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Summary

This dissertation presents a pure functional language called Curio. This language is unusual
in possessing a rigorous yet general semantics for I/O which permits both formal proofs and
a fine-tuned approach to concurrency. This is achieved by describing the language semantics
in terms of an abstract model of the I/O application programmer interface (API).

We begin by introducing this model, which simulates how the API affects some global
world state and describes the extent to which certain I/O actions are order independent.
We then introduce Curio, which extends a pure functional language with five primitives
for monadic I/O and explicit concurrency. Each process is at runtime associated with what
we call an “I/O context” and this outlines the I/O actions that the process is allowed to
perform. The language’s semantics are given in terms of a simple implementation in the
metalanguage, Core-Clean.

It is proved formally that if an I/O model obeys some broad properties then, despite
concurrency, program execution is always deterministic. This result is made more substantial
by the fact that concurrent processes may communicate with one another via the API.

We then show how a large fragment of Haskell 98’s I/O interface can be modelled in
Curio. To do this we found it necessary to develop API combinators which allow larger APIs
to be constructed from smaller ones in a way that preserves deterministic behaviour. It was
also necessary to solve the technical problem of how two processes may allocate data locally
within a single global state. We present some example applications which demonstrate how
Curio appears to lead to more expressive, powerful I/O code compared to that of existing
approaches.

Finally we tackle the problem of reasoning formally about Curio programs. A notion of
program equivalence is developed and we show how the monad laws hold and how equivalence
is a congruence. This equivalence relation is powerful because it identifies programs not only
by their cumulative effect on global state, but also by how they interact with other processes,
thereby allowing us to distinguish non-terminating programs. In the final technical chapter
we develop a algebraic structure which describes more succinctly how permissions may be
distributed among concurrent processes.

The confluence proof and many other technical results have been machine-verified.
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Chapter 1

Introduction

Pure, lazy functional languages [90, 97] have often been praised for the elegant programming
style which they encourage. These languages, through referential transparency and lazy
evaluation, give one a means to write and manipulate programs almost at the level of a
specification. Therefore one can write expressive code which is a clearer description of what
we intend it to do, and, ideally, one only worries about optimisations when the program is
logically correct.

But this cannot be said to hold for input/output. Monadic I/O [122], the standard
approach to I/O in pure languages, forces the programmer to explicitly sequence all I/O
actions. This is not abstract at all, and is hardly a better specification of I/O than any C or
Pascal program. This opinion has been echoed by the functional language community. In
Peyton Jones’ 15 year retrospective on the Haskell programming language [87] he mentioned
that a more fine-grained way of partitioning I/O effects was one of two significant open
challenges associated with the use of monads.

The problem is that certain I/O actions genuinely do not interfere with one another and
the programmer should be free to loosen the order in which these actions are performed.
For example, let us say that we want to write a program which does file processing while, at
the same time, interacting with the user. These are probably distinct, unrelated pieces of
code, yet if actions are sequenced explicitly then either all user interaction will have to halt
while the file is being processed, or both code fragments will have to be entangled together.
Neither solution is particularly desirable. We also want to avoid adding unconstrained
concurrency since this would lead to non-determinism.

This dissertation’s contribution to this open problem is two-fold. Firstly, we outline a
somewhat novel language extension which, using runtime checks, preserves determinism in
the presence of concurrency and I/O. Secondly, and more significantly, this is achieved with
what appears to be a genuinely original approach to describing the semantics of deterministic
concurrency and I/O, thereby giving a rigorous foundation to our new language features. We
begin by developing a structure called an “I/O model” which directly describes the API, and
this is then used to give the semantics of a language called Curio. This language extends

1
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a purely functional language by adding five primitives which together permit monadic I/O,
concurrency, and interprocess communication yet still allows us to retain determinism. We
then show how a significant subset of Haskell 98’s I/O library may be modelled with this
technique and how traditional notions of program equality and equational reasoning still
hold true.

Section 1.1 gives a quick history of functional languages and how one expresses I/O in
them. Section 1.2 describes the semantics of functional languages, and Section 1.3 presents
a detailed overview of the differing attempts to give a formal semantics to I/O. Section 1.4
gives a broad outline of this dissertation, showing its main contributions and the contents of
the individual chapters. Section 1.5 describes work related to that in this thesis. Section 1.6
contains technical preliminaries.

1.1 Functional programming and I/O

Functional programming is a language paradigm which treats computation as the evaluation
of mathematical functions. Generally functional languages attempt to incorporate functions
as “first class citizens” within the language, allowing them to be passed as parameters to
other functions.

Early languages such as LISP [70] were strict (meaning that functions evaluated their ar-
guments), had no static type-system, and included imperative features such as side-effecting
I/O and assignment. ISWIM [64] introduced lazy evaluation, and ML [76] in the mid-70s
was the first functional language with a polymorphic type system.

1.1.1 Pure functional languages and I/O

Gradually, over time, there has also been a shift towards removing or isolating imperative
features. “Pure” languages are that class of functional language which place the greatest
emphasis on the semantic properties of functional languages by entirely forbidding these
useful but inelegant imperative features. In these languages it can be assumed that there is
no implicit reduction order (see [101], for example), so I/O, assignment, and array manipu-
lation need to be ordered explicitly using special language constructs.

Side-effecting I/O is the standard means of expressing I/O in almost all programming
languages. With this approach I/O is performed by pseudo-functions, and these generally
exist outside the realm of the language’s semantics. For lazy functional languages, however,
side-effecting I/O is out of the question. Consider the following lazy list, where getString

is a side-effecting pseudo-function which retrieves a string from the terminal:

printlist :: [String]

printlist = ["foo", getString, "bar"]

Depending on how this list is used, getString may be called at once, at some time in
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the future, or never. Therefore the programmer will most likely have little clue as to when,
if ever, the I/O action is going to take place.

The 1980s saw a proliferation of pure functional languages but, after a period of con-
solidation in the academic community the Haskell language [90] has now become the focus
of almost all research in this area. The one notable exception is the Clean language [97],
which is similar but has evolved in different directions, especially with regard to state and
I/O. Haskell and Clean both have polymorphic type systems, a type-class mechanism and
(two different) facilities for performing I/O. This dissertation is only concerned with these
pure languages.

We shall now describe the two main approaches to I/O, namely monads and unique
types.

1.1.2 Monadic I/O

Monads are usually regarded as the single most significant breakthrough for the expression
of I/O in pure lazy functional languages, and they are a fundamental starting point for
this dissertation. Monads are a construct from category theory [68], and were originally
introduced into the field of Computer Science by Moggi [77] as a proposal for structuring
the denotational semantics of programming languages. Wadler and Peyton Jones later
successfully applied them to functional programming [121, 94], where, among other uses,
they let one explicitly sequence I/O actions. Monads are still the primary means by which
I/O is expressed in Haskell.

A monad, in a functional language, is a type constructor with two operations defined on
it, return and >>=. In Haskell one sequences all I/O actions using the IO monad, and all
I/O must be conducted using built-in functions of type IO α.

return :: ∀α. α → IO α

(>>=) :: ∀α. ∀β. IO α → (α → IO β) → IO β

putStr :: String→ IO ()

getChar :: IO Char

A term of type IO α can be understood as an I/O performing program which, upon
completion, returns a value of type α. return a is a program which immediately returns
value a, the built-in IO “programs” such as getChar each perform a single system call or
side-effect, and one uses >>= to make a program which performs one program and then,
depending on the result, perform another. So it is in effect sequencing by construction.
This forms an entirely sequential outer shell around the inner core, functional language.

A good introduction to monadic I/O can be found in [122], although the Haskell syntax
is slightly out of date.
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1.1.3 Unique types

The other approach to I/O in pure languages is through unique typing [10, 5] and this is
what the Clean community uses to structure I/O and array access. Unique types, derived
from linear types [118, 37], add additional type information to terms which indicates whether
access to a term must be single threaded.

Uniqueness is indicated with a * and the initial program Start is of the following type

Start :: *World→ *World

The great significance of this approach for our research is that one may loosen the
sequence in which actions are performed. The types of some of the file actions are as
follows∗:

fopen :: [Char]→ Mode→ *World→ (Bool,*File,*World)

fclose :: *File→ *World→ (Bool,*World)

freadc :: *File→ (Bool,Char,*File)

fwritec :: Char→ *File→ *File

When a file is opened it becomes its own unique *File object, separate from the world of
type *World. Therefore one may write a program which sequences the order in which actions
are to be performed only with respect to an individual file. This is sometimes known as a
world-as-value style. The oft-cited disadvantage, however, is that unlike monads it requires
non-trivial extensions to the standard Hindley-Milner [25] type system.

1.1.4 Other approaches

Prior to monads, a collection of different styles of pure I/O were proposed. These included
Landin stream I/O, synchronised stream I/O, and continuation-passing. Good introductions
may be found in [94, 39], and they are formally proved equivalent in [38], but these are of
little concern to us since they are no more powerful than monadic I/O.

Haskell permits lazy file I/O. The function hGetContents :: FilePath → IO String

reads the contents of a file. However it returns immediately and the characters are only
actually read from disc when the resultant string is evaluated. While convenient, this comes
at a price – the behaviour of lazy file I/O, like with side-effecting, can be hard to predict.

There are also high-level libraries which are used to structure I/O. The best example of
this is systems for handling graphical user interfaces, and these may have their own high-level
semantics. Yet it appears that none of these systems do yield a more fine-grained approach
to general I/O than the low-level language constructs used to implement them. Fudgets
[15, 16] are perhaps the most famous GUI library. In Fudgets there are special terminal and

∗The actual Clean types (and syntax) are a little different, containing extra strictness annotation.



1.2. Semantics of functional languages 5

file I/O fudgets to which there is unrestricted access – but Fudgets are non-deterministic so
this is no different to normal concurrency. Arrows [54] are a generalisation of monads but
actions are still sequenced explicitly, and GUI systems based on Arrows [20] are no different.
The Clean language implements GUIs via the Object I/O library [6], and using the unique
type system processes may contain, as part of their local state, the file system or individual
files.

Also, despite the considerable work on composing monads [59] – inspired by category-
theory – it has not helped the structuring of independent states within a single I/O monad.

1.2 Semantics of functional languages

1.2.1 Introduction to language semantics

The purpose of a language semantics is, in some sense, to describe formally how programs
behave. This may then be used to give formal proofs of properties, show that a type system
is sound, or show that compiler optimisations are valid. General-purpose introductions to
the field of language semantics can be found in [43, 124]. Programming language semantics
are generally classified as operational, denotational or axiomatic, and we will briefly discuss
the first two here.

An operational semantics describes how a program behaves over time. Typically, an
operational semantics defines a term structure (i.e. the syntax of a language), some reduction
relation “−→” on that structure, and some notion of a term being in normal form/fully
evaluated. p ⇓ v means that term p reduces to normal form v (convergence), and p ⇑
indicates that p does not reduce to a normal form (divergence). Terms often have some
associated type information as well.

A denotational semantics describes a program as an element of a mathematical structure.
So if an operational semantics says what a program does, a denotational semantics could
be said to describe what a program is. Very often this structure is a Scott-domain – a
partially ordered set with some extra side-conditions, and a ⊥ (bottom) element which
denotes non-termination/failure. The denotation of a program p is written as [[p]]. For this
dissertation we will be concerned solely with traditional Scott domains. An introduction to
denotational semantics can be found in Schmidt [102], and Abramsky and Jung’s notes on
Domain Theory [4] are probably the best reference text on the subject.

Various relationships may be proved which connect an operational semantics to a deno-
tational one. Taking the terminology from Pitts’ notes [95], “soundness” means that p ⇓ v

implies [[p]] = [[v]], “adequacy” means that [[p]] = [[v]] implies p ⇓ v (where v is in normal
form), and “full abstraction” implies that two programs are contextually equivalent under
the operational semantics if and only if their domains are equal. Contextual equivalence is
an operational notion. Two programs are contextually equivalent if substituting one for the
other within any other program does not affect the observable results.
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1.2.2 PCF and applicative bisimulation

The semantics of functional languages are sometimes said to be derived from the λ-calculus
[9], Church’s minimal notion of computable function. Yet in practice this correspondence
is somewhat sketchy. The pure λ-calculus has no delta rules (atomic units of computation,
such as manipulating the natural numbers), does not specify any exact reduction strategy,
and has no type system.

PCF, introduced by Plotkin in [98], includes all of these and is instead usually viewed
as the best example of a minimal functional language. Plotkin gave an operational and
denotational semantics to PCF using Scott-domains, and proved soundness and adequacy
results linking the two semantics. Famously, however, full abstraction did not hold for
PCF under standard domain theory†. Denotational equality does still imply contextual
equivalence but the reverse is not true.

In lazy functional languages one evaluates a term only to its outermost constructor.
Abramsky’s Lazy Lambda Calculus [1] re-addressed the problem of treating the λ-calculus
as a real language by developing a theory in which reduction is only to weak head normal
form – that is, until an outermost λ. In doing so he developed the notion of “applicative
bisimulation”, which views the behaviour of a term as transitions in a process calculus like
CCS [73]. This describes two terms as being equivalent if either (1) they both diverge, or
(2) they both converge to the same outermost constructor and all sub-terms are equivalent
in that same sense.

This general approach was explored in an entirely operational setting for a class of lazy
computation systems by Howe [51], who showed the circumstances in which bisimulation is
a congruence and when it coincides with contextual equivalence. This technique was used
by Gordon [39, 40] to describe and give good notions of program equivalence to a substantial
lazy functional language.

There also exist more low-level semantics. Launchbury’s Natural Semantics [65] describes
the heap usage of lazy evaluation, and [105, 63, 92] are abstract machines for lazy evaluation.
These are not relevant to our work.

1.2.3 Proving program properties

These minimal languages are ideal for meta-results and proof-of-concept tasks, but formal
semantics for full languages are harder to come by. The Haskell Report [90] describes the
Haskell language semi-formally but there is still, as of yet, no complete formal semantics for
Haskell. This is ongoing work, and some significant documents on this subject are [44, 93,
33, 47]. The semantics of Core-Clean, a language with a large subset of the functionality of
Clean, can be found in de Mol’s (currently unfinished) dissertation [27].

†The problem of giving a fully abstract semantics to PCF has only been solved quite recently [3], and a
survey of the various attempts can be found in [84].
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When one proves general properties via a language’s operational semantics it is com-
monly by inducting over the term structure of the language, or the number of reduction
steps. In a denotational style, one instead inducts over the structure of the domain of a
universally quantified variable.

Equational reasoning in pure functional languages is usually performed in this denota-
tional style. This is the type of reasoning popularised, for example, in Bird’s introductory
textbook [12], where one proves that

∀f∈α→β.∀xs∈[α].∀ys∈[α].map f (xs++ys) = map f xs++map f ys

by inducting over xs. xs may be any element of the domain [α], the domain of all (possibly
infinite, possibly partial) lists of α. Valid lists include [1, 2, 3], [⊥], [7, 7, 7, · · · ] and (⊥:⊥).

