual registers)
between stack and register architectures

code normally has more live values. Eliminating redundant constant load instructions

will make more variables alive at the same time, which means more virtual registers

are required. If we do not apply these redundancy elimination optimizations, we find

that the register machine needs an average only 4.02 slots. Even though a smaller

stack frame size has little impact on the execution time of the VM interpreter, it may

be beneficial to embedded or other small devices with tight memory constraints.

6.5 Dynamic Instruction Analysis of Register Code

In order to study the dynamic (runtime) behaviour of our register JVM code, we

counted the number of VM instructions executed in the stack and register VMs. Figure

6.2 shows the breakdown of VM instructions dynamically executed before and after

converting to register code.

1. The biggest category of eliminated instructions is moves, accounting for a much

greater percentage (42%) of executed VM instructions than static ones (30%).

The remaining moves account for only 0.28% of the original VM instructions

executed.

104

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Compress

Jess

Db

Javac

Mpegaudio

Mtrt

Jack

MolDyn

RayTracer

Euler

MonteCarlo

Search

Average

Pop Move Eliminated Constant Eliminated Others Eliminated Move Remaining Constant Remaining Others Remaining

Figure 6.2: Breakdown of dynamically appearing VM instructions before and after
optimization for all the benchmarks.

2. The second largest category of executed instruction elimination is constant load

instructions (3.5% on average), which is much lower than the constant load in-

struction elimination (10% on average) in static code. The remaining dynamically

executed constant VM instructions account for 2.9%. However, there are far more

remaining constant load instructions (18%) in static code than those dynamically

run (2.9%) in the benchmarks. We discovered that there are a large number of

constant instructions in the initialization bytecode which are usually executed

only once.

3. Elimination of other instructions accounts for 1.2% of VM instructions executed

while the static elimination is an average of 2.1%.

4. Elimination of pop/pop2 only contributes to a 0.14% reduction in dynamically

executed instructions.

Overall, we eliminate an average of 46% of dynamically executed VM instructions.

Generally speaking, copy propagation of move instructions produce the most effective

result. Other optimizations are more dependent on the characteristics of the partic-

ular program. For example, in the benchmark moldyn, eliminated constant load VM

105

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

C
om

pr
es

s
Je

ss D
b

Ja
va

c

M
pe

ga
ud

io
M

trt

Ja
ck

M
ol
D
yn

R
ay

Tra
ce

r

Eul
er

M
on

te
C
ar

lo

Sea
rc

h

Ave
ra

ge

Code Size Bytecode Load

Figure 6.3: Fractional increase in total code size (static) of executed methods and
bytecode loads (dynamic) for register against stack architecture

instructions account for only 0.11% of total executed instructions, although such in-

structions account for 10% of static instructions.

6.6 Code Size

The register VM code size is usually larger than that of stack VM. There are actually

two effects in action here. First, register machine instructions are larger than stack

instructions because the locations of the operands must be expressed explicitly. On

the other hand, register machines need fewer VM instructions to do the same work,

so there are fewer VM instructions in the code. Figure 6.3 shows the increase in code

size of our register machine code compared to the original stack code. On average,

the register code size is 26% larger than that of the original stack code, despite the

fact that the register machine requires 44% fewer static instructions than the stack

architecture. This is a significant increase in code size, but it is far lower than the 45%

increase reported by Davis et al. [DBC+03].

As a result of the increased code size of the register JVM, more VM instruction

bytecodes (both opcodes and operands) must be fetched, on average, from memory as

106

0.00

0.50

1.00

1.50

2.00

2.50

C
om

pr
es

s
Je

ss D
b

Ja
va

c

M
pe

ga
ud

io
M

trt

Ja
ck

M
ol
D
yn

R
ay

Tra
ce

r

Eul
er

M
on

te
C
ar

lo

Sea
rc

h

Ave
ra

ge

Figure 6.4: Increase in dynamically loaded bytecode instructions per VM instruction
dispatch eliminated by using a register rather than stack architecture. In other words,
if the register VM uses one less dispatch, how many extra bytes of bytecode must it
load?

the program is interpreted. Figure 6.3 also shows the resulting increase in bytecode

loads. Interestingly, the increase in overall code size is often very different from the

increase in instruction bytecode loaded in the parts of the program that are executed

most frequently. Nonetheless, the average increase in loads (25%) is similar to the

average increase in code size (26%).

An alternative to fetching each operand location separately is to use a four-byte VM

instruction containing the opcode and three register indices. This entire VM instruction

could be fetched in a single load. However, it would still be necessary to extract the

opcode and register numbers inside the four-byte VM instruction. This would involve

shifting and masking the loaded VM instruction. Clearly the cost of such operations

varies from one processor to another (for example the Pentium 4 has no barrel shifter,

so large shifts are expensive). In general if a piece of code loads four successive bytes

and does something with them, most compilers generate separate byte loads, rather

than a single word load and using shifts and masks to extract the bytes. This strongly

suggests that the latter approach is unlikely to be more efficient than single byte loads

in a bytecode interpreter.

107

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

C
om

pr
es

s
Je

ss D
b

Ja
va

c

M
pe

ga
ud

io
M

trt

Ja
ck

M
ol
D
yn

R
ay

Tra
ce

r

Eul
er

M
on

te
C
ar

lo

Sea
rc

h

Ave
ra

ge

Read Write Total

Figure 6.5: Dynamic number of CPU loads and stores required to access virtual reg-
isters in our virtual register machine expressed as a percentage of the corresponding
loads and stores to access the stack and local variables in a virtual stack machine.

The performance advantage of using a register rather than stack VM is that fewer

VM instructions are needed. On the other hand, this comes at the cost of increased

bytecode loads due to larger code. To measure the relative importance of these two

factors, we compared the number of extra dynamic bytecode loads required by the

register machine per dynamically executed VM instruction eliminated. Figure 6.4

shows that the number of additional byte loads per executed VM instruction eliminated

is small at an average of only 1.00 loads. On most architectures even one CPU load

costs much less to execute than an instruction dispatch, with its difficult-to-predict

indirect branch. This strongly suggests that register machines can be interpreted more

efficiently on most modern architectures.

6.7 CPU Loads and Stores

Apart from CPU loads of instruction bytecodes, the main source of CPU loads in a

JVM interpreter comes from moving data between the local variables and the stack.

In most interpreter-based JVM implementations, the stack and the local variables are

108

0.00

0.50

1.00

1.50

2.00

2.50

C
om

pr
es

s
Je

ss D
b

Ja
va

c

M
pe

ga
ud

io
M

trt

Ja
ck

M
ol
D
yn

R
ay

Tra
ce

r

Eul
er

M
on

te
C
ar

lo

Sea
rc

h

Ave
ra

ge

Figure 6.6: The reduction of CPU memory accesses for each executed VM instruction
eliminated by using a register VM rather than a stack VM. This is analogous to the
measurement in Figure 6.4

represented as arrays in memory. Thus, moving a value from a local variable to the

stack (or vice versa) involves both a CPU load to read the value from one array, and a

CPU store to write the value to the other array. A simple operation such as adding two

numbers can involve large numbers of CPU loads and stores to implement the shuffling

between the stack and registers.

In our register machine, the virtual registers are also represented as an array. How-

ever, VM instructions can access their operands in the virtual register array directly,

without first moving the values to an operand stack array. Thus, the virtual register

machine can actually require fewer CPU loads and stores to perform the same compu-

tation. Figure 6.5 shows (a simulated measure of) the number of the dynamic CPU

loads and stores required for accessing the virtual register array, as a percentage of

the corresponding loads and stores for the stack JVM to access the local variable and

operand stack arrays. The virtual register machine requires only 65% as many CPU

loads and 52% as many CPU writes, with an overall figure of 59%.