Equational proofs need not always rely on domain theory. Gordon, in [40], proves the
so-called “Bird & Wadler Take-lemma” via operational means using bisimulation.

As far as we are aware there are only two tools in existence for reasoning about pure,
lazy functional programs. These are

� Sparkle [28], which is a stand-alone application for reasoning about programs in Core-
Clean, a language with a large subset of the functionality of Clean.

� The Programatica [85] tool which is used to let one reason about Haskell using P-
Logic. This must then be translated into a separate type theory before reasoning may
be performed.

It is the former, Sparkle, which is used to help verify the results in this document.

1.3 Semantics for I/O

I/O is not generally considered to be an interesting aspect of language semantics. The need
for a semantics for I/O is more acute with pure functional languages, however, and there
are a number of approaches.

1.3.1 I/O as state manipulation

The simplest and most obvious way of modelling I/O is as a state-transformer, where some
“world state” ω models the entire system state, and the semantics of each action is a function
of type ω → (ω,ν). So, given some system state an action modifies it and returns some
value of type ν. One of the cited disadvantages with a state-transformer semantics is that it
is not compatible with concurrency, interaction and non-termination – but this dissertation
will contest some of these.

There are a number of elegant techniques for expressing state manipulation in functional
languages which also happen to be applicable to I/O. This is true of Clean’s unique types.
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Haskell’s lazy state threads [66], a well-known technique for dealing with state, were modified
in [50] to allow concurrent, single threaded access to global sub-states, such as individual
files. Composable Memory Transactions [46] use a form of memory transaction to permit
concurrent data-structures, but probably are not applicable to everyday I/O.

General-purpose state-based techniques are inadequate since, as a semantics for I/O,
they ignore the fact that I/O is fundamentally different to state: memory modification can
be rolled back (unlike, say, deleting a file); one can change memory whatever way one wants,
but global state can only be changed via a fixed interface; I/O is inherently global but state
may be allocated, modified and deallocated entirely locally. That does not mean that these
techniques cannot be used in an ad-hoc manner to solve certain problems elegantly. It just
means that they do not describe the complexity of I/O very accurately.

1.3.2 Bisimulation – the Haskell approach

Probably the single most significant attempt at a semantics for functional I/O is to be
found in Gordon’s Ph.D thesis “Functional Programming and Input/Output” [39]. In this
document he develops a full operational semantics for a pure functional language using
bisimulation and extends this notion of bisimulation so that transitions, or observations,
may include I/O actions. In this system, attributed originally to Holström [49], all actions
are observable events and two different sequences of actions are always distinguishable. A
denotational semantics was given for this system in [23].

A similar approach was used to give the semantics to Concurrent Haskell [89], and, later,
describe the details of Haskell’s I/O, exception and foreign interface mechanisms [88]. This
is similar in the sense that I/O actions are transitions. The difference is that it uses an
implicit denotational semantics of the host language (i.e. Haskell), instead of giving a full
operational semantics.

This gives a satisfactory model of user interaction and non-termination. The main flaw
to this semantics is its usefulness since it “explicitly represents the instructions issued by a
program, rather than their observable effect” [89]. This style of semantics was used to prove
the monad laws in [40]. However, even in Gordon’s Ph.D. thesis, in order to prove useful
properties about the effects of I/O actions a state-transformer semantics had to be used.

1.3.3 Other approaches

There have been occasional attempts at reasoning about side-effecting I/O. Williams and
Wimmers [123] give a semantics to side-effecting I/O in the language FL, a modification of
Backus’ FP. However, since FL is a strict language this is much simpler. Schmidt-Schauß
[103] attempts to gives a semantics to lazy side-effecting (such as unsafePerformIO in
Haskell) but it is inherently non-deterministic.

Sewell [106] addresses I/O in Pict, a language based on Milner’s π-calculus [75]. He
develops a highly simplified notion of a sequential C program and the UNIX X-Windows
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request buffer, and proves an abstract machine correct with respect to the semantics. This is
mostly the same as the bisimulation approach, as is that taken in [116], where the λ-calculus
is extended with simple I/O primitives.

There also exist techniques for reasoning about lazy stream I/O. Thompson [115] gives a
trace-based semantics to lazy stream I/O in Miranda. Hall and Hammond’s draft dynamic
semantics for Haskell 1.3 [44] describes the effect of I/O actions with respect to a single
system state, and this includes a semantics for file system actions. Hudak also does some-
thing similar in [52]. These aforementioned semantics for Haskell describe specifics of the
I/O API but none use this to exploit concurrency.

Some related work is that on functional operating systems, since this in effect gives
the semantics to part of the operating system by implementing it in a functional style.
In the 1980s there was a considerable amount of work in this field [62, 61, 24]. Recently,
pure, strongly-typed functional operating systems have been developed such as Famke [120]
and House [45]. These require a more detailed examination of the features of the I/O
interface, but their semantics do not appear to be compatible with describing deterministic
concurrency.

Some work has gone into giving formal semantics to GUI systems. Semantic models of
Fudgets were given in [78] and [111] but these are non-deterministic and do not describe the
actual API.

Languages such as Vault [29] and Cyclone [42], though unrelated to pure functional
languages, are also notable since they have a strong notion of state. Vault is a modification
of C and has been used to provide a more secure interface to Windows 2000 device drivers.
Although their type systems are sensitive to specific aspects of the I/O API, they do not go
quite so far as to give a semantics to I/O.

1.4 Thesis outline

1.4.1 A brief technical introduction to Curio

In this document we outline a small language extension, and its associated semantics. The
Curio language defined has five primitives, >>=, return, action, test and par. Their
types are

(>>=) :: ∀β. ∀γ. Progs β → (β → Progs γ) → Progs γ

return :: ∀β. β → Progs β

action :: α → Progs ν

test :: ∀β. α → Progs β → Progs β → Progs β

par :: ∀β. ∀γ. ∀ε. ρ → Progs β → Progs γ → (β → γ → ε) → Progs ε

Like ‘IO’ in Haskell, Progs is a monadic type constructor. s identifies the Curio pro-
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gram’s “I/O model” and this describes the I/O interface and binds the types ν, α and
ρ. Primitives >>= and return have the same roles as in Haskell, and action a performs
primitive action a. We achieve determinism in Curio by limiting the actions that processes
can perform, and the test primitive lets a process check at run-time if a certain action is
allowed. Lastly, par performs two programs concurrently, giving each sub-process certain
permissions.

As a small example, consider the following program for I/O model term which attempts
to write a string to stdout, returning False if that is not allowed.

putStr’ :: String → Progterm Bool

putStr’ [] = return True

putStr’ (c:cs) =

test (PutC c) (action (PutC c) >>= \_ -> putStr’ cs) (return False)

The types α, ν and ρ, the behaviour of all the actions, and the amount of deterministic
concurrency allowed are determined by the following abstract I/O model structure.

s :: IOModel ν α ρ ω ς
M= 〈af :: α → ω → (ω,ν),

wa :: α → ω → Bool,

ap :: ς → α → Bool,

pf :: ρ → ς → (ς,ς)〉

In short, af/wa describe the effect of each action on global state (including when an
action is stalled), ap describes what permissions we can give to individual processes, and
pf describes how these permissions can be distributed in the presence of concurrency. The
intricacies of I/O models and Curio’s primitives are examined in great detail in Chapters 2
and 3, and this forms the basis for the whole of the rest of the dissertation.

The somewhat involved semantics of model term can be found in full in Figure 1.1. Each
character sent to stdout gives rise instantly to zero or more characters, and these are added
to a queue of characters ready to be consumed from stdin. A process may or may not be
able to output characters, and, separately, may or may not be able to input characters. The
I/O model guarantees that two parallel processes cannot both be able to perform input, or
both be able to perform output.

Model term only has two actions, and very limited opportunities for concurrency. In
Chapter 6 we construct a model io which encodes Haskell’s I/O interface. Progio can then be
seen as a substitute for Haskell’s IO, and we implement the standard Haskell functions such as
getChar using Curio’s built-in action primitive. Furthermore, we introduce some Curio-
specific library functions for deterministic concurrency and communication, and these give
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term :: IOModel νTerm αTerm ρTerm ωTerm ςTerm
M= 〈afTerm, waTerm, apTerm, pfTerm〉

νTerm
M= Char

ωTerm
M= ([Char],TermIO)

αTerm
M= PutC Char | GetC

ρTerm, ςTerm
M= TCxt Bool Bool

TermIO
M= TermIO (Char → ([Char],TermIO))

waTerm (PutC c) (cs,t)
M= False

afTerm (PutC c) (cs,TermIO f)
M= ((cs++fst (f c),snd (f c)),’ ’)

waTerm GetC (cs,t)
M= null cs

afTerm GetC ((c : cs),t) M= ((cs,t),c)

apTerm (TCxt b ) (PutC c) M= b

apTerm (TCxt b) GetC
M= b

pfTerm (TCxt bpp bgp) (TCxt bp bg) M=
(TCxt (bp && bpp) (bg && bgp),TCxt (bp && not bpp) (bg && not bgp))

Figure 1.1: Definition of I/O model term

a more user-friendly interface to action, test and par. The new functions include:

newChannel :: Progio (Handle,Handle)

newQSem :: Progio (Handle,Handle)

hAllowed :: Handle → Progio Bool

parIO :: ∀β. ∀γ. [Handle] → Progio β → [Handle] → Progio γ → Progio (β,γ)

These allow a process to create one-to-one communication buffers (with separate read
and write handles), check at runtime if it may use a handle, and split into two separate
deterministic concurrent processes each with their own permissions.

1.4.2 Hypothesis

This dissertation is an attempt to show the following hypotheses:

� that it is possible to formally describe a pure functional language with I/O and con-
currency using a general mathematical model of the API.

� that a slightly modified state-transformer semantics is suitable for modelling both the
effects of I/O actions and interprocess communication, and with suitable language
constructs this may then be used to enforce determinism.

� this can be be applied to model and enforce determinism in a substantial I/O API,
not just small academic examples.
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� useful notions of program equivalence exist for such a language.

1.4.3 Synopsis

The document is structured as follows.

Chapter 2: I/O models and contexts We introduce our “I/O model” mathematical
structure in this chapter. This models the API with which a program interacts and
also the opportunities for deterministic concurrency that the API exhibits. A pre-
condition PREs is described which, we argue, guarantees determinism if it holds for
an I/O model. Five small example models are then given.

Chapter 3: Curio – a language for reasoning about I/O This chapter uses the no-
tion of an I/O model to give the non-deterministic single-step semantics of a small
language called Curio. This extends a pure functional language with five extra primi-
tives: return, >>=, action, test and par. We give some example programs, encoding
details, and a proof of recursive enumerability.

Chapter 4: Confluence We give a full machine-verified proof that PREs guarantees con-
fluence in Curio.

Chapter 5: A toolkit for building I/O models After creating small confluent models,
often it is convenient to construct larger I/O models directly from these. We describe
a collection of “combinators” which do this, all of which are proved to preserve con-
fluence. The problems with dynamic allocation in a single global state is addressed,
and we develop the notion of a “location-based I/O model” which solves these issues
by allowing actions to distinguish different calling processes.

Chapter 6: A real world API and applications The purpose of this chapter is to en-
code a substantial subset of Haskell 98’s I/O library into Curio. This includes ter-
minal I/O, a file system and two types of deterministic communication primitive –
one-to-one channels and many-to-one quantity semaphores. Combinators are used to
combine these into a single API, and we give a more high-level interface which mimics
that of Haskell. We finish with four real world applications which demonstrate the
power of Curio.

Chapter 7: Axiomatic semantics This chapter examines Curio’s semantics from the
point of view of reasoning about programs. We first develop a big-step semantics
which relates the evaluation of a program to the evaluation of its sub-terms. Then we
develop some notions of program equivalence which we find must be of a co-inductive
nature since a program may communicate. We show how the monad laws hold under
this equivalence relation and how it is a congruence. The chapter concludes with some
example proofs for small I/O models and discusses future large-scale proofs.
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Chapter 8: A lattice-theoretic approach to I/O contexts We re-examine our some-
what crude notion of I/O context (i.e. the permissions given to each process) from a
more algebraic viewpoint. A structure called a “maximal lattice” is developed which
neatly describes the various forms of concurrency permitted by an I/O model, and two
general-purpose mechanisms are developed for giving permissions to sub-programs. We
give examples and make comparisons with existing algebras.

Chapter 9: Conclusions and future work Conclusions are drawn and further work is
suggested.

Appendix A: Implementation details Omitted definitions from Chapters 3-6 are given
in full.

Appendix B: Additional proofs and machine-verification We give some extra re-
sults from Chapter 8, describe some formalities related to reasoning about functional
languages, and show how the machine-readable forms of many of the proofs in this
document may be obtained.

1.4.4 Results

This dissertation’s main contribution is a full semantics for a lazy functional language with
I/O and deterministic concurrency which admits correctness proofs. The original results
contained in this dissertation are as follows:

� the semantics for a non-strict language with monadic I/O, concurrency and inter-
process communication which is defined using an abstract mathematical model of the
application programmer interface.

� the proof of confluence that with added runtime checks which obey particular ax-
iomatic properties, the language will remain deterministic in the presence of concur-
rency.

� a comprehensive description of how the various aspects of a “real world” API may be
modelled to give more flexible language design without non-determinism, allowing the
user to write more expressive programs.

� the use of confluence to develop useful notions of program equivalence so as to admit
correctness proofs for I/O which concern the actual API.

� Machine-verification of a significant number of technical results.

1.4.5 How to read this dissertation

Figure 1.2 shows the chapter dependencies. A normal arrow indicates a strong depen-
dency between chapters, and a dotted arrow indicates a very slight dependency. A good
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Figure 1.2: Chapter dependency diagram

understanding of Chapters 2 and 3 are mostly essential for the whole of the dissertation.
After that, however, this document splits into a number of essentially distinct components.
Chapters 5 and 6 are focussed towards constructing a practical, real world model of I/O.
Chapters 7 and 8 are unrelated to these, and are concerned with formal reasoning and high-
level algebraic properties of programs and I/O models. The confluence proof in Chapter 4
is largely self-contained.

1.4.6 Separate publications

A paper “Reasoning about Deterministic Concurrent Functional I/O” [30] outlining a much
simpler prototype of Curio was accepted for the final proceedings of IFL 2004. This
language did not permit any form of communication, and we did not discuss large-scale I/O
models or mention notions of program equivalence. The confluence proof in Chapter 4 is
considerably more complex than that found in [30] as a result of communication. We intend
to publish this proof at a later stage, along with this dissertation’s other original results.

1.5 Related work

Curio’s main contributions are in the field of deterministic concurrency and the problems
with giving a semantics to/reasoning about I/O (or global state), especially in the presence
of concurrency. We now compare and contrast the work in this document to existing research
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in the field.

1.5.1 Deterministic concurrency

Attempting to structure side-effects in a confluent way is an old problem and there are many
existing approaches.

Clean is, for me, by far the most important and inspiring contribution towards expressing
functional I/O concurrently. But, unlike Curio, there is no way for two separate sub-
programs performing I/O on a separate piece of world state to communicate with one another
– all communication must be performed at a synchronisation point at which the two sub-
programs become one. Furthermore, Clean does not attempt to give a semantics to I/O as
such. The I/O interface is constructed in an ad-hoc style based on Clean’s graph-rewriting
semantics [96].

The Brisk Haskell Compiler uses rank-2 polymorphism to guarantee deterministic access
to multiple global sub-states [50, 109, 17]. This permits deterministic access to individual
files. However, the language description is largely implementation-driven, with no semantics
or notion of program equivalence. Eleni Spiliopoulou describes in her Ph.D. thesis [109] how
concurrent threads may communicate deterministically, but this is just an implementation,
and there are no associated semantics, nor are there any example programs. Also, shared file
reads are just performed using lazy file I/O with only a brief, informal argument justifying
why this is deterministic. Although lazy file I/O is not mentioned in Curio, we still describe
shared file reads in a far more rigorous fashion.

Dataflow languages, such as Lucid and Id, are generally deterministic and functional in
nature, and dealing with state has been found to be somewhat problematic. One of the most
important contributions in this field, according to the history and a survey in [58], was the
notion of an I-structure [8] introduced in the Id [81] language. These are single assignment
structures which allow for the concurrent, yet deterministic construction of arrays. We show
in Chapter 2 how I-structures may be modelled without difficulty in Curio’s more general
framework.

In a recent paper, Terauchi and Aiken [112] give a means of structuring side-effects under
lazy evaluation via “witnesses”. An ordering is enforced on side-effects by making one “see”
a witness of the other. However, confluence is only statically decidable for some reduction
strategies (call-by-need, but not call-by-name, for example), and it has only been applied to
simple read and write cells, not full I/O. It is also unclear how easy this is to reason about
formally. Programs in Curio are always confluent regardless of reduction strategy, and can
cater for a variety of I/O mechanisms. But this still looks promising.

Type and effect systems are a standard approach to merging imperative and functional
features, where pure and side-effecting terms are distinguished by the type system. Since the
original work by Gifford and Lucassen in the mid-1980s [36, 67] much work has been done
in the field [117, 22, 108]. Yet all of these rely on an implicit program evaluation strategy
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and thus are not directly applicable to pure, lazy functional languages. An introduction to
type and effect systems can be found in [79].

Segura [104] showed the correctness of determinism analyses in Eden, a pure (but non-
deterministic) functional language with explicit parallelism. Since Eden does not permit
I/O, however, this is not directly relevant. Jones and Hudak [60] discuss the issues re-
garding monadic I/O and explicit parallelism in pure functional languages – in particular,
single threading problems. Concurrent Haskell adopted an approach quite similar to that
mentioned – namely, it did not attempt to constrain concurrent behaviour. Concurrent
Haskell is non-deterministic, but it is interesting nonetheless to read the justification for
this decision.

“Since the parent and child processes may both mutate (parts of) the same
shared state (namely, the world), forkIO immediately introduces non-determinism...
Whilst this non-determinism is not desirable, it is not avoidable; indeed, every
concurrent language is non-deterministic. The only way to enforce determinism
would be by somehow constraining the two processes to work on separate parts
of the state ... The trouble is that essentially all the interesting applications
of concurrency involve the deliberate and controlled mutation of shared state,
such as screen real estate, the file system, or the internal data-structures of the
program.” [89]

Although it is true that a great many applications are non-deterministic by definition,
state may still be shared in safe, deterministic ways, and we believe it is worthwhile to
examine these in detail.

1.5.2 Reasoning about I/O and/or concurrency

Curio’s desire to allow formal proofs about I/O (or global state) in the presence of concur-
rency is its other salient feature.

The only examples of large-scale reasoning about I/O in functional languages come from
Trinity College Dublin. Butterfield and Strong [14] performed a case study comparing the
ease of formal reasoning about I/O in C, Haskell and Clean. The author followed this with
a larger proof of a simplified version of the UNIX make utility [32], which involved the
development of some “reasoning operators” for sequential monadic I/O‡. Also, some very
small machine-verified proofs of sequential monadic I/O programs can be found in [31].

The monad laws were proved by Gordon in [40], and in [39] he gave some small proofs
describing the behaviour of a monadic controller used in an Edinburgh hospital. The only
other example the author could find concerning formal I/O proofs are associated with the
House functional operating system [45]. Small propositions concerning sequential monadic
code can be proved correct using Programatica.

‡I was of two minds about whether to include details of this paper in an appendix to this dissertation. In
the end I decided against it since it is not (yet) directly relevant to Curio.
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The above examples all relate to purely sequential I/O, but Curio allows concurrency,
and reasoning about concurrency is notoriously hard. Standard “pure” process calculi such
as CCS [73, 74], CSP [48] and the π-calculus [75] are traditionally non-deterministic, and
program properties are proved via trace semantics and bisimulation. Although very inter-
esting in their own right, the sort of reasoning these permit is limited because it ignores the
inherently state-based nature of many I/O proofs. Curio’s notion of program equivalence
developed in Chapter 7 is powerful since it can distinguish two program fragments both by
how they modify world state and by how they communicate with other processes.

Curio’s use of a state-transformer semantics to handle communication is unusual. Our
equivalence relation may turn out to be a useful hybrid of stateful, inductive notions of I/O
such as file access and interactive, co-inductive notions of I/O such as communication. The
performance of large-scale I/O proofs in Curio is still future work, however.

1.6 Technical preliminaries

1.6.1 General prerequisites

The reader is expected to be reasonably familiar with Haskell syntax, and standard con-
structs from functional languages. In particular: higher-order algebraic datatypes, curried
functions, type constructors, data constructors, lambda abstraction, and case analysis.

Function application in Haskell is written as f x. This is the same as f $ x, explicitly
using the application operator ($) which has the lowest precedence. Function composition
is (.). As usual, function application is left associative and the function type constructor→
is right associative. Function definitions are given in the standard style. A single function
may be defined by pattern matching on its arguments. This is internally converted into a
case-of statement. A function may fail if no pattern matches, and the usual top-to-bottom
scanning rules always apply. Lambda abstraction is written using a \ (i.e. \n -> n+1). A
‘_’ indicates a function argument whose value is ignored. A standard function which requires
two arguments may be written in an infix notation using backticks (f ‘map‘ xs instead of
map f xs). Similarly, an infix operator may be used in a prefix style ((+) 2 3 instead of
2 + 3).

The empty list is denoted [], and (x:xs) is a cons cell. [1,2,3] is shorthand for
(1:(2:(3:[]))). length returns the length of a list, !! is list look-up at a particular
index, and list concatenation is ++, or ++ in Haskell. head and tail take the head and tail
of a cons list, and last returns the last element in a list. A String is just a list of characters.
The standard map, foldl, and foldr functions are assumed. Boolean (Bool) operators in
Haskell are &&, ||, and not, and general equality is == and /=. Integer operations exist
as normal. Tuples are written (a,b), and fst/snd are the respective projection functions.
The type () is the type whose only element is the value () (and ⊥, of course). The type
Either α β is either Left a or Right b, where a and b are of type α and β respectively. A



18 Chapter 1. Introduction

term of type Maybe α is either Nothing or Just a, where a is of type α.

The monadic sequencing function >> is defined as m1 >> m2 = m1 >>= \_ -> m2. “Do
notation” is a convenient way of expressing monadic program code. The program frag-
ment do {v1 <- m1; m2} really means m1 >>= \v1 -> m2, and do {m1; m2} translates to
m1 >> m2. This may also be written without {s and }s using Haskell’s vertical layout style.

Knowledge of more advanced topics such as rank-n polymorphism, the type-class mech-
anism, existential types and generalised algebraic datatypes is not a necessity.

For smaller program fragments we adopt different fonts to make the presentation clearer.
For larger programs we revert to verbatim font for the entirety. We use different fonts to
distinguish

� Types and type constructors (Bool, Maybe Int).

� Data constructors (True, Just x).

� Type variables in the types of polymorphic functions (β, γ, δ).

� Variables (i.e. as arguments to function definitions or as bound by quantifiers in
propositions) (xs, i).

� Functions and built-in primitives (fst, length xs).

� I/O models (bffr, file, io).

� Sparkle “macros” (PREs, allys(a1, a2)).

Throughout this document the symbol ‘M=’ always means “is defined to be”. We some-
times define algebraic datatypes in a convenient ‘anonymous’ notation – so, for example,
instead of defining SomeType

M= Cnst1 | Cnst2 and writing Maybe SomeType, we could
just write Maybe (Cnst1 | Cnst2). Sometimes, for clarity, we explicitly insert quanti-
fiers into the type declarations of polymorphic functions. Mostly, however, we just assume
quantification at the outermost level for any type variable, which is the norm in Haskell.

We also assume that the reader is familiar with basic mathematics such as sets, functions
and relations, and classical logic connectives such as ∧, ∨, =⇒, and ¬.

Various sorts of ordered structure/relations are used in this document. A pre-order is a
relation that is reflexive and transitive. An equivalence relation is a symmetric pre-order. A
partial order is an anti-symmetric pre-order. A complete partial order D is a partial order
if every chain in D has a least upper bound in D.

Domains are complete partial orders which possess a least element, usually denoted
‘⊥’. For example, the domain Bool has three elements, True and False, which are not
comparable, and ⊥. The domain Int is similar, except there are elements 0, 1, −1, 2, −2,
. . . as well as ⊥. Both of these domains are examples of flat domains. That is, domains
in which x v y if and only if x = ⊥. As is common, we confuse a program’s syntax with
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its denotational semantics. In particular, we interchange ⊥ with the syntax of a program
whose denotation is ⊥.

A lattice is a partial order in which every pair of elements has a least upper bound and
a greatest lower bound. A function f is monotonic under a partial order v if x v y implies
f(x) v f(y). Given a monotonic function f on the elements of a lattice, the set of elements
x such that x = f(x) (the set of fixpoints) forms a sub-lattice of the existing one.

1.6.2 LCF proof assistants

The Sparkle [28] proof assistant is LCF-based, which means that one reasons about programs
using Scott domains. Milner introduced Stanford LCF [71] in the early 1970s, and this later
evolved into Edinburgh LCF [41], which added a metalanguage (ML), and Cambridge LCF
[86] which added the logical connectives ∨, ∃ and ⇐⇒. Paulson’s book [86] is the standard
text on the subject.

Sparkle is one of very few dedicated LCF-style theorem provers in existence and this
made it probably the most appropriate tool for the work in this dissertation. Nowadays
LCF-style proof is usually encoded in other more general logical frameworks and proof
assistants, such as Isabelle [83] or Coq [114]. In Sparkle one reasons about programs in
Core-Clean. Core-Clean is a simplified version of Clean, and is essentially identical to
Haskell for our purposes. We adopt Haskell syntax instead since it will be more familiar to
the average reader.

One reasons about programs in an equational style. Given two terms t1 and t2, if their
types can be unified then t1 = t2 is a valid proposition which may eventually be proved
correct. This equational style is then embedded within a first-order classical logic, with the
standard connectives ¬, ∧, ∨, =⇒, ⇐⇒, ∀ and ∃ and the constants ‘True’ and ‘False’. One
can quantify over terms of any Core-Clean type, including functions. One can also quantify
over propositions (i.e. one can prove that ∀p1∈B.∀p2∈B.p1 ∧ p2 =⇒ p2 ∧ p1). The type of a
proposition is B, and this is distinct from the type of any term.

Proofs are performed using a sequent calculus for natural deduction. The internal state
of the proof is represented by a sequent of the form Γ ` A, where Γ is an unordered sequence
of propositions. Tactics include:

Γ ` A Γ ` B

Γ ` A ∧B

Γ, A, B ` C

Γ, A ∧B ` C

Γ ` C Γ, C ` A

Γ ` A

Proofs proceed in a backwards style, so these rules should be read from bottom to top.
The sequent calculus used is largely the same as that described in Section 2.13 of [86].

There is an important distinction to be made between True/False and True/False.
True and False are the boolean constant propositions of type B, which are actually rarely
used; True and False are two elements of the three-element domain Bool, which also
contains ⊥. A term of type Bool (such as 1==2) is, on its own, not a proposition. However,
the following three are: 1==2 = True, 1==2 = False, 1==2 = ⊥. As in Sparkle, we may
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use the shorthand notation 1==2 when we really mean 1==2 = True.
One feature sorely missed in Sparkle is the ability to write macros which construct a large

proposition from a basic recipe. One can use a normal Core-Clean function to construct one
term from another, but we cannot do this to construct a proof obligation which contains
quantifiers and other logical constructs. Throughout the document we occasionally emulate
a sort of typed macro, defining a “function” of type (β → B). ‘:’ is used, instead of ‘::’ to
distinguish the type of a proposition/macro from that of a term.

We do not give a rigorous description of the metalanguage, its type system and its logic
because it is largely similar to that of existing approaches and we will never be proving
properties at such a fine level of detail in this document that individual tactics will have to
be mentioned.
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I/O models and contexts

The primary aim of this dissertation is the development of a functional language which
permits I/O and concurrency, yet is deterministic and has a rigorous semantics. We begin
by outlining the “I/O model” structure which will be used throughout this document. The
purpose of an I/O model is to describe the API which a program interacts with when doing
I/O. In particular, I/O models attempt to describe both the precise effect of each individual
action on a “world state” and the extent to which certain actions are and are not order
independent. This structure will be then used to give the semantics of a real language in
Chapter 3.

In the literature, a state-transformer semantics for I/O is often adequate at a high-level
for simple, purely sequential I/O [94, 66]. However, this is generally considered incompatible
with issues such as concurrency and communication. In [89], Peyton Jones argues that

“In practice . . . it is crucial that the side-effects the program specifies are per-
formed incrementally, and not all at once when the program finishes. A state-
transformer semantics for I/O is therefore, alas, unsatisfactory, and becomes
untenable when concurrency is introduced.”

Haskell’s I/O semantics is instead based on CCS [74]. This does not have any facilities
for explaining the behaviour of actions or expressing the notion that two actions are order
independent. Furthermore, the document which introduced this style of semantics for I/O,
the Ph.D. thesis of Andrew Gordon [39], also had to abandon it for a state-transformer style
in a later chapter in order to prove the very non-interference properties of actions which we
ourselves want.

So, how do we describe the behaviour of I/O actions in a style that can distinguish actions
that are order-independent yet still model communication and concurrency primitives? In
this chapter we show that communication/concurrency may co-exist happily with state-
transformers if we simply allow individual actions to become stalled. If actions can become
stalled they can then synchronise with and communicate with other concurrent actions. One
upshot is that state-transformers, for us, only describe the meaning of individual actions,

21
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not entire programs, as is usually the case. The problem of giving a semantics to arbitrary
I/O-performing programs is tackled (and solved) separately in Chapter 7.

Section 2.1 defines our I/O model structure, explains each individual component in turn,
and introduces a pre-condition PREs which we argue guarantees determinism. Section 2.2
gives five small example I/O models which will be used throughout this dissertation – a
communication buffer, a mutex, a shared integer variable, an I-structure and a model of
terminal I/O. The chapter concludes in Section 2.3 with a more in-depth discussion of the
features and flexibility of I/O models.