In order to compare these numbers with the number of additional loads required

for fetching instruction bytecodes, we expressed these memory operations as a ratio

109

to the dynamically executed VM instructions eliminated by using the virtual register

machine. Figure 6.6 shows that on average, the register VM requires 1.74 fewer CPU

memory operations to access such variables per instruction dispatch eliminated. This

is much larger than the number of additional loads required due to the larger size of

virtual register code (1.00). Thus, the interpreter for the register VM would execute

fewer loads overall.

However, these measures of memory accesses for the local variables, the operand

stack and the virtual registers depend entirely on the assumption that they are imple-

mented as arrays in memory. In practice, we have little choice but to use an array for

the virtual registers, because there is no way to index CPU registers like an array on

most real architectures. However, stack caching [Ert95] can be used to keep the top-

most stack values in registers, and eliminate large numbers of associated CPU loads

and stores. For example, around 50% of stack access CPU memory operations could be

eliminated by keeping just the topmost stack item in a register [Ert95]. Thus, in many

implementations the virtual register architecture is likely to need more CPU loads and

stores to access these kinds of values.

6.8 Timing Results

To measure the benchmark running times of the stack and register-based implemen-

tations of the JVM, we ran both VMs on AMD64, Intel Pentium 4, Intel Core 2

Duo, Alpha and PowerPC systems (See Table 6.1). The stack JVM simply interprets

standard JVM bytecode. The running time for the register JVMs includes the time

necessary to translate and optimize each method the first time it is executed. However,

our translation routines are fast. In the version of the virtual register machine that uses

token threaded dispatch, the process of translation and optimization accounts for an

average of only 0.8% of total execution time. As a result, we believe the comparison is

fair. In our performance benchmarking, we run SPECjvm98 with a heap size of 70MB

and Java Grande with a heap size of 160MB. Each benchmark is run independently.

We compare the performance of stack JVM interpreter and register JVM inter-

preter with four different dispatch mechanism: (1) switch dispatch, (2) token-threaded

dispatch, (3) direct-threaded dispatch and (4) inline-threaded dispatch [PR98] (see

Section 5.2). For fairness, we always compare the performance of stack and register

110

0.50

1.00

1.50

2.00

C
om

pr
es

s
Je

ss D
b

Ja
va

c

M
pe

ga
ud

io
M

trt

Ja
ck

M
ol
D
yn

R
ay

Tra
ce

r

Eul
er

M
on

te
C
ar

lo

Sea
rc

h

Ave
ra

ge

Inline Threaded Direct Threaded Token Threaded Switch

Figure 6.7: AMD64: register VM speedups against stack VM of same dispatch (based
on average real running time of two runs)

interpreter implementations which use the same dispatch mechanism.

Figure 6.7 shows the speedup in running time of our implementation of the virtual

register machine compared to the virtual stack machine on the AMD64 machine using

the various dispatch mechanisms. With switch dispatch, the register VM has the

highest average speedup (1.48) because switch dispatch is most expensive. Even with

the efficient inline threaded dispatch, the register VM still has an average speedup of

1.15.

Figure 6.8 shows the same figures for a Pentium 4 machine, whose processor utilizes

a trace cache. With inline threaded dispatch, the register VM has an average speedup

of 1.00, and some benchmarks are very close to or worse than stack VM. The switch

register VM has highest speedup (1.46). The mtrt benchmark performs very poorly

for various dispatches, which may be due to high cost of threading using GCC 2.95

compiler.

Figure 6.9 shows the speedup of register VMs against stack VMs on the Intel Core 2

Duo processor. The average speedups of register over stack-based VMs are 1.15 (inline

threaded), 1.32 (direct threaded), 1.29 (token threaded), and 1.65 (switch).

Figure 6.10 shows the speedups of register VMs against stack VMs on IBM PowerPC

111

0.50

1.00

1.50

2.00

2.50

C
om

pr
es

s
Je

ss D
b

Ja
va

c

M
pe

ga
ud

io
M

trt

Ja
ck

M
ol
D
yn

R
ay

Tra
ce

r

Eul
er

M
on

te
C
ar

lo

Sea
rc

h

Ave
ra

ge

Inline Threaded Direct Threaded Token Threaded Switch

Figure 6.8: Intel Pentium 4: register VM speedups against stack VM of same dispatch
(based on average real running time of five runs)

0.50

1.00

1.50

2.00

2.50

C
om

pr
es

s
Je

ss D
b

Ja
va

c

M
pe

ga
ud

io
M

trt

Ja
ck

M
ol
D
yn

R
ay

Tra
ce

r

Eul
er

M
on

te
C
ar

lo

Sea
rc

h

Ave
ra

ge

Inline Threaded Direct Threaded Token Threaded Switch

Figure 6.9: Intel Core 2 Duo: register VM speedups against stack VM of same dispatch
(based on average real running time of three runs)

112

0.50

1.00

1.50

2.00

C
om

pr
es

s
Je

ss D
b

Ja
va

c

M
pe

ga
ud

io
M

trt

Ja
ck

M
ol
D
yn

R
ay

Tra
ce

r

Eul
er

M
on

te
C
ar

lo

Sea
rc

h

Ave
ra

ge

Inline Threaded Direct Threaded Token Threaded Switch

Figure 6.10: IBM PowerPC: register VM speedups against stack VM of same dispatch
(based on average real running time of three runs)

0.50

1.00

1.50

2.00

2.50

C
om

pr
es

s
Je

ss D
b

Ja
va

c

M
pe

ga
ud

io
M

trt

Ja
ck

M
ol
D
yn

R
ay

Tra
ce

r

Eul
er

M
on

te
C
ar

lo

Sea
rc

h

Ave
ra

ge

Direct Threaded Token Threaded Switch

Figure 6.11: Alpha: register VM speedups against stack VM of same dispatch (based
on average real running time of five runs)

113

processor. The average speedups for the four dispatch mechanisms (inline-threaded,

direct-threaded, token threaded and switch) are 1.16, 1.30, 1.29, and 1.41 respectively.

Figure 6.11 shows the speedup of register VMs against stack VMs on the Alpha

processor. The inline threaded dispatch is not working for Alpha and there are still bugs

which prevent javac (which is thus excluded from the benchmark results) from running

properly. The average speedups are 1.22 (direct threaded), 1.25 (token threaded), and

1.64 (switch).

6.9 Performance Counter Results

To more deeply explore the reasons for the relative performance, we use AMD64 hard-

ware performance counters to measure various processor events during the execution

of the programs. Figures 6.12 and 6.13 show performance counter results for the

SPECjvm98 benchmarks Compress and Jack . We measure the data cache accesses,

data cache misses, instruction cache fetches, instruction cache misses, retired taken

branches (which include indirect branches; unfortunately there is no way to measure in-

direct branches alone by using AMD64’s performance counters), retired taken branches

mispredicted (indirect branches are the main source of misprediction), and retired in-

structions2.

Figure 6.12 shows the measured performance counters for inline threaded, direct

threaded and switch dispatches for the compress benchmark. From Figure 6.2, we know

that, for the compress benchmark, 54% of executed VM instructions are eliminated

compared to the stack architecture. As the dispatch method becomes more efficient,

the difference between corresponding performance counters for register VM and stack

VMs becomes smaller. For inline threaded dispatch, retired taken branches are almost

the same for register and stack VMs. The main source of advantage is fewer retired

instructions, which gives the register VM a speedup of 1.15 against the stack VM for

inline threaded dispatch.

For the compress benchmark, the register version of the machine always executes

fewer real machine instructions. As we saw in Figure 6.4 translation to register format

2On out-of-order processors, a retired instruction is one that has been executed and completed.
Retired instructions indicate the number of instructions executed which contribute to the real-work
of a program.

114

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Data cache
accesses
(*100B)

Data cache
misses (*200M)

Instruction cache
fetches (*200B)

Instruction cache
misses (*2M)

Retired taken
branches (*25B)

Retired taken
branches

mispredicted
(*25B)

Retired
instructions

(*160B)

Register Inline Threaded Stack Inline Threaded Register Direct Threaded
Stack Direct Threaded Register Switch Stack Switch

Figure 6.12: Compress: AMD64 performance counters

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Data cache
accesses (*16B)

Data cache
misses (*250M)

Instruction cache
fetches (*30B)

Instruction cache
misses (*30M)

Retired taken
branches (*4B)

Retired taken
branches

mispredicted
(*4B)

Retired
instructions

(*30B)

Register Inline Threaded Stack Inline Threaded Register Direct Threaded
Stack Direct Threaded Register Switch Stack Switch

Figure 6.13: Jack: AMD64 performance counters

115

actually results in less than 0.5 extra bytecode loads per VM instructions eliminated.

However, compress is the benchmark with the greatest reduction in real machine mem-

ory operations for manipulating local values (see Figure 6.5). This accounts for the

much lower number of retired real machine instructions.

Figures 6.13 show the measured performance counters of the jack benchmark for

inline threaded, direct threaded and switch dispatches. From Figure 6.2, we know

that 44% of executed instructions are eliminated from Jack in the register VM. The

data cache miss ratio and instruction cache miss ratio are much higher than those of

the compress benchmark. For inline threaded dispatch, the register VM shows more

data cache accesses, data cache misses, retired taken branches, and retired instructions

than those of the stack VM. On the other hand instruction cache misses and retired

taken branches mispredicted are lower. The inline threaded dispatch speedup of reg-

ister VM against stack VM for the Jack benchmark is only 1.02. For inline threaded

dispatch, both stack and register VMs show very high numbers of instruction cache

misses when compared with other dispatch mechanisms because of binary executable

code replication.

6.10 Dispatch Comparison

All the comparisons to this point have been the same dispatch-mechanism comparisons

between stack and register architecture. For example, we have shown performance

of the register VM interpreter using token-threaded dispatch as a speedup over the

performance of the corresponding stack VM. In this section we compare differences

between the dispatch mechanisms. The performance of the stack VM interpreter using

switch dispatch is the baseline value (speedup=1.0) and all other variants are shown in

comparison to that (see Figure 6.14). Sun’s JDK 1.6.0 (interpreter mode only) gives

a indicator of the speed of Cacao stack and register VMs and should be treated with

caution because of different implementation.

We see that the more complex, less portable dispatch mechanisms give the greatest

speedups. But we also observe that, at least for the benchmark results presented, the

register machine has a significant edge. For example, if one has to choose between

using direct-threaded dispatch on a stack VM and switch dispatch on a register VM,

it should be noted that there is little difference in execution speed between the two

116

0.0

1.0

2.0

3.0

4.0

5.0

6.0

C
om

pr
es

s
Je

ss D
b

Ja
va

c

M
pe

ga
ud

io
M

trt

Ja
ck

M
ol
D
yn

R
ay

Tra
ce

r

E
ul
er

M
on

te
C
ar

lo

S
ea

rc
h

A
ve

ra
ge

Register inline-threaded Register direct-threaded Register token-threaded

Register switch Stack inline-threaded Stack direct-threaded

Stack token-threaded Stack switch SUN JDK 1.6.0 (Intrp. Only)

Figure 6.14: AMD64: speedups against the stack switch interpreter

implementations. However, switch dispatch is simpler to implement and much more

portable. Furthermore interpreted bytecode is a fraction (typically 25%–50%) of the

size of threaded code, so there is also a significant space saving. Therefore, the register

VM interpreter with switch dispatch is preferable.

6.11 Discussion

Although our implementation of the register JVM translates the stack bytecode into

register bytecode at the runtime, we do not envision this in a real-life implementation.

The purpose of our implementation is to evaluate a virtual register JVM against an

equivalent stack based one. Our register JVM implementation came directly from a

modification of a stack-based JVM implementation, thus giving us two VMs identical

in every other regard. Apart from the necessary adaptation of the interpreter loop

along with some garbage-collection and exception handling modifications, there are

very few changes to the original code segments responsible for interpreting bytecode

instructions. The objective of doing so is to provide a fair comparison between the

stack-based JVM and the register-based JVM.

Given a computation task, a register VM inherently needs far fewer instructions

117

than a stack VM does. For example, our register JVM implementation can reduce the

static number of bytecode instructions by 44% and the dynamic number of executed

bytecode instructions by 46% when compared to those of the stack JVM. The reduc-

tion of executed bytecode instructions leads to fewer real machine instructions for the

benchmarks and significantly smaller number of indirect branches. It is these indi-

rect branches which are very costly when mispredictions of indirect branches happen.

Moreover, the elimination of large numbers of stack load and store (move) instructions

reduces the number of loads and stores in a real processor. In terms of running time,

the benchmark results show that our register JVM still outperforms an equivalent stack

JVM even when both are implemented using the most efficient dispatch mechanism.

This is a very strong indication that the register architecture can be implemented to

be faster than the stack architecture.

An important question is whether we would generate better register code if we were

to compile directly from Java source code rather than translating from register code.

The javac compiler generates optimized stack code, but the optimizations may not

suit register code. Furthermore, eliminating (partially) redundant expressions in stack

code is rarely worthwhile, because the common expression must be stored and later

recovered, which is often more expensive than recomputing the expression. Although

eliminating simple redundant computations in stack code is easy, we might find it easier

to eliminate more redundancy if we were working from source code. In particular,

eliminating some kinds of redundant expressions, such as those described in the next

section, depends on pointer analysis to ensure that the transformation is safe. Pointer

analysis may be easier on source code than register code.

6.12 More Optimizations

6.12.1 Redundant Heap Load Elimination

As we saw in Section 5.3.3, register machines can take advantage of redundant com-

putations much more easily than stack machines. This is because (unlike stack VMs)

register VMs do not destroy operands to VM instructions as they use them. The re-

sults presented in the section 6.8 were for register machine code where redundant loads

of constants and some simple common subexpressions involving local variables were

118

eliminated.

There is another category of redundant loads — the loads from class or object fields

and array elements, and there has been some work on eliminating these redundant

loads in compilers [FKS00]. However, it is very important to note that eliminating

such loads from heap data structures requires sophisticated pointer alias analysis to

ensure that the object or array element is not modified between apparently redundant

loads [DMM98]. In particular, we need to know whether a reference to an object has

escaped into another thread, which may modify the object. Alias analysis is complex

and slow; we have not implemented it in our translation.

However, in order to examine the potential of the register machine to allow even

more redundant loads to be eliminated, we performed some preliminary experiments

without sophisticated alias analysis. Our very simple analysis is not safe — in particular

it does not check for references escaping to another thread, but it allows us to get some

idea of the potential benefit from register machines exploiting this sort of redundancy.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Compress

Jess

Db

Javac

Mpegaudio

Mtrt

Jack

MolDyn

RayTracer

Euler

MonteCarlo

Search

Average

Pop Eliminated Move Eliminated Constant Eliminated Field Eliminated

Array Eliminated Others Eliminated Move Remaining Constant Remaining

Field Remaining Array Remaining Others Remaining

Figure 6.15: Breakdown of dynamically appearing VM instructions before and after
additional redundant heap load elimination for all the benchmarks. These results are
indicative only, because our translator makes unsafe assumptions about aliasing.