2.1 Definition

The definition of an I/O model in the metalanguage is the following 4-tuple parameterised
by five types:

s :: IOModel ν α ρ ω ς
M= 〈af :: α → ω → (ω,ν),

wa :: α → ω → Bool,

ap :: ς → α → Bool,

pf :: ρ → ς → (ς,ς)〉

The five types take the following roles, all of which will be explained in more detail later:

� ν: return values from actions.

� α: primitive, atomic actions.

� ρ: “parameters” to the splitting of contexts.

� ω: world state.

� ς: I/O contexts.

As we shall see, these components are enough to describe state-based I/O which permits
both a deterministic fork-like concurrency primitive and communication. It is important
to remember that the five types are domains with a ⊥ element, and the four functions can
be any arbitrary computable function whose results may be undefined (⊥)∗.

The functions af, wa, ap and pf are now explained in detail†.

∗This probably isn’t ideal, especially for the world model, but it is not serious. Any set-based model can be
turned into a domain-based one by (1) turning the sets into “flat” domains by adding a bottom element, (2)
making the functions bottom-preserving, and (3) showing that the functions are indeed Turing-computable.

†Unless otherwise stated, when giving general properties in this dissertation we always assume the exis-
tence of some arbitrary, implicit I/O model called s which binds the five types ν, α, ρ, ω and ς, and the four
functions af, wa, ap and pf.
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2.1.1 The API – af and wa

The function af :: α → ω → (ω,ν) defines the state-transformer for each action. Elements
of type α identify atomic I/O actions which can be performed and for any action a :: α,
af a :: ω → (ω,ν) is the state-transformer for that action. This describes how the action
changes the global state of type ω, and what return value of type ν it yields. Type ν is
typically a sum-type capable of storing Ints, Bools, Chars or any other value that an action
might need to return.

If communication is to be permitted then there must be occasions in which an action
is waiting for something to occur and cannot proceed. The function wa :: α → ω → Bool

indicates exactly this. An action a can only be performed in world w when wa a w = False.
We say an action a is stalled (in world state w) if wa a w = True.

Figure 2.1 defines two relations on actions and the API.

� a1 |||s a2: for any two actions a1 and a2, if neither are stalled then the order in
which they are executed is irrelevant – both with regard to their effect on world state
and their return values. |||s is symmetric (but not necessarily transitive or reflexive)
and is defined using a more general macro “cmmt”. cmmt(f1, f2, w) says that state-
transformers f1 and f2 are order independent when manipulating world state w.

� allys(a1, a2): if action a1 is not stalled then performing it cannot cause action a2, if
also not stalled, to then become stalled. The word “ally” hints at the fact that action
a1 will not obstruct or hinder action a2 – they are in effect working with each other.

The a1 |||s a2 condition allows for two possibilities: either both actions succeed for both
orderings or for both orderings one action fails. For example, if a1 |||s a2, af a1 w = (w1,v1)

and af a2 w = (w2,v2) then it is still possible that af a2 w1 = ⊥ and af a1 w2 = ⊥.

2.1.2 I/O Contexts – ap

The functions af and wa define the API. Since our aim is to guarantee deterministic I/O in
the presence of concurrency, what is now needed is some means of reining in the power of
a concurrent (sub-)program by giving it only a limited set of actions which it is allowed to
perform. In general, actions are not order independent.

We call these permission sets I/O contexts‡. I/O contexts are elements of the type
ς and the function ap :: ς → α → Bool defines the actions permitted by any context.
A context c can be thought of as the set of actions a such that ap c a = True. Each
(sub-)program has a context associated with it at runtime. The context determines what
actions the (sub-)program is allowed to perform, and if used in a controlled fashion it gives
a mechanism for ensuring determinism.

‡The author is aware that the word “context” is already overused in the field of functional programming
(for example, evaluation contexts and type contexts). In this document, except in the rare case of “contextual
equivalence”, the word “context” will refer exclusively to I/O contexts.
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cmmt : (ω → (ω,ν)) → (ω → (ω,ν)) → ω → B

cmmt(f1, f2, w) M= ∀w2∈ω.∀v1∈ν .∀v2∈ν .

(∃w1∈ω.f1 w = (w1,v1) ∧ f2 w1 = (w2,v2))
⇐⇒
(∃w1∈ω.f2 w = (w1,v2) ∧ f1 w1 = (w2,v1))

|||s, allys : α → α → B

al |||s ar
M= ∀w∈ω.wa al w = False ∧ wa ar w = False =⇒ cmmt(af al , af ar , w)

allys(al, ar)
M= ∀w∈ω.∀w1∈ω.∀v∈ν .wa al w = False ∧ af al w = (w1,v) ∧

¬(wa ar w = True) =⇒ wa ar w = wa ar w1

vs, ♦s : ς → ς → B
c1 vs c2

M= ∀a∈α.ap c1 a =⇒ ap c2 a

cl ♦s cr
M= ∀al∈α.∀ar∈α.ap cl al ∧ ap cr ar =⇒ al |||s ar ∧ allys(al, ar) ∧ allys(ar, al)

Figure 2.1: Relations on actions and contexts

Figure 2.1 defines two important relations on contexts.

� c1 vs c2: any action permitted by context c1 is also permitted by c2.

� c1 ♦s c2: for all actions a1 and a2 permitted by contexts c1 and c2 respectively, it is
true that a1 |||s a2, allys(a1, a2) and allys(a2, a1).

♦s is symmetric and vs is a pre-order – both by definition.

2.1.3 Enforcing determinism – pf

Let us say that a process running in context c forks into two processes running in contexts
cl and cr. To guarantee deterministic behaviour:

� The order in which actions in the two child sub-programs are performed should be
irrelevant. That is to say: if the runtime system can make a choice between doing
an action al permitted by cl or an action ar permitted by cr, then neither action can
impede the other causing it to become stalled, and when both are finally executed
their order should not affect the resultant world state or the actions’ return values:
cl ♦s cr.

� No child process should be allowed to perform an action forbidden by the parent
context: cl vs c and cr vs c.

These properties are usually undecidable. To solve this problem, and give an actual
language implementation, we assume the existence of a function which has been proved to
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PREs
M= ∀p∈ρ.∀c∈ς .∀cl∈ς .∀cr∈ς .pf p c = (cl,cr) =⇒ cl vs c ∧ cr vs c ∧ cl ♦s cr

Figure 2.2: The pre-condition PREs

bffr :: IOModel νBffr αBffr ρBffr ωBffr ςBffr
M= 〈afBffr, waBffr, apBffr, pfBffr〉

νBffr
M= Int

ρBffr
M= Bool

αBffr
M= Send Int | Rcve

ςBffr
M= TopC | SubC Bool

ωBffr
M= [Int]

afBffr (Send i) is
M= (is++[i],0)

afBffr Rcve (i : is) M= (is,i)

waBffr (Send i) is
M= False

waBffr Rcve is
M= null is

apBffr TopC a
M= True

apBffr (SubC b) (Send i) M= b

apBffr (SubC b) Rcve
M= not b

pfBffr b TopC
M= (SubC b,SubC (not b))

Figure 2.3: bffr – a 1-to-1 communication buffer

obey these exact properties. The function pf :: ρ → ς → (ς,ς) splits a context returning
two new ones for the two concurrent left and right sub-programs. Elements of the type ρ

give the programmer some flexibility with regard to how he or she wishes the current context
to be split. PREs, as defined formally in Figure 2.2, is the pre-condition that pf must obey.
We show in Chapter 4 that if PREs holds then any program whose I/O API is defined by
model s will be deterministic.

2.2 Five examples

To give an idea of the flexibility of this approach, this section contains a few examples of
complete I/O models, all of which obey PREs. All lemmas have been machine-verified, and
actual example programs for these models will be given in Chapter 3.

2.2.1 Communication buffers

The I/O model bffr, defined in Figure 2.3 is a simple 1-1 communication buffer. World state
is of type [Int], and there are two actions: Send i places i at the end of the list (returning 0,
a token value); Rcve removes the first element from the list and returns it. If the current
context is SubC True one can only send, if it is SubC False one can only receive, and if
it is TopC both are permitted. One can only split the context if it is TopC. This will give
one sub-program the right to send, and the other the right to receive.

Lemma 2.2.1. PREbffr.

Proof. If pfBffr splits TopC into SubC False and SubC True:
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lock :: IOModel νLock αLock ρLock ωLock ςLock
M= 〈afLock, waLock, apLock, pfsLock〉

νLock
M= ()

ρLock
M= ()

ωLock
M= Bool

ςLock
M= Bool

αLock
M= Lock | Unlock | Wait

afLock Lock b
M= (True,())

afLock Unlock b
M= (False,())

afLock Wait b
M= (b,())

pfLock () c
M= (False,False)

waLock a b
M=

{
b, a = Wait
False, otherwise

apLock b a
M=

{
b, a = Lock
True, otherwise

Figure 2.4: lock – a mutex

� (SubC False) ♦bffr (SubC True): Only a send and a receive can be performed.
Rcve |||bffr (Send i) holds, because if the receive isn’t stalled, the buffer must be non-
empty, and therefore the actions must affect different parts of the buffer and be order
independent. allybffr(Rcve,Send i) is trivial because a send is always non-stalled.
allybffr(Send i,Rcve) is true because adding an element to a buffer cannot cause a
receive to become stalled.

� (SubC False) vbffr TopC and (SubC True) vbffr TopC: trivial (TopC does not
forbid any actions).

2.2.2 Many-to-many mutexes

I/O model lock, defined in Figure 2.4, allows many processes to be synchronised. World
state is of type Bool indicating whether the lock is set. There are three actions: Lock sets
world state to True; Unlock sets world state to False; Wait will stall until world state is
False, then proceed leaving it unchanged. Contexts are either “True”, meaning all actions
are permitted, or “False”, meaning just “Unlock” and “Wait” are allowed.

Contexts can be split as many times as one likes, but the child context will always be
“False”. This means that although a program’s context can be True at the top-level,
allowing “Lock” to be performed, “Lock” can never be performed concurrently with any
other action. The world state doesn’t keep track of how many processes are waiting for the
mutex to be released, so if it was released then locked again, a waiting process might miss
this event.

There are no (useful) return values in this I/O model.

Lemma 2.2.2. PRElock.

Proof. The function pfLock splits any context into False and False:
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ivar :: IOModel νIVar αIVar ρIVar ωIVar ςIVar
M= 〈afIVar, waIVar, apIVar, pfIVar〉

νIVar
M= Int

ωIVar
M= Int

ρIVar
M= LeftWr | RightWr | BothRd

ςIVar
M= NoneC | ReadC | WriteC

αIVar
M= ReadI
| WriteI Int

afIVar ReadI i
M= (i,i)

afIVar (WriteI i1) i
M= (i1,0)

waIVar a i
M= False

apIVar NoneC a
M= False

apIVar ReadC (WriteI i1)
M= False

apIVar ReadC ReadI
M= True

apIVar WriteC a
M= True

pfIVar p NoneC
M= (NoneC,NoneC)

pfIVar p ReadC
M= (ReadC,ReadC)

pfIVar LeftWr WriteC
M= (WriteC,NoneC)

pfIVar RightWr WriteC
M= (NoneC,WriteC)

pfIVar BothRd WriteC
M= (ReadC,ReadC)

Figure 2.5: ivar – a shared integer variable

� Proving False ♦lock False: The combinations of actions are (1) two unlocks, (2)
two waits or (3) an unlock and a wait. Unlock |||lock Unlock holds and so does
allylock(Unlock,Unlock) because Unlock changes state in the same way, and is
never stalled. Wait |||lock Wait and allylock(Wait,Wait) is true since Wait doesn’t
affect world state, is order independent and also cannot cause any action to become
stalled. Unlock |||lock Wait, allylock(Unlock,Wait) and allylock(Wait,Unlock): If
both unlocking and waiting are non-stalled, then their order is irrelevant since wait
doesn’t change the world state – nothing can cause unlock to become stalled, and no
amount of unlocking can cause a wait to become stalled.

� False vlock b for all b: True by reflexivity if b = False, and if b = True then it is
true because context “True” does not forbid any actions.

2.2.3 An integer variable

The I/O model ivar (Figure 2.5) is an integer variable which can be written to and read
using the actions ReadI and WriteI. Neither of these can ever be stalled.

The context is either NoneC (no actions are permitted), ReadC (only reading is al-
lowed) or WriteC (reading and writing are both allowed). When splitting a context, if the
context is NoneC or ReadC then the parameter is ignored and the left and right context
remain the same as that of the parent. When splitting context “WriteC”, however, de-
pending on which of “LeftWr”, “RightWr” or “BothRd” is given as parameter, either
one side can be allowed to do everything leaving nothing for the other side, or both sides
can be allowed to only read the integer.
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istr :: IOModel νIStr αIStr ρIStr ωIStr ςIStr
M= 〈afIStr, waIStr, apIStr, pfIStr〉

αIStr
M= ReadI | WriteI Int

ωIStr
M= Empty | Full Int

ρIStr
M= ()

ςIStr
M= ()

νIStr
M= Int

afIStr ReadI (Full i) M= (Full i,i)

afIStr (WriteI i) Empty
M= (Full i,0)

waIStr ReadI w
M= w==Empty

waIStr (WriteI i) w
M= False

apIStr c a
M= True pfIStr p c

M= ((),())

Figure 2.6: istr – an integer I-structure

Lemma 2.2.3. PREivar.

Proof. Since no action can be stalled, the allyivar property holds automatically for any pair
of actions.

� Proving ♦ivar : the function pfIVar can split contexts in three different ways.

NoneC ♦ivar NoneC and WriteC ♦ivar NoneC are trivially true, since no actions
are permitted by NoneC. With ReadC ♦ivar ReadC, only “ReadI” is allowed, and
ReadI |||ivar ReadI is true since it doesn’t change the world state.

� c1 vivar c2 for all c1, c2 as split by pfIVar: It is clear that NoneC vivar ReadC and
ReadC vivar WriteC, so it can be seen directly from the definition of pfIVar that
when contexts are split this property is always obeyed.

2.2.4 Id’s I-structures

The dataflow language Id [81] introduced a simple construct called an I-structure. An
I-structure is a shared, concurrent, write-once data-structure which does not introduce non-
determinism, and I-structures have been used to develop elegant, concurrent algorithms for
computing matrices efficiently [8].

The I/O model istr in Figure 2.6 models one single integer I-structure. An istr may be
read multiple times but only ever written to once, and it is this single-writer policy which
guarantees determinism. The world state is either Empty, indicating that the structure has
not yet been written to, or Full i indicating that it has been written to and its value is i.
The two actions are the same as with ivar: ReadI and WriteI i. An attempt to read from
an empty structure will stall until that structure has been filled. A write, however, may
only take place when the structure is empty – writing to an already full I-structure results
in failure.

No notion of I/O context is necessary when introducing I-structures, which makes the
model very simple – Id did not restrict the permissions given to concurrent processes. There
is only one I/O context, (), and it permits all actions.
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Lemma 2.2.4. PREistr.