Figure 6.15 shows that an average of 5% of original executed VM instructions can

be eliminated by removing redundant getfield VM instructions. The corresponding

119

figure for array loads is 2%. All benchmarks benefit from redundant getfield elim-

ination, while only a few benchmarks benefit from redundant array load elimination.

In the Euler benchmark, eliminated redundant array loads account for 13% of original

executed VM instructions. After all optimizations the register machine requires only

23% of the original stack machine instructions.

Figure 6.16 shows the same dispatch speedup results for AMD64. The average

speedup for inline threaded goes from 1.15 to 1.29 and that of switch dispatch from

1.48 to 1.74 as this optimization is added.

Figure 6.17 summarizes the average speedups of register VM against stack VM

using the same dispatches with/without redundant heap load elimination. The register

VM could potentially benefit significantly from eliminating these loads, but a real

implementation of this optimization would require very sophisticated alias and escape

analysis.

0.50

1.00

1.50

2.00

2.50

3.00

C
om

pr
es

s
Je

ss D
b

Ja
va

c

M
pe

ga
ud

io
M

trt

Ja
ck

M
ol
D
yn

R
ay

Tra
ce

r

E
ul
er

M
on

te
C
ar

lo

S
ea

rc
h

A
ve

ra
ge

Inline Threaded Direct Threaded Token Threaded Switch

Figure 6.16: AMD64: Register VM speedups with additional redundant heap load elim-
ination (based on average real running time of two runs). These results are indicative
only, because our translator makes unsafe assumptions about aliasing.

120

0.50

1.00

1.50

2.00

AMD64 AMD64

Heap Load

Opt.

Penitum 4 Pentium 4

Heap Load

Opt.

Core 2 Duo Core 2 Duo

Heap Load

Opt.

Alpha Alpha Heap

Load Opt.

PowerPC PowerPC

Heap Load

Opt

Inline Threaded Direct Threaded Token Threaded Switch

Figure 6.17: The average speedups of register VM against stack VM using the same
dispatch for different processors. The results which include heap load optimization are
indicative only, because our translator makes unsafe assumptions about aliasing.

0.5

1.0

1.5

2.0

C
om

pr
es

s
Je

ss D
b

Ja
va

c

M
pe

ga
ud

io
M

trt

Ja
ck

M
ol
D
yn

R
ay

Tra
ce

r

Eul
er

M
on

te
C
ar

lo

Sea
rc

h

Ave
ra

ge

Inline Theaded Direct Threaded Inline Theaded with Stack Caching Direct Threaded with Stack Caching

Figure 6.18: PowerPC: register VM speedups against stack VM (with and without
stack caching) of same dispatch (based on average real running time of two runs)

121

6.12.2 Stack Caching for Stack VM

Stack caching [Ert95] can be used to keep the topmost stack values in registers, and

eliminate large numbers of associated CPU loads and stores. For example, around 50%

of stack access real machine memory operations could be eliminated by keeping just

the topmost stack item in a register [Ert95]. Figure 6.18 shows the speedup against

the stack VM with/without stack caching3 using the same dispatch mechanisms. Stack

caching did show improvements for the stack VMs. This improvement results in the

speedups of the register VM going from 1.16 and 1.30 (against stack VM with no

caching) down to 1.14 and 1.26 (against stack VM with caching) for inline-threaded

and direct-threaded dispatch respectively.

6.12.3 Static Superinstructions

One way to reduce the number of VM interpreter dispatches is to add static super −

instructions to the instruction set of the VM. These are new VM instructions that

behave in the same way as a sequence of regular VM instructions. For example, if

one found that aload VM instructions are often followed directly by a getfield VM

instruction, one might introduce an aload-getfield superinstruction. Wherever this

sequence appears in the program, it can be replaced by the superinstruction, reducing

the number of dispatches. It has been argued that superinstructions can achieve the

same effect as translating to a register machine, without the damaging increases in VM

code size. In fact, this is not achievable in practice.

The main problem with superinstructions is choosing appropriate sequences. The

superinstructions must be hardwired into the interpreter, at a time when the program

to be run is usually unknown. Perhaps the best strategy for selecting sequences is

to look at a large variety of programs and identify the most important sequences

of VM instructions in those programs. Eller [Ell05] investigated using SPECjvm98

benchmarks to select superinstructions using a wide variety of selection strategies. He

found that superinstructions could be added to a stack-based VM which would reduce

the number of dispatches by up to 40%. However, to achieve that reduction, 1000

superinstructions were needed. This means that it is no longer possible to encode the

3We can only present the results of caching the topmost stack item for inline-threaded and direct-
threaded dispatches

122

instruction opcode in a single byte. Furthermore, the interpreter code to implement

the superinstructions becomes significantly larger than that of the original interpreter.

In contrast, the register machine does not require any additional VM instructions.

6.12.4 Two-Address Instructions

Our register JVM uses a three-address instruction format for arithmetic instructions.

An obvious way to reduce code size would be to use a two-address instruction format

for these instructions instead, where one of the source registers would also be the target

register of the instruction. Such a change would reduce the size of these instructions

from four bytes (one opcode and three register indices) to only three bytes. We in-

vestigated this possibility, but found that arithmetic instructions account for only an

average of only 6.3% of statically appearing register VM instructions in the SPECjvm98

benchmarks. Thus, the overall reduction in code size from two-address instructions is

likely to be small. Furthermore, there are some disadvantages with two-address in-

structions. They make sharing of common subexpressions more difficult, because one

of the input values is overwritten by the output of the instruction. Additional move

instructions must be introduced (or retained) to prevent values from being destroyed,

which would both increase code size and reduce the efficiency of the VM. A more

complicated allocation of variables to registers would also be needed to minimize the

number of move operations introduced. Given that the potential reduction in code size

was small anyway, we decided that this optimization was not worthwhile.

6.13 Applicability of Results to Related Questions

Although our experiments in this work have been limited to the JVM, we believe that

the results will extend to other VMs which employ an interpreter. Already, the conver-

sion of the Lua VM from stack machine to register machine (the upgrade from version

4.0 to version 5.0) has yielded a substantial improvement in performance. Ierusalim-

schy et al [IdFC05] have compared the stack machine implementation of version 4.0

to an equivalent register machine implementation (with no additional optimizations).

Across their selected benchmarks, the register machine was an average of 1.30 times

faster than the stack machine. More significantly, on the benchmark they specifically

123

selected to test the execution engine, a speedup of 2.28 was reported.

The main benefit of the transition from stack VM to register VM is the reduction

in the number of VM instruction dispatches, and consequently a reduction in branch

mispredictions. There are other benefits which we have observed such as a reduction

in real machine instructions at the CPU level. For coarse-grained VMs with higher-

level instruction sets which have a significantly lower number of instruction dispatches

to begin with, the transition to a register VM will not yield the same speedups. For

example, Vitale and Abdelrahman [VA04] found that inline threading had little benefit

for a Tcl virtual machine, because each VM instruction performed a lot of work so

dispatch accounted for only a small proportion of running time. It is likely that we

would see similar results for a comparison of a stack and register VM for Tcl. Where

the cost of dispatch is a small proportion of total time, there will be little benefit in

any optimization to reduce dispatches.

Another interesting question is whether a stack or register VM is more suitable

as a source language for JIT compilation. Winterbottom and Pike [WP97] suggest

that a register IR may be easier to compile to native code because it is closer to the

register architecture used by real processors. Others argue that a stack machine is

better, because stack code does not make assumptions about the number of available

registers.

Unfortunately, our results apply only to interpreters, and tell us little about JIT

compilers. We believe that JIT compiling from well-behaved stack architectures like

the JVM is probably a little easier than from register architectures because stack code

is similar to the tree representations of expressions often used in real compilers. On the

other hand, a register architecture allows more optimizations to be expressed, because

common subexpressions can be eliminated in the register code, rather than relying on

the JIT compiler to perform these kinds of optimizations.

However, an optimizing JIT compiler is typically a complex piece of software, and

translating the VM bytecode to a format more useful to the compiler is likely to be

only a small part of compilation regardless of whether a stack or register VM is used.

On the other hand, our results indicate that for a simple code-inlining JIT, there are

some significant gains to be made in choosing a register IR rather than a stack IR.

For a more aggressive JIT, the choice is not so clear. Finally, for mixed mode JIT

compilers such as Sun’s Hotspot VM [SM01], interpretation speed is still important,

124

and therefore a register VM may be used to improve the performance of interpretation.

6.14 Conclusions

A long standing question has been whether virtual stack or virtual register VMs can

be executed more efficiently using an interpreter. Virtual register machines can be

an attractive alternative to stack architectures because they enable the number of

executed VM instructions to be substantially reduced. In this dissertation we have

built on the previous work of Davis et al. [DBC+03, GBC+05], which counted the

number of instructions for the two architectures using a simple translation scheme.

We have presented a much more sophisticated translation and optimization scheme

for translating stack VM code to register VM code, which we believe gives a more

accurate measure of the potential of virtual register machine architectures. We have

also presented experimental results for a fully-featured register JVM.

We found that a register architecture requires an average of 46% fewer executed

VM instructions. The resulting register code is 26% larger than the corresponding

stack code. The increased cost of fetching more VM code due to larger code size

involves only around one extra CPU load per VM instruction eliminated. On a AMD64

machine, the register machine has an average speedup of 1.48 if dispatch is performed

using a C switch statement. Even if the more efficient inline-threaded dispatch is

available, the average speedup over a corresponding stack JVM is still 1.15 for the

register architecture on an AMD64.

In the next chapter, we conclude the dissertation.

125

Chapter 7

Final Thoughts

In this thesis, we have investigated the performance of virtual machine interpreters on

modern architectures, with a particular focus on stack and register architectures. In

the process of doing this virtual machine work, the unexpected interaction between

indirect branch prediction and the trace cache was also identified and explained. In

this chapter, some thoughts on the overall results and future work will be presented.

7.1 Experimentation and Systems Research

Chapter 4 of this dissertation presents experiments which study the interaction of

branch prediction and the trace cache, particularly when executing programs with a lot

of indirect branches, such as interpreters. Although branch target buffers and the trace

cache are both reasonably well understood, to our knowledge the effect of combining

the two was entirely unexpected. In most cases, indirect branches are sufficiently rare

that the effect is unlikely to have a significant impact on the running times of programs.

Nonetheless, the effect is interesting, and if another type of predictor were combined

with the trace cache this effect might have a significant impact.

A particular reason why this result is interesting is that, although we commonly

measure the performance of computers, we often have little understanding of the de-

tailed interactions of components within the machine. In computer science research,

there is a great emphasis on novelty, in the sense of proposing new features and tech-

niques for solving problems. However, in other branches of science, novel experimental

126

work often involves studying what is already there rather than trying to always create

something new. In the opinion of the author, studying the behaviour and interactions

of existing hardware and software systems is an important part of understanding how

we can build better systems in the future1.

7.2 Stack versus Register Virtual Machines

In the hardware arena, the stack versus register war is over. Register based processors,

such as Intel X86, ARM, and PowerPC, dominate. However, in the virtual machine

arena, stack-based VMs still dominate. Historically, the decisions to choose a stack-

based VM instructions instead of a register one may have been influenced by the popular

Pascal P-code virtual machine [PD82]. Both Glenford J. Myers [Mye77] and Schulthess

et al. [SM77] felt that part of the acceptance of stack architectures is unduly based on

aesthetic delectation of designers and implementers when working with stack concepts.

Schulthess et al. [SM77] went further to state that a computer architecture should be

judged mainly on the efficiency and quality of the systems that grow on top of it.

Over the years, there has been very little research into the comparison of the real-

world implementation of the stack-based virtual machine against the register-based

virtual machine. Although there has been a heated debate over many decades, Davis

et. al. [DBC+03, GBC+05] were the first to attempt any sort of large-scale quanti-

tative study, but they only counted features of the programs; they didn’t design and

implement a full virtual machine, nor did they attempt to generate high-quality regis-

ter machine code that would be comparable with the sort of optimized stack VM code

that is generated by an optimizing Java compiler such as javac. To our knowledge, the

work in this dissertation is the first to carry out such large scale comparisons with a

full VM implementation2.

1Interestingly, when we presented our first register machine paper at VEE 2005, those who were
most interested in the results were people from industry. They said that there are many papers that
provided new techniques, but ours was one of the few papers that provided them with enough data
and analysis to understand which techniques should be used.

2In the last stages of writing this dissertation, the author found a rather obscure paper [WC99]
in which Wongsiriprasert et al. implemented simple stack and register VMs for a small language.
However, their results are only for small programs, and there is little analysis. Nonetheless, their work
is the earliest that we are aware of that compares corresponding stack and register implementations
of the same VM.

127

The work in this dissertation has shown that an interpreter for register-based JVM

code can be much faster than an interpreter for a corresponding stack machine. We

believe that similar results can be found for other virtual machines where execution time

is dominated by the interpretation of fine-grained VM instructions. In fact, during the

course of carrying out the research for this dissertation, a number of VMs have switched

to using register format, and the decision for the Rain VM was partly based on the

work in this dissertation.

Although the work in this dissertation allows VM designers to make informed

choices between stack and register VMs for interpreted execution, an open question

is the best VM format for JIT compilation. The results in this dissertation shed little

light on this question, except to show that stack formats allow more compact code.

In fact, we are not convinced that any sort of virtual machine is the best format as a

source language for a JIT compiler. The advantage of VMs is that it is easy to interpret

VM code. For JIT compilation, a higher level format, such as compressed trees [KF99]

which are much more compact than stack VM code and maintain more information

from the original source might be more suitable.

7.3 Future Work

In the course of preparing a PhD dissertation, one inevitably encounters interesting

ideas that cannot be followed up due to insufficient time. This section presents some

of these.

7.3.1 Compiling Source Directly Into Register-Based Code

In our implementation of register-based VM, the stack-code is dynamically translated

into the register code during runtime. The overhead of translation and subsequent

optimization will have small influence on the overall performance of a register-based

VM. However, the overhead is small (1-2% of running time). Thus the result should

be better if the source code were compiled directly into register-based bytecode. In

addition, more optimization might be possible in an ahead-of-time Java compiler be-

cause the full information contained in the source code would be available. This would

allow the register code to be optimized as thoroughly as the javac compiler optimizes

128

stack code. A problem with this approach for the purposes of comparison is that,

in addition to needing a new compiler and interpreter, one would also need a new

class verifier, loader, compression utility (for Java jar files) and so forth. This would

make the comparison more difficult, because differences in performance might be the

result of changes in several different components of the VM rather than just a couple.

Nonetheless, a system intended to be used in practice, rather than for the purposes of

comparison, would certainly compile directly from source code to register VM format.

7.3.2 Object Field Access Optimization

In section 6.12.1, object field access optimization was tentatively carried out. The

result shows the potential of such optimization. However, the optimization was not

very safe because more rigorous alias analysis was not done. If the source code were

compiled directly into bytecode, it would be much easier to do more complex and

thorough alias analysis.

7.3.3 Register Instruction Architecture

In order to make a fair comparison of stack and register virtual machine, there is one-

to-one mapping between stack VM instructions and register VM instructions with just

a few exceptions (see section 5.3.1). There are few changes to the implementation of

each VM instruction between the stack VM and register VM except for the necessary

adaption of explicit operands in the register-based VM. If a new register VM were

designed from scratch, there would be more options to design the instruction set,

which may result in more compact code and a more efficient interpreter.