Proof. Each action is always permitted, regardless, so we must prove non-interference prop-
erties for all combinations of actions.

� ReadI |||istr ReadI: for the actions to be non-stalled the structure must be full.
Therefore, regardless, of ordering, both reads will return the same integer leaving
world state unchanged.

� ReadI |||istr WriteI i2: if the read is non-stalled the structure must be full, so in
both action orderings the write will fail, with the same net result – failure.

� WriteI i1 |||istr WriteI i2: regardless of the world state one of the actions must fail
because it tries to write to a full I-structure.

� allyistr(ReadI,ReadI): this is true because ReadI cannot change world state.

� allyistr(WriteI i,ReadI): if the read is unstalled then the structure will be full, in
which case the write won’t succeed at all.

� allyistr( ,WriteI i): true because a write action is never stalled.

2.2.5 Terminal I/O

As a small real world I/O example, consider the model of terminal I/O given in Figure 2.7.
There are two actions: (PutC c) writes character c, and GetC reads a character.

The model is not perfect, since it does not capture any interesting temporal properties of
stdin/stdout. There is no notion of absolute time – each outputted Char gives rise to 0 or
more inputted characters instantaneously. It is adequate, nonetheless, and obeys the simple
property that if characters are available for input then outputting characters cannot change
that. The model also lets us exploit the fact that stdin and stdout are usually two separate
handles, and we may want a process to wait for input on one whilst another outputs data
on the other (this is probably only useful for filtering programs such as grep. Interactive
programs would usually require a lock-step synchronisation of input and output).

The proof of PREterm is not difficult. It permits the same degree of concurrency as the
bffr model. Reading may take place in parallel with writing in this semantics since (1) if a
Char is ready for input then writing a character will not change that and (2) if a character
is not available for input then the read will stall until one is. The function pfTerm guarantees
that if many processes are running concurrently then at most one can call PutC and at
most one can perform GetC.

The term model may be seen, in one sense, as just a generalisation of bffr. Consider the
type TermIO once again. One possible instance of it is loopBack, defined as follows:



30 Chapter 2. I/O models and contexts

term :: IOModel νTerm αTerm ρTerm ωTerm ςTerm
M= 〈afTerm, waTerm, apTerm, pfTerm〉

νTerm
M= Char

ωTerm
M= ([Char],TermIO)

αTerm
M= PutC Char | GetC

ρTerm, ςTerm
M= TCxt Bool Bool

TermIO
M= TermIO (Char → ([Char],TermIO))

waTerm (PutC c) (cs,t)
M= False

afTerm (PutC c) (cs,TermIO f)
M= ((cs++fst (f c),snd (f c)),’ ’)

waTerm GetC (cs,t)
M= null cs

afTerm GetC ((c : cs),t) M= ((cs,t),c)

apTerm (TCxt b ) (PutC c) M= b

apTerm (TCxt b) GetC
M= b

pfTerm (TCxt bpp bgp) (TCxt bp bg) M=
(TCxt (bp && bpp) (bg && bgp),TCxt (bp && not bpp) (bg && not bgp))

Figure 2.7: term – a model for terminal I/O

loopBack :: TermIO

loopBack = TermIO (\c -> ([c],loopBack))

This really just models the “semantics” of a user who re-inputs every character outputted
to him/her. Therefore it is no different to a communication buffer between the sending and
receiving processes.

2.3 Discussion

These small examples give a flavour of the sort of systems one can model. One of the most
surprising and unusual aspects of our I/O models, we believe, is that we don’t need to explic-
itly mention communication channels at all. By permitting actions to be temporarily stalled,
one then has enough machinery to synchronise processes and safely transfer information via
the world state.

The key to guaranteeing determinism is making sure that when a context c is split
into cl and cr to allow concurrency, an action in one context cannot influence the behav-
iour of an action in the other context. This means that an action permitted by cl cannot
block an action permitted by cr (or vice versa) and the order in which they are executed
must be irrelevant. This rules out competition for a limited resource. Some typically non-
deterministic constructs are multiple-writer streams, multiple-reader streams and shared,
mutable variables.

Actions can become stalled, however, like “Rcve” in the buffer example. Roughly
speaking, an action a1 can only cause a (not necessarily different) action a2 to become
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stalled if they can under no circumstances be executed concurrently. So Rcve can cause a
successive call to Rcve to become stalled because two Rcves cannot, themselves, be run
concurrently with one another. Also, if an action a1 can successfully predict whether another
action a2 is going to stall then a1 cannot be run concurrently with any action which changes
whether a2 is stalled. For example, in the bffr model neither of the sub-contexts, which
allow just sending or just receiving, could be modified to permit an action which returns
whether the buffer is empty. However, the receiving context could allow one to wait until
the buffer is non-empty and the sending context could allow one to wait until the buffer is
empty, and neither would admit non-determinism.

There are a few interesting sub-classes of actions.

� Observer actions, which never change world state (like “Wait” and “ReadI”). If a1

is an observer action, then for any a0, allys(a1, a0), and for any two observer actions
a1 and a2, a1 |||s a2 holds.

� Actions which always return the same value (like “Lock”, “WriteI 7”, or an action
which, say, increments a counter without indicating it’s value). If action a1 is of this
form then a1 |||s a1.

� Actions which can never be stalled (like “Send i” and “WriteI i”). If action a1 is
never stalled then for any action a0, allys(a0, a1).

� Commutative contexts: if it is true that c ♦s c for some c, (which will be true if there
is some p such that pf p c = (c,c), as is the case with ReadC in the ivar example, or
with istr) then the actions permitted by c in a monadic setting form a commutative
monad. In other words, there are absolutely no constraints on the ordering of actions.

It should also be noted that many “reasonable” properties of I/O models are not always
present. These include: a context which permits all actions; a context which permits no
actions; a way of splitting a context such that all permissions are given to one side only;
a way splitting contexts in a symmetric way (if a context can be split into (cl,cr) can
it also be split into (cr,cl)?) While elegant, these properties weren’t necessary for the
confluence proof, so for this reason we did not include them. In Chapter 8 we develop a
clearer mathematical model of contexts, but this is mostly future work.

Other notable omissions from I/O models are the notion of an initial world state and
an initial, or outermost, I/O context. No initial state is given, and for a good reason –
a programmer in general has no control over the initial world state in which a program
runs (for example, whether a particular file exists). The idea of an initial, outermost I/O
context carries more weight – a programmer surely wants to know what initial permissions
his/her program will have when it begins. We do not specify these because in terms of
proving general language or program properties this is a special case. In a real implementa-
tion, a program would either begin with an “all actions” context, or perhaps some suitable
modification to this based on dynamic properties of system state unknown at compile time.
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2.4 Chapter summary

In this chapter we described in detail an “I/O model” structure. This mathematically
models the API, the effect of each action on global state, the possible permissions sets (I/O
contexts) which can be associated with processes, and how these are distributed in the
presence of concurrency. We defined a pre-condition PREs which, if it holds, guarantees
that concurrent processes cannot interfere with one another. Five complete example models
were then given, and we discussed briefly some ramifications of our choice of structure and
pre-condition.

In the following chapter this structure is used to give a full semantics to Curio, a
functional language with I/O and concurrency primitives.



Chapter 3

Curio – a language for reasoning

about I/O

In this chapter we introduce the Curio language which makes use of the I/O models outlined
in Chapter 2. This is a small functional language with concurrency, interprocess communi-
cation and monadic constructs which together let the user write expressive programs which
perform I/O. This expressivity is due to our ability to allow concurrency yet still enforce
determinism.

In reality, Curio is less a full language specification than a rigorous semantics for a
collection of powerful I/O primitives which can be grafted onto a pure functional language
using solely its denotational semantics. This overall approach is not new. In fact, at the
outset it bears many similarities to that taken by the Haskell community in Concurrent
Haskell [89], the lazy functional language with probably the most fully-fledged semantics for
I/O.

“Our semantics is stratified in two levels: an inner denotational semantics which
describes the behaviour of pure terms, while an outer monadic semantics de-
scribes the behaviour of IO computations.” [88]

What makes Curio different to Concurrent Haskell is the nature of this outer operational
semantics. Concurrent Haskell’s semantics for I/O is in effect a purely co-inductive one. I/O
actions are represented by opaque labelled transitions in a CCS-style [74] process calculus.
Each action is a distinct observable event, and the meaning of a program is solely determined
by the order in which the (possibly infinite number of) actions occur.

Curio’s semantics is primarily inductive rather than co-inductive∗. There exists a
“world state” which the program interacts with and modifies by performing primitive ac-
tions. Therefore it is only the cumulative effect of a finite number of actions over a program’s
lifetime that is observable. By loosening this notion of observation and ascribing to each
action a precise effect on world state, one then can distinguish actions which do and do

∗See [57] for a good tutorial on induction and co-induction.

33
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not interfere with one another and give a useful semantics to deterministic concurrency.
(It should be noted that infinite observations can still be handled. Later, in Chapter 7,
we develop a co-inductive semantics for Curio which describes a program based on how it
responds to arbitrary changes to world state made by other concurrent processes.)

The chapter is structured as follows. Section 3.1 introduces the five new primitives
informally, giving examples of their behaviour. Section 3.2 follows this with a formal SOS-
style single-step semantics for Curio. Section 3.3 gives the metalanguage encoding, formally
describes convergence and divergence, and gives a proof of the recursive enumerability of
convergence.

3.1 Language primitives and examples

A Curio program is an element of type Progs β, where I/O model s defines the I/O interface
of the program, and β is the type of the program’s return value. The five I/O primitives are
as follows, where the types ν, α and ρ are bound by I/O model s of type IOModel ν α ρ ω ς:

(>>=) :: ∀β. ∀γ. Progs β → (β → Progs γ) → Progs γ

return :: ∀β. β → Progs β

action :: α → Progs ν

test :: ∀β. α → Progs β → Progs β → Progs β

par :: ∀β. ∀γ. ∀ε. ρ → Progs β → Progs γ → (β → γ → ε) → Progs ε

Central to these language primitives is the notion of an I/O context. Each (sub- )program
is executed within a context c ∈ ς, and that context dictates which actions that (sub-)
program can perform, thereby affecting the program’s outcome.

The full semantics is given further on, but very briefly:

� >>= and return are the familiar monadic functions from Haskell.

� action performs a primitive (atomic) action.

� test performs one of two programs depending on whether an action is allowed by the
current context.

� par runs two programs concurrently.

A program is said to be a value (or evaluated) if it is of the form return v, for some
v. A program is said to be an action if it is of the form action a, for some a. Programs of
the form par p ml mr (∗) are abbreviated using an infix notation as ml |||

p
∗ mr.

Of the original types which an I/O model is parameterised by, α and ρ end up being part
of the language’s syntax, ς is best understood as an internal runtime data-structure in the
language implementation, and ω is the world model (i.e. part of the language’s semantics).
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Curio is a non-strict language – none of the five primitives evaluate their arguments.
As we show later, Prog is just a non-strict higher-order algebraic datatype.

We now give example programs using Haskell’s do-notation.

3.1.1 Communication buffer examples

The following program attempts to send a list of integers along a communication buffer.
The Boolean return value indicates whether the current context permits the Send action.

sendInts :: [Int] → Progbffr Bool

sendInts [] = return True

sendInts (i:is) =

test (Send i) (action (Send i) >>= \_ -> sendInts is) (return False)

The program rcveInts c attempts to retrieve c integers from the communication buffer.
If receiving is not permitted by the program’s context then it returns [], the empty list.

rcveInts :: Int → Progbffr [Int]

rcveInts c = test Rcve (rcveInts’ c) (return [])

where rcveInts’ c | c<=0 = return []

| otherwise = do

i <- action Rcve

is <- rcveInts’ (c-1)

return (i:is)

3.1.2 Mutex examples

The program lockPar runs two lock programs in parallel combining the two resultant return
values into a tuple. This is completely general since in the lock model the ρ type has just
one element, ().

lockPar :: Proglock β → Proglock γ → Proglock (β,γ)

lockPar pl pr = par () pl pr (\vl vr -> (vl,vr))

3.1.3 Integer variable examples

The following program applies a function f to the integer variable returning True if the
context permitted reading and writing.

applyFn :: (Int → Int) → Progivar Bool

applyFn f = test (WriteI 0)

(do {i <- action ReadI; action (WriteI (f i)); return True})

(return False)



36 Chapter 3. Curio – a language for reasoning about I/O

3.1.4 Terminal I/O examples

The function putStr writes a string to stdout, or fails if that is not allowed.

putStr :: String → Progterm ()

putStr [] = return ()

putStr (c:cs) = action (PutC c) >>= \_ -> putStr cs

stdPermissions returns a string which indicates what actions the current context per-
mits.

stdPermissions :: Progterm String

stdPermissions = do

inIO <- test GetC (return "stdin") (return "no stdin")

outIO <- test (PutC ’x’) (return "stdout") (return "no stdout")

return (inIO ++ ", " ++ outIO)

The program getPutC c outputs character c whilst concurrently requesting a character
from input. The entire program returns the character that was read.

getPutC :: Char → Progterm Char

getPutC c = par

(TCxt True False) (action (PutC c)) (action GetC) (\_ c1 -> c1)

3.2 Semantics

The non-deterministic single-step semantics for Curio can be found in Figure 3.1. It is
expressed in the standard SOS [99] style, which is usually the most “obviously correct” way
of describing concurrency.

All the reduction rules describe the behaviour of what we call a world/program pair,
written w ° m, where w is the world and m is the program†. This allows one to describe
how a program and world state interact over time. The context c ∈ ς in which a program is
run also affects how the program behaves, so reduction rules are annotated with the current
context.

There are three reduction relations, −→c, ↑c and ↓c.

w ° m −→c w′ ° m′ M= “w ° m can reduce to w′ ° m′ in context c”

w ° m ↑c M= “w ° m can fail in context c”

w ° m ↓c M= “w ° m is in normal form in context c”

We say a world/program pair is in normal form, rather than can be in normal form,
because, as Lemma 4.3.2 in Chapter 4 shows, despite non-determinism, if a program has
converged to normal form then it cannot either fail or reduce. Similarly, if a world/program

†w ° m is really just syntactic sugar for the tuple (w,m).
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pair can fail or reduce, then it cannot be in normal form. Failure may seem a slightly unusual
thing to include, but, as the metalanguage encoding in the next section will show, it is
necessary. A single reduction step in Curio can correspond to many individual steps in the
operational semantics of the metalanguage. Equivalently, a failed single-step reduction may
denote a never-ending sequence of reduction steps or a runtime error in the metalanguage.

Values (programs of the form return v) on their own are in normal form. If a world/pro-
gram pair is in normal form but not a value, then we say it is stalled. If this occurs, the
convergence to normal form is caused by one or more stalled actions.

action a attempts to perform action a. If it isn’t permitted by the context, action a

always fails. If it is permitted, it may fail, be stalled or reduce to the action’s return value
all depending on the API. If it reduces, it modifies the world state. test a mt mf allows a
program to query the context in which it is being run. If action a is permitted in the current
context then test a mt mf executes mt, otherwise it executes mf . Usually mf is a sort of
exception handler, returning a value indicating that certain actions were locked out by the
current context. Programs of the form m >>= f behave in the normal monadic style: m is
reduced repeatedly until it is a value return v for some v, then f v is reduced. If m at any
stage fails or becomes stalled, the same will happen to m >>= f . Program ⊥ always fails.

A base program refers to any program of the form return v, ⊥, return v >>= f ,
action a, test a mt mf or return vl |||

p
∗ return vr. The behaviour of these programs

is always entirely deterministic for a given context and world. A program m >>= f , where
m is not a value, in effect behaves exactly as m does for an individual single step. It is
concurrency on its own which introduces non-determinism. ml |||

p
∗ mr, executed in context

c, runs ml and mr in parallel in contexts cl and cr respectively, where pf p c = (cl,cr).
If two concurrent sub-programs can either reduce or fail, then either side may be chosen
arbitrarily. This continues until

� one side fails, causing both programs in parallel to fail.

� ml and mr become values return vl and return vr respectively, in which case the
parallel execution terminates, becoming the value return vl ∗ vr.

� one side becomes stalled and the other side converges to normal form (that is: it is
either a value or also stalled), causing the concurrent execution of both programs to
be stalled.

(The side-condition on the parallel reduction rules that ml 6= ⊥ and mr 6= ⊥ is un-
desirable but hard to avoid. If we check at the outset whether both the left and right
sub-programs are values it makes the implementation much simpler. Unfortunately this
means forcing both ml and mr to an outermost constructor.)

As a quick example, consider the following reduction for I/O model ivar. This also shows
the distinction between an actual reduction step in our semantics, −→c, and denotational
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w ° m ↑c

w ° m >>= f ↑c

w ° m ↓c

w ° m >>= f ↓c
(m not a value)

w ° return v >>= f −→c w ° f v
w ° m −→c w1 ° m1

w ° m >>= f −→c w1 ° m1 >>= f

ap c a wa a w af a w Behaviour of action a

⊥ w ° action a ↑c

False w ° action a ↑c

True ⊥ w ° action a ↑c

True False ⊥ w ° action a ↑c

True False (w1,v) w ° action a −→c w1 ° return v
True True w ° action a ↓c

ap c a Behaviour of test a m1 m2

⊥ w ° test a m1 m2 −→c w ° ⊥
False w ° test a m1 m2 −→c w ° m2

True w ° test a m1 m2 −→c w ° m1

w ° return v ↓c

w ° ⊥ ↑c

pf p c = ⊥
w ° ml |||

p
∗ mr ↑c

pf p c = (cl,cr)





w ° ml ↑cl

w ° ml |||
p
∗ mr ↑c

w ° mr ↑cr

w ° ml |||
p
∗ mr ↑c

w ° return vl |||
p
∗ return vr −→c w ° return vl ∗ vr

w ° ml −→cl w′ ° m′
l

w ° ml |||
p
∗ mr −→c w′ ° m′

l |||
p
∗ mr

(mr 6= ⊥)

w ° mr −→cr w′ ° m′
r

w ° ml |||
p
∗ mr −→c w′ ° ml |||

p
∗ m′

r

(ml 6= ⊥)

w ° ml ↓cl w ° mr ↓cr

w ° ml |||
p
∗ mr ↓c

(ml, mr not both values)

Figure 3.1: Non-deterministic single-step semantics for Curio
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equality in the metalanguage, =.

9 ° (action ReadI) |||BothRd
(+) (action ReadI >>= λi. return (i− 1))

−→ReadC

9 ° (action ReadI) |||BothRd
(+) (return 9 >>= λi. return (i− 1))

−→ReadC

9 ° (action ReadI) |||BothRd
(+) ((λi. return (i− 1)) 9)

=

9 ° (action ReadI) |||BothRd
(+) (return 8)

−→ReadC

9 ° (return 9) |||BothRd
(+) (return 8)

−→ReadC

9 ° return (9 + 8)

=

9 ° return 17

Single step reduction is non-deterministic, so there are other possible reduction sequences.
The final program above is a value, return 17, and therefore in normal form. A program
can also be in normal form if every action it is trying to perform is stalled. For example, in
model bffr:

[] ° action Rcve ↓TopC

and

[] ° action Rcve >>= λc. action Rcve ↓TopC

3.3 Convergence/divergence and the implementation

3.3.1 Metalanguage encoding

Figure 3.2 contains information about how Curio is encoded in the metalanguage. The full
definitions are in Section A.1.

Programs in Curio are elements of the higher-order, non-strict algebraic type Prog ν α ρ.
The use of an algebraic type is necessary since we need to be precise about how there are
exactly five ways of constructing a program. As an example, the putStr program given
earlier would really be written in Core-Clean as

putStr :: String → Prog νTerm αTerm ρTerm

putStr [] = Ret ’X’

putStr (c:cs) = Bind (Action (PutC c)) (\_ -> putStr cs)
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Prog ν α ρ
M= Bind (Prog ν α ρ) (ν → Prog ν α ρ)
| Ret ν

| Action α

| Test α (Prog ν α ρ) (Prog ν α ρ)
| Par ρ (Prog ν α ρ) (Prog ν α ρ) (ν → ν → ν)

Reduction β
M= Reduct β | Converged

Dir
M= L | R

Guess
M= [Dir]

nexts :: Guess → ς → (ω,Prog ν α ρ)→ Reduction (ω,Prog ν α ρ)

rdces :: Nat → [Guess] → ς → (ω,Prog ν α ρ)→ (ω,Prog ν α ρ)

rdces (i + 1) (g:gs) c (w,m) = (w′′,m′′)
⇐⇒(

∃w′∈ω.∃m′∈Prog ν α ρ.
nexts g c (w,m) = Reduct (w′,m′) ∧

rdces i gs c (w′,m′) = (w′′,m′′)

)

rdces 0 gs c (w,m) = (w,m)

w ° m −→c w′ ° m′ M= ∃g∈Guess.nexts g c (w,m) = Reduct (w′,m′)

w ° m ↓c M= ∃g∈Guess.nexts g c (w,m) = Converged

w ° m ↑c M= ∃g∈Guess.nexts g c (w,m) = ⊥
w ° m i // // c w′ ° m′ M= ∃gs∈[Guess].rdces i gs c (w,m) = (w′,m′)

w ° m // // c w′ ° m′ M= ∃i∈N.w ° m i // // c w′ ° m′

w ° m i
²²²²
c w′ ° m′ M= w ° m i // // c w′ ° m′ ∧ w′ ° m′ ↓c

w ° m ²²²²
c w′ ° m′ M= ∃i∈N.w ° m i

²²²²
c w′ ° m′

w ° m i⇓c w′ ° m′ M= ∀gs∈[Guess].rdces i gs c (w,m) = (w′,m′) ∧ w′ ° m′ ↓c

w ° m ⇓c w′ ° m′ M= ∃i∈N.w ° m i⇓c w′ ° m′

w ° m ⇑c M= ¬∃w′∈ω.∃m′∈Prog ν α ρ.w ° m ²²²²
c w′ ° m′

Figure 3.2: Encoding details for Curio
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One consequence is that for our machine-verified proofs the types of >>= and par become
monomorphic. This isn’t a serious problem. The property of having only five constructors
can be informally guaranteed in a real language using module interfaces, and it is not
necessary for a program to be able to query another program’s outermost constructor, which
is something that algebraic types specifically allow. Furthermore, recent work on Generalised
Algebraic Datatypes [107] may permit these rich types within an actual algebraic type. We
therefore retain the more flexible types.

Since the datatype is higher-order, our style of operational semantics is a little unusual.
Consider the following example program written using the underlying algebraic datatype.
It is to be run in I/O model ivar: if the current context allows a read then it attempts to
create an infinite number of read processes; otherwise −1 is returned.

let reads = Par BothRd (Action ReadI) reads f

in Test ReadI reads (Ret -1)

Firstly, it appears that let/in constructs would also be required as primitive in Curio

because all of the I/O-related computation in the above example is contained in these
constructs. This is not true. The program above is denotationally equal to the following
element of Prog νIVar αIVar ρIVar, whose outermost constructor is Par:

Par BothRd (Action ReadI)

(Par BothRd (Action ReadI)

(Par BothRd (Action ReadI)

(...) f) f) f

The second reason why the style of operational semantics is unusual is that the above
structure is infinite! Since the constructors do not evaluate their arguments, the “syntactic”
structure of the term language can be partial or infinite. This is a bit unusual, especially
since the confluence result is proved in Chapter 4 by inducting over this very structure. As
a result, admissibility constraints must first be satisfied when performing induction.

The function nexts implements single-step reduction, and non-determinism is imple-
mented by supplying it with an additional parameter of type Guess. This is a stream of
L/R values and it guides the reduction algorithm’s search for a redex in the presence of
concurrency. We existentially quantify over its values to show that reducing to a particular
reduct is possible. If a world/program pair is in normal form in some context then nexts

returns Converged. Otherwise it returns Reduct (w1,m1), for some w1, m1, or fails
(⊥). These outcomes define the three single-step reduction relations, ↓c, −→c and ↑c.

3.3.2 Convergence and divergence

To make the move from program reduction to program evaluation we must investigate the
repeated single-step reduction of a world/program pair. The non-deterministic operator
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// // c is defined to be the reflexive, transitive closure of −→c. Using this we can define a
non-deterministic convergence relation ²²²²

c. w ° m ²²²²
c w′ ° m′ means “w ° m can, after zero

or more single-step reductions in context c yield w′ ° m′, which is in normal form.”

This is a rather weak property. It would be better if we knew that w ° m would always
reduce to a normal form w′ ° m′ in some context c. This is expressed as w ° m ⇓c w′ ° m′.
Divergence in Curio, expressed as w ° m ⇑c, means that a program can under no circum-
stances reduce in context c to a world/program pair in normal form. The relationship
between ↑ and ⇑ is subtle. The former is failure in the denotational semantics of the meta-
language, the latter is failure in the operational semantics of our language. Theorem 4.5.1
in Chapter 4 states that if PREs, then w ° m ↑c implies w ° m ⇑c.

The relation ²²²² is defined using the function rdces. This single-step reduces a world/pro-
gram pair a specific number of times. It requires a list, or stream of Guesses, one for each
single-step reduction (we don’t mention any boundary or definedness conditions, but they
do exist). Convergence,⇓, differs to ²²²² in that it universally quantifies over the guesses. It is
trivially true that w ° m ⇓c w′ ° m′ implies w ° m ²²²²

c w′ ° m′, and the confluence proof
shows that if PREs holds, w ° m ²²²²

c w′ ° m′ implies w ° m ⇓c w′ ° m′. Sometimes ²²²² and
⇓ are annotated with a number which denotes how many reduction steps took place.

Proposition 3.3.1. If w ° m ²²²²
c w1 ° m1 then it is not the case that w ° m ⇑c.

Proof. Direct from the definition of ⇑.

Proposition 3.3.2. Each of the following statements imply those below it:

1. w ° m ⇓c w1 ° m1

2. w ° m ²²²²
c w1 ° m1

3. w ° m // // c w1 ° m1

Proof. (1) implies (2) since if a property holds for all Guesses it must hold for some Guess.
(2) implies (3) because the only extra condition on the former is that w1 ° m1 ↓c is in
normal form.

Our single-step semantics can be proved to hold with respect to the encoding. It should
also be noted that although this is an implementation in a real language, we have no interest
at the moment in its efficiency.

3.3.3 Convergence is recursively enumerable

It is reassuring to note that although convergence is defined in the form of an existential
quantification over reduction steps, this is just for convenience.
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We now prove separately that ²²²² is recursively enumerable. This is a (machine-verified)
proof that there exists a function

runs :: [Guess] → ς → (ω,Prog ν α ρ)→ (ω,Prog ν α ρ)

which implements “reduction to normal form”. In other words,

runs gs c (w,m) = (w1,m1)

⇐⇒
∃i∈N.rdces i gs c (w,m) = (w1,m1) ∧ w1 ° m1 ↓c

Once this is proved, convergence and divergence can be expressed in a more intuitive
manner as follows:

w ° m ²²²²
c w1 ° m1 ⇐⇒ ∃gs∈[Guess].runs gs c (w,m) = (w1,m1)

w ° m ⇓c w1 ° m1 ⇐⇒ ∀gs∈[Guess].runs gs c (w,m) = (w1,m1)

w ° m ⇑c ⇐⇒ ∀gs∈[Guess].runs gs c (w,m) = ⊥

Showing that this holds is a non-trivial task. If one just repeatedly applies nexts, perhaps
an infinite number of times, then there is no structure to induct over. We must build an
implementation which internally constructs an intermediate list.

The proof relies on a more general (and quite powerful) lemma. Consider the following
two functions:

iterate :: (β → β) → β → [β]

iterate f x
M= x : iterate f (f x)

dountil :: (β → β) → (β → Bool) → β → [β]

dountil f p x
M= x : if (p x) then [] else (dountil f p (f x))

iterate is a standard Haskell library function. The term iterate f x is an infinite
list in which each successive element is the next iteration of function f to initial value x.
dountil is somewhat similar except there is an extra computable predicate p :: β → Bool

which indicates whether the iteration of f should stop. Therefore dountil may or may not
return an infinite list.

The following lemma gives a useful relationship between the two. It shows that given
side-conditions relating p and f , applying f to x0 i times yields an x1 such that p x1 if and
only if last (dountil f p x0) = x1 and x1 is defined.
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Lemma 3.3.1.

∀f∈β→β.∀p∈β→Bool.p ⊥ = ⊥ ∧ f ⊥ = ⊥ ∧ (∀x′∈β.p x′ 6= False =⇒ f x′ = ⊥)

=⇒ ∀x0∈β.∀x1∈β.

(∃i∈N.x1 = iterate f x0 !! i ∧ p x1)

⇐⇒
(x1 = last (dountil f p x0) ∧ x1 6= ⊥)

Proof. The proof needs quite a few extra lemmas, and on the whole requires an extremely
careful treatment of non-termination. In particular, with the given side-conditions

� If f x = ⊥ then iterate f x = [x,⊥,⊥,⊥, · · · ].

� If p x = ⊥ then dountil f p x = x : ⊥ and iterate f x = [x,⊥,⊥,⊥, · · · ].

� If p x = True then dountil f p x = [x] and iterate f x = [x,⊥,⊥,⊥, · · · ].

� If p x = False and f x = ⊥ then dountil f p x = x : (⊥ : ⊥).

To prove the =⇒ direction we induct over i, the number of iterations required. We must
show that if an iteration results in ⊥ then it cannot revert back to a non-⊥ term and also
prove that if p x = False then last (dountil f p x) = last (dountil f p (f x)).

To prove the ⇐= direction we must prove first that

� if l = length (dountil f p x) and l 6= ⊥ then p (iterate f x !! (l − 1)).

� if for all i, 0 ≤ i < k, p (iterate f x !! i) = False then dountil f p x !! k =
iterate f x !! k.

� various other results to do with last, iterate and infinite lists.