7.3.4 Bytecode Verification

Another area of future work might be to investigate bytecode verification for a register-

based virtual machine. Bytecode verification is important for code security. In a stack

VM, the verification is simplified because the height of the operand stack is known at

any point of a program. In register-based bytecode, it will be more complex to verify

the bytecode because of the usage of registers is more complex than the case of a stack

VM.

129

7.4 Conclusion

The performance of virtual machine interpreters is closely related to the host com-

puter’s ability to predict indirect branches. This dissertation examines the behaviour

of virtual machine interpreters, and as part of the process shows that the interaction

of the branch predictor and a trace cache in a processor can have a significant impact

on branch prediction accuracy, particularly for programs with many indirect branches,

such as VM interpreters.

The main work of this dissertation examines the long standing question of whether

virtual stack or virtual register VMs can be executed more efficiently using an inter-

preter. Virtual register machines can be an attractive alternative to stack architec-

tures because they enable the number of executed VM instructions to be substan-

tially reduced. In this dissertation, we have built on the previous work of Davis et al.

[DBC+03, GBC+05], which counted the number of instructions for the two architec-

tures using a simple translation scheme. We have presented a much more sophisticated

translation and optimization scheme for translating stack VM code to register VM code,

which we believe gives a more accurate measure of the potential of virtual register ma-

chine architectures. We have also presented experimental results for a fully-featured

register JVM.

We found that a register architecture requires an average of 46% fewer executed VM

instructions. The resulting register code is 26% larger than the corresponding stack

code. The increased cost of fetching more VM code due to larger code size involves

only 1 extra real machine loads per VM instruction eliminated. On a AMD64 machine,

the register machine has an average speedup of 1.48 if dispatch is performed using a C

switch statement. Much of this saving comes from avoiding expensive indirect branch

mispredictions caused by switch dispatch. However, even if the more efficient inline-

threaded dispatch is available, which allows most indirect branches to be eliminated

from the VM interpreter, the average speedup over a corresponding stack JVM is still

1.15 for the register architecture on AMD64. This strongly suggests that where speed is

more important than code size, a register VM is preferable for efficient interpretation.

130

Bibliography

[AH96] Gerald Aigner and Urs Hölzle. Eliminating virtual function calls in C++

programs. In P. Cointe, editor, Proceedings ECOOP ’96, volume 1098 of

LNCS, pages 142–166, Linz, Austria, July 1996. Springer-Verlag.

[ALE02a] Todd Austin, Eric Larson, and Dan Ernst. Simplescalar: An infrastructure

for computer system modeling. Computer, IEEE Computer Society, pages

59–67, February 2002.

[ALE02b] Todd M. Austin, Eric Larson, and Dan Ernst. Simplescalar: An infras-

tructure for computer system modeling. IEEE Computer, 35(2):59–67,

2002.

[AP98] Denis N. Antonioli and Markus Pilz. Analysis of the Java class file format.

Technical report, 1998.

[Bad95] Wil Baden. Pinhole optimization. Forth Dimensions, 17(2):29–35, 1995.

[BBH+04] Darrell Boggs, Aravindh Bathka, Jason Hawkins, Deborah Marr, J. Alan

Miller, Patrice Roussel, Ronak Singhal, Brett Toll, and K. S. Venkatra-

man. The microarchitecture of the Intel Pentium 4 processor on 90nm

technology. Intel Technology Journal, 8(1), February 2004.

[BCT94] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to

graph coloring register allocation. ACM Transactions on Programming

Languages and Systems, 16(3):428–455, May 1994.

[Bel73] James R. Bell. Threaded code. Communications of the ACM, 16(6):370–

372, 1973.

131

[Bro06] Neil C. Brown. Rain VM: Portable Concurrency through Managing Code.

In Frederick R. M. Barnes, Jon M. Kerridge, and Peter H. Welch, edi-

tors, Communicating Process Architectures 2006, pages 253–267, Septem-

ber 2006.

[BSW+00] Mark Bull, Lorna Smith, Martin Westhead, David Henty, and Robert

Davey. Benchmarking Java Grande applications. In Second International

Conference and Exhibtion on the Practical Application of Java. Manch-

ester, UK, April 2000.

[BVZB05] Marc Berndl, Benjamin Vitale, Mathew Zaleski, and Angela Demke

Brown. Context threading: A flexible and efficient dispatch technique for

virtual machine interpreters. In 2005 International Symposium on Code

Generation and Optimization, pages 15–26, March 2005.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and

F. Kenneth Zadeck. Efficiently computing static single assignment form

and the control dependence graph. ACM Transactions on Programming

Languages and Systems, 13(4):451–490, Oct 1991.

[CG94] Brad Calder and Dirk Grunwald. Reducing indirect function call overhead

in C++ programs. In 21st Symposium on Principles of Programming

Languages, pages 397–408, January 1994.

[CGE05] Kevin Casey, David Gregg, and M. Anton Ertl. Optimizations for a Java

interpreter using instruction set enhancement. Technical Report TCD-CS-

2005-61, University of Dublin, Trinity College, 2005.

[CGEN03] Kevin Casey, David Gregg, M. Anton Ertl, and Andrew Nisbet. Towards

superinstructions for Java interpeters. In Proceedings of the 7th Inter-

national Workshoop on Software and Compilers for Embedded Systems

(SCOPES 03), pages 329–343, September 2003.

[CGHS99] Jong-Deok Choi, David Grove, Michael Hind, and Vivek Sarkar. Efficient

and precise modeling of exceptions for the analysis of Java programs. In

PASTE ’99: Proceedings of the 1999 ACM SIGPLAN-SIGSOFT workshop

132

on Program analysis for software tools and engineering, pages 21–31, New

York, NY, USA, 1999. ACM Press.

[CHP97] Po-Yung Chang, Eric Hao, and Yale N. Patt. Target prediction for indirect

jumps. In Proceedings of the 24th Annual International Symposium on

Computer Architecture (ISCA ’97), June 1997.

[CI01] Yul Chu and M. R. Ito. An efficient indirect branch predictor. In Pro-

ceedings of the 7th European Conference on Parallel Computing (Euro-Par

2001), 2001.

[CMMP95] T. M. Conte, K. N. Menezes, P. M. Mills, and B. A. Patel. Optimization

of instruction fetch mechanisms for high issue rates. In Proceedings of the

22nd Annual International Symposium on Computer Architecture, pages

333–344, New York, June 22–24 1995. ACM Press.

[CSCM00] Lars Ræder Clausen, Ulrik Pagh Schultz, Charles Consel, and Gilles

Muller. Java bytecode compression for low-end embedded systems. ACM

Transactions on Programming Languages and Systems, 22(3):471–489,

2000.

[DBC+03] Brian Davis, Andrew Beatty, Kevin Casey, David Gregg, and John Wal-

dron. The case for virtual register machines. In Interpreters, Virtual

Machines and Emulators (IVME ’03), pages 41–49, 2003.

[Dew75] Robert B.K. Dewar. Indirect threaded code. Communications of the ACM,

18(6):330–331, June 1975.

[DH97] Karel Driesen and Urs Hlzle. Limits of indirect branch prediction, Decem-

ber 11 1997.

[DH98] K. Driesen and U. Hölzle. Accurate indirect branch prediction. In Pro-

ceedings of the 25th Annual International Symposium on Computer Ar-

chitecture (ISCA-98), volume 26,3 of ACM Computer Architecture News,

pages 167–178, New York, June 27–July 1 1998. ACM Press.

[DH99] Karel Driesen and Urs Holzle. Multi-stage cascaded prediction. In Euro-

Par’99, volume LNCS 1685, pages 1312–1321, 1999.