We can show that if (dountil f p x) is infinite then last (dountil f p x) will be ⊥ (thus
proving a contradiction) and if (dountil f p x) is a specific finite length then i will be that
length minus one.

To prove the final result we construct the function nextWraps, defined in Section A.1,
which treats the state of the program’s evolution as a 4-tuple containing (1) the world
state, (2) the program, (3) the current fresh list of Guess and (4) a Boolean value indicating
whether the previous iteration resulted in a world/program pair in normal form.

nextWraps :: ς → (ω,Prog ν α ρ,[Guess],Bool)→ (ω,Prog ν α ρ,[Guess],Bool)

Now we can give the implementation of runs, where fth4 returns the fourth element
from a 4-tuple, and prove, using Lemma 3.3.1, that it implements ²²²²

c.
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runs :: [Guess] → ς → (ω,Prog ν α ρ)→ (ω,Prog ν α ρ)

runs gs c (w,m) = case (last (dountil (nextWraps c) fth4 (w,m,gs,False))) of
(w1,m1, , ) → (w1,m1)

Proposition 3.3.3. If w ° m ⇓c w1 ° m1 and w ° m ⇓c w2 ° m2 then it is true that
m1 = m2 and w1 = w2

Proof. Obvious, since we have shown that reduction to some normal form defines a function,
not just a relation.

3.4 Chapter summary

Making use of the I/O model structure defined in Chapter 2, this chapter consisted of a
complete formal definition of the Curio language. This included the semantics of the five
Curio primitives, a description of the non-deterministic encoding in the metalanguage Core-
Clean, a definition of convergence and divergence in Curio, and a proof of the recursive
enumerability of convergence.

The definition of the Curio language in this chapter completes the core, foundational
material of this dissertation. From now on, the document branches into various distinct
strands, some more practically oriented than others.

� The following chapter, Chapter 4, gives the detailed and largely self-contained proof
that PREs guarantees confluence in Curio.

� Chapters 5 and 6 focus on the construction of a large, real world I/O model.

� Chapters 7 and 8 are concerned with the semantic properties of Curio programs.





Chapter 4

Confluence

4.1 Introduction

A non-deterministic reduction system is said to be confluent if for a given term all possible
reduction sequences eventually yield the same normal form, or no normal form at all. In
this chapter we prove that reduction in Curio is confluent when PREs holds – that ²²²² is
equivalent to⇓. This powerful property means that although our definition of concurrency is
a natural, non-deterministic one involving arbitrary choices, this arbitrariness is contained
and has no effect on the overall outcome. Therefore, in Curio, for all reduction orders, a
program will either always terminate with the same resultant world/program pair or always
diverge.

That the confluence proof has been machine-verified is also, on its own, a relatively
notable result. Confluence proofs for the λ-calculus have been machine-verified before (in
Coq [53], and Isabelle/HOL [82]) but we have yet to see one in an LCF style. Perhaps
there is a good reason for this – confluence proofs usually wouldn’t require one to prove
properties about a program. This, however, is the approach we took. We prove that our
simple implementation of Curio is confluent.

4.1.1 Terminology

Confluence is also known as the “Church-Rosser” property after the authors of the original
proof in 1935 for the λ-calculus [18].

Formal definitions of confluence tend to differ slightly depending on which texts are
read. Barendregt, in the standard reference text on the λ-calculus [9], defines a reduction
system to be confluent if it obeys the “diamond property”. This means that if A // // B and
A // // C then there is some D such that B // // D and C // // D, where // // is the reflexive,
transitive closure of the reduction relation ‘−→’. In Term Rewriting Systems [113], however,
the diamond property (and confluence) is defined to be the property “A −→ B and A −→ C

implies there is some D such that B −→ D and C −→ D”. It is the latter definition of

47
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confluence and the diamond property which is closest to what we use, but because our
operational semantics also has a notion of failure this muddies the water somewhat.

There is also a certain amount of confusion concerning the differences between (finite)
reduction sequences and reduction strategies. The pure λ-calculus is confluent, yet certain
reduction strategies may, for a given term, not result in a normal form when others do.
In particular, given the term (λx.λy.y)Ω, call-by-name reduction will find the normal form
(λy.y) but call-by-value reduction will not terminate.

The confluence proof in this chapter is stronger. All reduction strategies will have the
same effect. The intuitive reason why this is true is that unlike function application in the
λ-calculus, our par construct is highly symmetric.

4.1.2 Overview

The full machine-verified proof of confluence is long and full of complicated details. Many
of these relate to the propagation of ⊥ and the fact that induction over lazy structures must
be admissible (see Section B.2). We adopt a hybrid approach to describing the proof. We
try to explain all the technical problems encountered, while still never losing sight of the
overall picture.

To give some structure to the proof, three important sections of the proof each culminate
with the proof of a key theorem:

� Theorem 4.3.1: If cl ♦s cr and pres then reduction of programs in context cl and cr, if
possible in both contexts, is order independent.

� Theorem 4.5.1: If PREs, then w ° m ↑c implies w ° m ⇑c.

� Theorem 4.6.1 (Confluence): If PREs, then w ° m ²²²²
c w′ ° m′ implies w ° m ⇓c

w′ ° m′.

The single goal of this chapter is to prove Theorem 4.6.1. It should be noted that the
vast majority of the technicalities encountered in doing so are of no relevance at all to the
rest of this dissertation. If the reader is uninterested in the details then he/she should skip
this chapter entirely.

The pre-condition PREs was defined in Chapter 2 as

PREs
M= ∀p∈ρ.∀c∈ς .∀cl∈ς .∀cr∈ς .pf p c = (cl,cr) =⇒ cl vs c ∧ cr vs c ∧ cl ♦s cr

Occasionally during the confluence proof (for example, in Theorem 4.3.1) we do not need
the full power of PREs, just something a lot weaker. pres, defined as follows, only guarantees
one of the two properties.

pres
M= ∀p∈ρ.∀c∈ς .∀cl∈ς .∀cr∈ς .pf p c = (cl,cr) =⇒ cl vs c ∧ cr vs c
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4.2 Preliminaries

Non-deterministic single-step reduction “−→” is a fine high-level notation for expressing
how a world/program pair can change within a given context. Its downside, however, is
that it hides some internal details of the reduction and its implementation, and these details
are central to the machine-verified proof. For this chapter and only this chapter they must
be exposed.

They include:

� The initial Guess which guides the search for a redex.

� The actions that were performed, if any.

� The whereabouts of the redex if one is eventually found.

The initial Guess is usually “hidden” by an existential quantification, but it is still explicit
in the implementation. The other two are truly internal, however, and for this reason the
implementation nexts had to be rewritten as the interaction of three different functions.
(Admissibility, as discussed in Section B.2, states that to obtain information about a lazy
structure one must do so constructively and write a function which computes it. One is not
able to just prove that it exists).

4.2.1 Deconstructing nexts

The new definition of nexts and the types of the three new functions are in Figure 4.1, and
their full definitions may be found in Section A.1.

The function nextRs searches for a redex. If it finds one it indicates the Route to that
redex and the action it will perform, if any. A Route is just a finite list of L/R values. When
searching for a redex, each time a par is encountered the next element of the Route indicates
whether to look to the left- or right-hand side.

If a redex doesn’t perform an action we call it a silent redex. The function advA v r m

modifies the action at route r in program m by replacing it with the program return v.
The program advSs c r m modifies the silent redex at route r in program m. The context
information c is required so that a program of the form test a m1 m2 can determine which
of the two programs must be executed.

We now prove that the two definitions of nexts are equivalent, thus allowing us to pick
whichever is the more appropriate when proving a lemma.

Lemma 4.2.1. nexts = next′s

Proof. A long but straightforward induction on program structure. We omit the details,
but it is a proof that the three individual functions add up to the single original one. nextRs

does all the searching for a redex but never modifies either the world state or the program.
The only reason it needs world state w at all is to check if an action is stalled. The four
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RxType α
M= Action a | Silent

nextRs :: Guess → ς → ω → Prog ν α ρ → Redex (Route,RxType α)

advSs :: ς → Route → Prog ν α ρ → Prog ν α ρ

advA :: ν → Route → Prog ν α ρ → Prog ν α ρ

next′s g c (w,m)
M= case (nextRs g c w m) of

NoRedex → Converged
Redex (r,Silent) → Reduct (w,advSs c r m)
Redex (r,Action a) → case (af a w) of

(w1,v)→ Reduct (w1,advA v r m)

Figure 4.1: Definition of next′s

stages of the reduction of an action redex action a are (1) checking if the action is permitted
(ap c a = True), (2) checking if the action is stalled, (wa a w = False) (3) performing the
action (evaluating af a w to some (w1,v)) and (4) updating the program with the value
v. Of these, the first two are performed by nextRs, the third takes place in the “wiring”
and the fourth is performed by advA. With any silent redex, nextRs just finds the redex
returning the route, and advSs modifies the program itself.

4.2.2 Annotating single-step reduction

Redexes are inherently slippery things to reason about since there is no obvious type or
set which is isomorphic to them in any useful way. We therefore use Guesses to quantify
over redexes when we’re looking for one and Routes to identify a redex when we have found
one. The function from Guesses to redexes is onto; the function from redexes to Routes is
one-to-one.

Guesses and Routes can be confusingly similar, at times. Although they are both just
lists of L/R, they are conceptually somewhat different. A Guess is best understood as always
being infinite, and Routes as always being finite. So we can always successfully retrieve the
head and tail of a Guess, whereas there is the possibility that a Route is empty. Also, we
sometimes implicitly “cast” a Route to a Guess by padding the finite list to make it infinite.

The new annotated single-step reduction can be found in Figure 4.2. Reduction and
failure is now annotated with

1. either an action a, indicating that it was an action redex, or a •, indicating that it
was a silent redex.

2. A mapping g 7→ r, where g is the initial guess, and r is the route of the redex.
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w ° m
g 7→r−−→ c

a w1 ° m1
M= nextRs g c w m = Redex (r,Action a) ∧

af a w = (w1,v) ∧ m1 = advA v r m

w ° m
g 7→r−−→ c• w1 ° m1

M= nextRs g c w m = Redex (r,Silent) ∧
m1 = advSs c r m ∧ w = w1

w ° m g 7→r ↑c
a

M= nextRs g c w m = Redex (r,Action a) ∧ af a w = ⊥
w ° m g 7→⊥ ↑c M= nextRs g c w m = ⊥

w ° m ↓c M= nextRs g c w m = NoRedex

Figure 4.2: Annotating single-step reduction

In the case of failure, a reduction can fail after finding a redex (g 7→ r) or while searching
for a redex (g 7→ ⊥).

It should be clear that the new notation covers all possible cases and is a consistent
extension to the old notation. If the guess, route or redex type is omitted this means there
is an implicit existential quantification. w ° m −→c

a w′ ° m′ means there exists some Guess

g and a route Route r such that w ° m
g 7→r−−→ c

a w′ ° m′. If an action a or • is omitted from
a reduction then we just don’t specify whether it was silent or performed an action.

Corollary 4.2.2. If w ° m −→c• w1 ° m1 then w = w1.

Proof. Immediate.

Corollary 4.2.3. If w ° m −→c
a w1 ° m1 then af a w = (w1,v), for some v.

Proof. Immediate.

Corollary 4.2.4. If w ° m g 7→r ↑c
a then af a w = ⊥.

Proof. Immediate.

4.2.3 A template for inductive proofs

Over the course of the chapter a great many lemmas are proved by inducting over the
recursive structure of Prog ν α ρ, the higher order algebraic type defined in Figure 3.2.
They are all, of course, different, but we can give a general shape to many of the proofs,
and this will serve as a basic template.

Base programs (those of the form return v, ⊥, return v >>= f , action a, test a mt mf

or return vl |||
p
∗ return vr) are always entirely deterministic for a given context and world,

and never require any “deeper” knowledge, such as an inductive hypothesis. When inducting
over Prog ν α ρ, it is usually relatively easy to prove properties for these programs.

The behaviour of a program m >>= f , where m isn’t a value return v, is solely deter-
mined by the behaviour of m. This is important because when inducting over Prog ν α ρ
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no inductive hypothesis can be given for f . If m fails, diverges or is in normal form then
the same will be true of m >>= f .

Programs of the form ml |||
p
∗ mr are usually the most troublesome to prove properties

about. If ml and mr are both values then it is a base term. It always fails if pf p c = ⊥,
ml = ⊥ or mr = ⊥, so we often just omit these simple cases altogether. If neither of the
above are true an inductive hypothesis will be needed for ml or mr (and occasionally both)
and how they behave in their respective contexts. Proving lemmas inductively for programs
like this is made easier if we can perform a simple case analysis on whether the left- or
right-hand side was reduced. The following lemmas show how, by examining the resultant
Route, we can learn whether the reduced redex was on the left- or right-hand side. This is
our standard procedure for determining the side in which a reduction took place – doing
case analysis on the Guess would not give this sort of information.

Lemma 4.2.5. If w ° ml |||
p
∗ mr

g 7→[]
−−→ c w1 ° m1 then pf p c = (cl,cr) for some cl, cr

and for some vl, vr, ml = return vl, mr = return vr, w1 = w and m1 = return vl ∗ vr.

Proof. Since the route is [] the redex cannot be within either ml or mr. Therefore ml and
mr must be values.

Lemma 4.2.6. If m is not a value, nextRs g c w m >>= f = nextRs g c w m.

Proof. Immediate from implementation.

Lemma 4.2.7. If m is not a value, then w ° m >>= f
g 7→r−−→ c w′ ° m′ >>= f if and only if

w ° m
g 7→r−−→ c w′ ° m′.

Proof. Immediate from Lemma 4.2.6.

Lemma 4.2.8. If nextRs (b:g) c w ml |||
p
∗ mr = Redex ((L:r),x) then pf p c = (cl,cr)

for some cl, cr and nextRs g cl w ml = Redex (r,x).

Proof. Regardless of the initial direction b of the Guess, if the resultant Route was L then
the left-hand side will have been reduced.

Lemma 4.2.9. If nextRs (b:g) c w ml |||
p
∗ mr = Redex ((R:r),x) then pf p c = (cl,cr)

for some cl, cr and nextRs g cr w mr = Redex (r,x).

Proof. Symmetric to proof of Lemma 4.2.9.

Lemma 4.2.10. If w ° ml |||
p
∗ mr

(b:g)7→(L:r)
−−→ c w1 ° m1 then pf p c = (cl,cr) for some

cl,cr and there is a m′
l such that w ° ml

g 7→r−−→ cl w1 ° m′
l and m1 = m′

l |||
p
∗ mr.

Proof. Immediate from Lemma 4.2.9.

Lemma 4.2.11. If w ° ml |||
p
∗ mr

(b:g) 7→(R:r)
−−→ c w1 ° m1 then pf p c = (cl,cr) for some

cl,cr and there is a m′
r such that w ° mr

g 7→r−−→ cr w1 ° m′
r and m1 = ml |||

p
∗ m′

r.