133

[DMM98] Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. Type-based alias

analysis. In SIGPLAN Conference on Programming Language Design and

Implementation, pages 106–117, 1998.

[ECM02] ECMA. ECMA-335: Common Language Infrastructure (CLI). ECMA

(European Association for Standardizing Information and Communication

Systems), pub-ECMA:adr, second edition, December 2002.

[EG01] M. Anton Ertl and David Gregg. The behavior of efficient virtual machine

interpreters on modern architectures. In Proceedings of the 7th European

Conference on Parallel Computing (Euro-Par 2001), volume LNCS 2150,

pages 403–412, 2001.

[EG03] M. Anton Ertl and David Gregg. The structure and performance of Effi-

cient interpreters. The Journal of Instruction-Level Parallelism, 5, Novem-

ber 2003. http://www.jilp.org/vol5/.

[EGKP02] M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan. vmgen —

A generator of efficient virtual machine interpreters. Software—Practice

and Experience, 32(3):265–294, 2002.

[Ell05] Helmut Eller. Optimizing interpreters with superin-

structions. Master’s thesis, Institut für Computer-

sprachen, Technische Universität Wien, February 2005.

http://www.complang.tuwien.ac.at/Dimplomarbeiten/eller05.ps.gz.

[Ert93] M. Anton Ertl. A portable Forth engine. In EuroFORTH ’93 conference

proceedings, Mariánské Láznè (Marienbad), 1993.

[Ert94] M. Anton Ertl. Stack caching for interpreters. In EuroForth ’94 Conference

Proceedings, pages 3–12, Winchester, UK, 1994.

[Ert95] M. Anton Ertl. Stack caching for interpreters. In SIGPLAN ’95 Conference

on Programming Language Design and Implementation, pages 315–327,

1995.

134

[Fag05] Fabian Fagerholm. Perl6 and the Parrot virtual machine, April 1

2005. http://www.cs.helsinki.fi/u/pohjalai/k05/okk/seminar/Fagerholm-

Parrot.pdf.

[FKS00] Stephen Fink, Kathleen Knobe, and Vivek Sarkar. Unified analysis of

array and object references in strongly typed languages. Lecture Notes in

Computer Science, (Volume 1824):155 – 174, Feb 2000.

[Fou07] The Perl Foundation. Parrot faq, April 10 2007.

http://www.parrotcode.org/faq/.

[FPP97] D. H. Friendly, S. J. Patel, and Y. N. Patt. Alternative fetch and issue poli-

cies for the trace cache fetch mechanism. In Proceedings of the 30th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO-97),

pages 24–33, Los Alamitos, December 1–3 1997. IEEE Computer Society.

[GBC+05] David Gregg, Andrew Beatty, Kevin Casey, Brian Davis, and Andy Nisbet.

The case for virtual register machines. Science of Computer Programming,

Special Issue on Interpreters Virtual Machines and Emulators, Vol. 57:pp.

319–338, 2005.

[GJS96] J. Gosling, B. Joy, and G. Steele. The Java Language Specification.

Addison-Wesley, 1996.

[Gos95] J. Gosling. Java Intermediate Bytecodes. In Proc. ACM SIGPLAN Work-

shop on Intermediate Representations, volume 30:3 of ACM Sigplan No-

tices, pages 111–118, San Francisco, CA, January 1995.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: The Language and its

Implementation. Addison-Wesley, 1983.

[GRA+03] Simcha Gochman, Ronny Ronen, Ittai Anati, Ariel Berkovits, Tsvika

Kurts, Alon Naveh, Ali Saeed, Zeev Sperber, and Robert Valentine. The

Intel Pentium M processor: microarchitecture and performance. Intel

Technology Journal, 7(2):20–36, May 2003.

[Gri01] Robert Griesemer. Interpreter generation and implementation utilizing

interpreter states and register caching. Patent 6192516 B1, US, 2001.

135

[Hug82] R. J. M. Hughes. Super-combinators. In Conference Record of the 1980

LISP Conference, Stanford, CA, pages 1–11, New York, 1982. ACM.

[IdFC05] R. Ierusalimschy, L.H. de Figueiredo, and W. Celes. The implementation

of Lua 5.0. Journal of Universal Computer Science, 11(7):1159–1176, 2005.

[JRS97] Quinn Jacobson, Eric Rotenberg, and Jim Smith. Path-based next trace

prediction. In Proceedings of the 30th Annual ACM/IEEE International

Symposium on Microarchitecture, December 1997.

[Kay93] Alan C. Kay. The early history of smalltalk. In HOPL-II: The second

ACM SIGPLAN conference on History of programming languages, pages

69–95, New York, NY, USA, 1993. ACM Press.

[KF99] Thomas Kistler and Michael Franz. A tree-based alternative to Java byte-

codes. International Journal of Parallel Program, 27(1):21–33, 1999.

[KK98] John Kalamatianos and David Kaeli. Predicting indirect branches via data

compression. In Proceedings of the 31st annual ACM/IEEE international

symposium on Microarchitecture, November 1998.

[KL02] AJ KleinOsowski and David J. Lilja. Minnespec: A New SPEC benchmark

workload for simulation-based computer architecture research. Computer

Architecture Letters, Vol.1, June 2002.

[Kli81] Paul Klint. Interpretation techniques. Software—Practice and Experience,

11:963–973, 1981.

[Koo89] Philip J. Koopman, Jr. Stack Computers: the new wave. Ellis Horwood

Limited, 1989.

[Kra83] G. Krasner. Smalltalk 80: Bits of History, Words of Advice. Addison-

Wesley, Reading, MA, 1983.

[Lil00] David J. Lilja. Measuring Computer Performance - A Practitioner’s

Guide. The Press Syndicate of the University of Cambridge, The Pit

Building, Trumpington Street, Cambridge, United Kingdom, first edition,

2000.

136

[LT79] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding

dominators in a flowgraph. ACM Trans. Program. Lang. Syst., 1(1):121–

141, 1979.

[LWY00] Sang-Jeong Lee, Yuan Wang, and Pen-Chung Yew. Decoupled value pre-

diction on trace processors. In Proceedings of the Sixth International

Symposium on High Performance Computer Architecture, pages 231–240,

Toulouse, France, January 2000.

[LY99] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.

The Java Series. Addison Wesley Longman, Inc., second edition, April

1999.

[MB99] Blair McGlashan and Andy Bower. The interpreter is dead (slow). Isn’t

it? In OOPSLA’99 Workshop: Simplicity, Performance and Portability

in Virtual Machine design., 1999.

[Mös00] Hanspeter Mössenböck. Adding static single assignment form and a graph

coloring register allocator to the Java Hotspot client compiler. Technical

Report TR-15, Johannes Kepler University Linz Institute for Practical

Computer Science, Altenbergerstrae 69, A-4040 Linz, 2000.

[Muc97] Steven S. Muchnick. Advanced compiler design and implementation. Mor-

gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

[Mye77] Glenford J. Myers. The case against stack-oriented instruction sets. Com-

puter Architecture News, 6(3):7–10, August 1977.

[PA02] David Pereira and John Aycock. Instruction set architecture of Mamba,

a new virtual machine for Python, September 27 2002.

[Pat99] Sanjay Jeram Patel. Trace Cache Design for Wide-Issue Superscalar Pro-

cessor. PhD thesis, Computer Science and Engineering in The University

of Michigan, 1999.

[PD82] Steven Pemberton and Martin Daniels. Pascal Implementation: The P4

Compiler and Interpreter. Ellis Horwood, 1982.

137

[PEP98] Sanjay J. Patel, Marius Evers, and Yale N. Patt. Improving trace cache

effectiveness with branch promotion and trace packing. In ISCA, pages

262–271, 1998.

[PFP97] Sanjay Jeram Patel, Daniel Holmes Friendly, and Yale N. Patt. Critical

issues regarding the trace cache fetch mechanism. Technical Report CSE-

TR-335-97, Computer Science and Engineering, University of Michigan,

May 7 1997. Thu, 15 Oct 1998 15:18:24 GMT.

[PFP99] Sanjay J. Patel, Daniel H. Friendly, and Yale N. Patt. Evaluation of design

options for the trace cache fetch mechanism. IEEE Trans. Computers,

48(2):193–204, 1999.

[PR98] Ian Piumarta and Fabio Riccardi. Optimizing direct threaded code by

selective inlining. In SIGPLAN ’98 Conference on Programming Language

Design and Implementation, pages 291–300, 1998.

[Pro95] Todd A. Proebsting. Optimizing an ANSI C interpreter with superopera-

tors. In Principles of Programming Languages (POPL ’95), pages 322–332,

1995.

[PS93] Chris H. Perleberg and Alan Jay Smith. Branch target buffer design and

optimization. IEEE Trans. Computers, 42(4):396–412, 1993.

[Pug99] William Pugh. Compressing Java class files. In PLDI ’99: Proceedings of

the ACM SIGPLAN 1999 conference on Programming language design and

implementation, pages 247–258, New York, NY, USA, 1999. ACM Press.

[PW95] Alexander Peleg and Uri Weiser. Dyamic flow instruction cache mem-

ory organized around trace segments independent of virtual address line.

United States Patent 5,381,533, January 1995.

[PWL04] Jinzhan Peng, Gansha Wu, and Guei-Yuan Lueh. Code sharing among

states for stack-caching interpreter. In IVME ’04 Proceedings, pages 15–

22, 2004.

138

[RBS96] Eric Rotenberg, Steve Bennett, and James E. Smith. Trace cache: A low

latency approach to high bandwidth instruction fetching. In International

Symposium on Microarchitecture, pages 24–35, 1996.

[RBS99] Eric Rotenberg, Steve Bennett, and James E. Smith. A trace cache mi-

croarchitecture and evaluation. IEEE Transactions on Computers, 1999.

[RJSS97] Eric Rotenberg, Quinn Jacobson, Yiannakis Sazeides, and James E. Smith.

Trace processors. In MICRO, pages 138–148, 1997.

[RLPN+99] Alex Ramirez, Josep-L. Larriba-Pey, Carlos Navarro, Josep Torrellas, and

Mateo Valero. Software trace cache. In Proceedings of the 13th interna-

tional conference on Supercomputing, pages 119–126, 1999.

[RLV+96] Theodore H. Romer, Dennis Lee, Geoffrey M. Voelker, Alec Wolman,

Wayne A. Wong, Jean-Loup Baer, Brian N. Bershad, and Henry M. Levy.

The structure and performance of interpreters. In Architectural Support

for Programming Languages and Operating Systems (ASPLOS-VII), pages

150–159, 1996.

[Rot05] Eric Rotenberg. Sepculative Execution in High Performace Computer Ar-

chitectures, chapter 4. CRC Press, 2005. (Eds) D. Kaeli and P.-C. Yew.

[RVJS00] Ramesh Radhakrishnan, Narayanan Vijaykrishnan, Lizy Kurian John, and

Anand Sivasubramaniam. Architectural issues in Java runtime systems.

In Proceedings of the Sixth International Symposium on High-Performance

Computer Architecture, pages 387–398, Toulouse, France, 2000.

[SA97] Emin Gun Sirer and Prof Andrew. Measuring limits of fine-grained par-

allelism, January 24 1997.

[SFF+02] Oliverio J. Santana, Ayose Falcon, Enrique Fernandez, Pedro Medina,

Alex Ramirez, and Mateo Valero. A comprehensive analysis of indirect

branch prediction. In Proceedings of the 4th International Symposium on

High Performance Computing (ISHPC-IV), May 2002.

139

[SFR+02] Oliverio J. Santana, Ayose Falcon, Alex Ramirez, Josep L. Larriba-Pey,

and Mateo Valero. Next stream prediction. Technical Report UPC-DAC-

2002-15, Technical Report, April 2002.

[SGBE05] Yunhe Shi, David Gregg, Andrew Beatty, and M. Anton Ertl. Virtual

machine showdown: stack versus registers. In ACM/SIGPLAN Conference

on Virtual Execution Environments, pages 153–163, Chicago, Illinois, June

2005. ACM Press.

[SJSM96] André Seznec, Stéphan Jourdan, Pascal Sainrat, and Pierre Michaud.

Multiple-block ahead branch predictors. In ASPLOS, pages 116–127, 1996.

[SL84] Smith, A. J. and Lee, J. Branch prediction strategies and branch target

buffer design. Computer, 17(1):6–22, 1984.

[SM77] Peter Schulthess and Eduard Mumprecht. Reply to the case against stack-

oriented instruction sets. Computer Architecture News, 6(5):24–27, De-

cember 1977.

[SM01] Sun-Microsystems. The Java Hotspot virtual machine. Technical report,

Sun Microsystems Inc., 2001.

[SN05] James E. Smith and Ravi Nair. The architecture of virtual machines.

Computer, 38(5):32–38, May 2005.

[SÖG06] Yunhe Shi, Emre Özer, and David Gregg. Analyzing effects of trace cache

configurations on the prediction of indirect branches. The Journal of

Instruction-Level Parallelism, Volume 8, 2006.

[SPE98] SPEC. SPEC releases SPEC JVM98, first industry-standard benchmark

for measuring Java virtual machine performance. Press Release, August

19 1998. http://www.spec.org/jvm98/press.html.

[SRLPV04] Oliverio J. Santana, Alex Ramirez, Josep L. Larriba-Pey, and Mateo

Valero. A low-complexity fetch architecture for high-performance super-

scalar processors. ACM Transactions on Architecture and Code Optimiza-

tion (TACO), 1(2):220–245, June 2004.

140

[TSL+02] Frank Tip, Peter F. Sweeney, Chris Laffra, Aldo Eisma, and David

Streeter. Practical extraction techniques for Java. ACM Trans. Program.

Lang. Syst., 24(6):625–666, 2002.

[USS97] Augustus K. Uht, Vijay Sindagi, and Sajee Somanathan. Branch effect

reduction techniques. IEEE Computer, 30(5):71–81, 1997.

[VA04] Benjamin Vitale and Tarek S. Abdelrahman. Catenation and specializa-

tion for tcl virtual machine performance. In IVME ’04: Proceedings of

the 2004 workshop on Interpreters, virtual machines and emulators, pages

42–50, New York, NY, USA, 2004. ACM Press.

[Ven99] Bill Venners. Inside the Java Virtual Machine. McGraw-Hill, pub-

MCGRAW-HILL:adr, second edition, 1999.

[VRHS+99] Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Eti-

enne Gagnon, and Phong Co. Soot - a Java optimization framework. In

Proceedings of CASCON 1999, pages 125–135, 1999.

[WC99] C. Wongsiriprasert and P. Chongstitvatana. Performance comparison be-

tween two virtual machine interpreters : stack-based vs. register-based. In

Proc. of 3rd Annual National Symposium on Computational Science and

Engineering, pages 401–406, Bangkok, Thailand, 1999.

[WP97] Phil Winterbottom and Rob Pike. The design of the Inferno virtual ma-

chine. In IEEE Compcon 97 Proceedings, pages 241–244, San Jose, Cali-

fornia, 1997.

[YP93] Tse-Yu Yeh and Yale N. Patt. A comparison of dynamic branch predictors

that use two levels of branch history. In ISCA, pages 257–266, 1993.

141