Proof. Immediate from Lemma 4.2.9.
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4.3 Initial results

Having established some new notation, in this section we are now ready to begin the conflu-
ence proof. We prove some important lemmas which describe both how single-step reduction
affects world state and what actions single-step reduction can perform.

Lemma 4.3.1. If nextRs g c w m = NoRedex then for all g1, nextRs g1 c w m =
NoRedex.

Proof. Induction on m. It is trivial that return v is always in normal form, and if
w ° action a is in normal form it always will be for world state w. ml |||

p
∗ mr is only

in normal form if ml and mr are both in normal form and it’s not the case that both are
values. g1 can be either (L:g′1) or (R:g′1), for some g′1, but in each case ml and mr will both
be in normal form, regardless of g′1’s value (IH), so the same will be true of ml |||

p
∗ mr.

Lemma 4.3.2. If w ° m ↓c then it is not the case that w ° m −→c w′ ° m′ for some w′,m′

or that w ° m ↑c. (This is a proof of confluence for programs which require no reduction
steps).

Proof. Immediate from Lemma 4.3.1.

Lemma 4.3.3. If nextRs g c w m = Redex (r,Action a) then wa a w = False.

Proof. Induction on m. The only base redex which isn’t silent is action a, and if this
reduces then wa a w = False. This is true, by induction, for any reduction which performs
an action.

Lemma 4.3.4. If w ° m −→c
a w′ ° m′ then wa a w = False.

Proof. Immediate from Lemma 4.3.3.

Lemma 4.3.5. If pres and nextRs g c w m = Redex (r,Action a) then ap c a = True.

Proof. Induction on m. Trivial for action a, and true by contradiction for silent base
redexes. If m = m1 >>= f (m not a value), it is trivial from Lemma 4.2.6. If m is ml |||

p
∗ mr

then do case analysis on the resultant route. If it is true that nextRs (b:g) c w ml |||
p
∗ mr =

Redex ((L:r),x), then pf p c = (cl,cr) for some cl and cr, and from Lemma 4.2.8,
nextRs g cl w ml = Redex (r,x). From IH, conclude ap cl a = True, and by pres, cl vs c,
and therefore ap c a = True. The proof for the right-hand side is symmetric.

Lemma 4.3.6. If pres and w ° m −→c
a w′ ° m′ then ap c a = True.

Proof. Immediate from Lemma 4.3.5.
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The following lemmas relate successful single-step reduction of m on world w to reduction
in a completely unrelated world w′. The key is that after reducing successfully we will have
the correct route to that redex. The second time around this route is then used as the new
guess to guarantee that the same redex is actually found – some actions in m which were
stalled in w (and therefore ignored) may have become unstalled in w′, and it necessary to
supply the exact route to make sure that we never encounter these unstalled actions, or any
other redex.

Lemma 4.3.7. If nextRs g c w m = Redex (r,Silent) then for all w′, nextRs r c w′ m =
Redex (r,Silent).

Proof. Induction on m. Trivially true for any silent base redex, since they are deterministic.
If m = ml |||

p
∗ mr and g = (b:g′), then do case analysis on the route r. If r = [], it is

a base redex. If r = (L:r′) then we can derive nextRs g′ cl w ml = Redex (r′,Silent)

with Lemma 4.2.8. With IH, prove nextRs r′ cl w′ ml = Redex (r′,Silent), and therefore
nextRs r c w′ ml |||

p
∗ mr = Redex (r,Silent). If the right-hand side is reduced, the

proof is similar. Programs of the form m1 >>= f are proved easily with induction.

Lemma 4.3.8. If w ° m
g 7→r−−→ c• w ° m′ then for all w′, w′ ° m

r 7→r−−→ c• w′ ° m′.

Proof. Immediate, from Lemma 4.3.7.

Lemma 4.3.9. If nextRs g c w m = Redex (r,Action a) then for all w1, if wa a w1 =
False then nextRs r c w1 m = Redex (r,Action a).

Proof. Induction on m. Similar to the proof of Lemma 4.3.7 except the only valid base
program is action a – all the others reduce silently. Since the action was already per-
formed successfully in the action’s local context c1, which won’t have changed, we know
that ap c1 a = True, and because we know wa a w1 = False, that action will definitely be
returned as a legitimate, unstalled redex.

Lemma 4.3.10. If w ° m
g 7→r−−→ c

a w′ ° m′, where af a w = (w′,v), then for all w1, if
wa a w1 = False and af a w1 = (w′1,v), then w1 ° m

r 7→r−−→ c
a w′1 ° m′.

Proof. Immediate, using Lemma 4.3.9.

Lemma 4.3.11. If w ° m
g 7→r−−→ c

a w′ ° m′, then for all w1, if wa a w1 = False and
af a w1 = ⊥, then w1 ° m r 7→r ↑c

a.

Proof. Immediate, using Lemma 4.3.9.

Lemma 4.3.12. If w ° m
g 7→r−−→ c w′ ° m′, then w ° m

r 7→r−−→ c w′ ° m′.

Proof. If the reduction is silent, apply Lemma 4.3.8. If it performs an action a, apply Lemma
4.3.10 – we know from Lemma 4.3.4 that wa a w = False.
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Lemma 4.3.13. If w ° m g 7→r ↑c
a, then w ° m r 7→r ↑c

a.

Proof. Apply Lemma 4.3.11 – we know from Lemma 4.3.3 that wa a w = False.

We can now prove that reduction in disjoint contexts is order independent.

Theorem 4.3.1. Assuming pres and cl ♦s cr, then if w ° ml

gl 7→rl−−→ cl wl ° m′
l holds and

w ° mr

gr 7→rr−−→ cr wr ° m′
r holds, then either

� there exists a w2 such that both wr ° ml

rl 7→rl−−→ cl w2 ° m′
l and wl ° mr

rr 7→rr−−→ cr w2 ° m′
r

� or it is the case that both wr ° ml
rl 7→rl ↑cl and wl ° mr

rr 7→rr ↑cr .

Proof. Case analysis on whether a reduction is silent.

� One is silent, say that of cl: wl = w, from Corollary 4.2.2, and both succeed. Let
w2 = wr. Use Lemma 4.3.8 to prove that ml still reduces to m′

l with world state wr,
and use Lemma 4.3.12 to prove that mr will behave the same on world w with rr as
its guess instead of gr. (The proof is symmetric if cr’s redex is silent).

� Both are actions, say al and ar: this means (Corollory 4.2.3) that af al w = (wl,vl)

and af ar w = (wr,vr). From Lemma 4.3.6 we know ap cl al = True and ap cr ar =
True, and from Lemma 4.3.4, we also know that wa al w = False and wa ar w =
False. Now, since cl ♦s cr holds this means al |||s ar, allys(al, ar) and allys(ar, al) are
true. Using allys(al, ar), prove wa ar wl = False, using allys(ar, al) prove wa al wr =
False, and because cl |||s cr, either:

– There exists a w2 such that af al wr = (w2,vl) and af ar wl = (w2,vr). Apply
Lemma 4.3.10 to both sides to prove that they both will succeed.

– af al wr = ⊥ and af ar wl = ⊥. Apply Lemma 4.3.11 to show that they both
fail.

4.4 Analysing failure

The next important theorem is that given PREs, if w ° m ↑c then w ° m ⇑c. This is
effectively a proof that denotational failure in the metalanguage always causes divergence
in our language – if a single-step reduction can possibly fail then, despite non-determinism,
it is impossible that the program will ever converge to some normal form.

In previous sections we defined two distinct types of failure:

� w ° m g 7→r ↑c
a. A redex is found, action a, but the action a fails.

� w ° m g 7→⊥ ↑c. The search for a redex fails outright.
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Tree β = Branch (Tree β) (Tree β) | Leaf β

redexTrees :: ς → Prog ν α ρ → Tree (Redex (Route,(ς,RxType α)))
redexLists :: Guess → ς → Prog ν α ρ → [(Redex (Route,(ς,RxType α)))]

checks :: ω → Redex (Route,(ς,RxType α))→ Redex (Route,RxType α)

shuffle :: Guess → Tree β → Tree β

preorder :: Tree β → [β]
mapTree :: (β → γ) → Tree β → Tree γ

firstRx :: Redex β → Redex β → Redex β

addDir :: Dir → Redex (Route,β)→ Redex (Route,β)

nextR′s g c w m
M= firstRxWs w $ redexLists g c m

firstRxWs w
M= foldl firstRx NoRedex ◦ map (checks w)

redexLists g c m
M= preorder $ shuffle g $ redexTrees c m

Figure 4.3: Definition of nextR′s

If a program fails in the first way, then proving that it will diverge is quite easy (Lemma
4.5.6). If a program fails in the second way, however, it is much more difficult since we are
forced, like with nexts, to rewrite nextRs, breaking the process of searching for a redex into
more manageable pieces. Only by doing this can we determine why searching for a redex
failed, yielding ⊥.

4.4.1 Deconstructing nextRs

There are obvious tensions at play when trying to re-implement nextRs. A tree structure
perfectly describes the structure of redexes: a leaf node represents a definite redex or lack
thereof, and a branch indicates two concurrent programs, each of which may have their own
redexes. Furthermore, the Guess used to coordinate the search for a redex is most naturally
applied to a tree structure. On the other hand, we must search for a redex sequentially.
A list is ideal for this, since each element in a list is indexed uniquely and sequentially by
integers in a way that elements of a tree cannot be.

Our solution involved the construction of two temporary structures, a tree and a list. By
doing this we can then make use of existing theorems on lists and trees. An outline of the
new function nextR′s is given in Figure 4.3, and the full details may be found in Section A.1.

The first half is the function redexLists. This constructs a lazy list of potential redexes
and has three parts. redexTrees c m first builds a tree in which each leaf node represents
either NoRedex, indicating that no reduction can take place, or Redex (r,(c1,x)), indi-
cating that there is a potential redex at Route r, where c1 is the local context for that redex.
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x can be either Silent or Action a for some a. There are are only two situations where
NoRedex will occur in the tree: (1) if m is a value return v at the top-level, and (2) if a
sub-program of m is of the form return vl |||

p
∗ mr or ml |||

p
∗ return vr and mr/ml are

not values. The function shuffle g then rearranges the tree according to Guess g so that
the left-to-right ordering of leaves respects the order in which nextRs originally would have
scanned for redexes. Pre-ordering this tree with preorder then results in a list of potential
redexes in the correct order.

firstRxWs is the second half of the nextR′s algorithm, and finds the first legitimate redex
in the list of potential redexes. It has two parts. Mapping checks w across the list throws
out any action redexes which (1) aren’t permitted by their local context or (2) are permitted
but are stalled in the current world w. Actions which aren’t allowed result in ⊥ (nextRs

should only return valid actions – Lemma 4.3.5) but permitted actions which are currently
stalled become NoRedex. Having eliminated all spurious redexes from the list, we can
simply scan the list looking for the first element which isn’t NoRedex. Folding firstRx

across the list does exactly that.
The types of a few other internal functions are given in Figure 4.3. The function mapTree

modifies each element of a tree with a given function and addDir prepends either a L or a
R to the route contained within a redex.

It is useful to note that this re-implementation manages to separate the four arguments
of nextR′s into three different sequential transformations. The context c and program m are
supplied to redexTrees, the tree is shuffled with the Guess g, and the world value w is only
needed by checks to see if actions are stalled.

Unlike nextRs, nextR′s is not defined directly in a recursive manner. We therefore need
to prove that a direct recursive relationship exists. The following lemmas are all required
to show that the behaviour of nextR′s for some program can be understood in terms of its
behaviour for the sub-programs of that program.

Lemma 4.4.1.

(i) length ◦ preorder = length ◦ preorder ◦ shuffle g

(ii) shuffle g ◦ shuffle g = id

(iii) shuffle g1 ◦ shuffle g2 = shuffle g2 ◦ shuffle g1

(iv) shuffle [L, L, ...] = id

(v) shuffle g ◦ mapTree f = mapTree f ◦ shuffle g

(vi) map f ◦ preorder = preorder ◦ mapTree f

(vii) (r1 ‘firstRx‘ r2) ‘firstRx‘ r3 = r1 ‘firstRx‘ (r2 ‘firstRx‘ r3)
(viii) firstRxWs w (r1++r2) = firstRx (firstRxWs w r1) (firstRxWs w r2)
(ix) r = r ‘firstRx‘ NoRedex

(x) r = NoRedex ‘firstRx‘ r

(xi) checks ω ◦ addDir d = addDir d ◦ checks ω

(xii) firstRxWs w ◦ map (addDir d) = addDir d ◦ firstRxWs w
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Proof. All by straightforward induction or case analysis.

Result (i) in Lemma 4.4.1 is a proof that shuffling a redex tree does not change the
number of elements in that tree.

The results (ii)-(iv) in Lemma 4.4.1 show that shuffle g, for all g, forms the elements of
an Abelian (or commutative) group under the ◦ operator. Function composition is always
associative, the identity is shuffle [L,L, ...] and each element is its own inverse.

Results (vii), (ix) and (x) show that firstRx is a monoidal operator with identity
NoRedex. The final two results show that firstRxWs and check do not query the route
at which a redex exists. Instead it is passed through these functions unchanged.

Lemma 4.4.2. If m is not a value then redexLists g c (m >>= f) = redexLists g c m.

Proof. Immediate.

Lemma 4.4.3. If ml, mr are not both values and pf p c = (cl,cr) then

redexLists (L:g) c (ml |||
p
∗ mr) =

map (addDir L) (redexLists g cl ml)++map (addDir R) (redexLists g cr mr)

Proof. Equational.
redexLists (L:g) c ml |||

p
∗ mr

= (redexLists, defn.)
preorder $ shuffle (L:g) $ redexTrees c (ml |||

p
∗ mr)

= (redexTrees defn.)
preorder $ shuffle (L:g) $ Branch (mapTree (addDir L) $ redexTrees cl ml) (· · · )

= (shuffle defn.)
preorder $ Branch (shuffle g $ mapTree (addDir L) $ redexTrees cl ml) (· · · )

= (preorder defn.)
(preorder $ shuffle g $ mapTree (addDir L) $ redexTrees cl ml) ++ (· · · )

= (Lemma 4.4.1, (v))
(preorder $ mapTree (addDir L) $ shuffle g $ redexTrees cl ml) ++ (· · · )

= (Lemma 4.4.1, (vi))
(map (addDir L) $ preorder $ shuffle g $ redexTrees cl ml) ++ (· · · )

= (redexLists, defn.)
map (addDir L) (redexLists g cl ml)++map (addDir R) (redexLists g cr mr)

Lemma 4.4.4. If ml, mr are not both values and pf p c = (cl,cr) then

redexLists (R:g) c (ml |||
p
∗ mr) =

map (addDir R) (redexLists g cr mr)++map (addDir L) (redexLists g cl ml)
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Proof. Symmetric to that of Lemma 4.4.3.

Lemma 4.4.5. If m is not a value then nextR′s g c w m >>= f = nextR′s g c w m

Proof. Immediate from Lemma 4.4.2

Lemma 4.4.6. If pf p c = (cl,cr) and ml,mr are not both values then

nextR′s (L:g) c w ml |||
p
∗ mr =

firstRx (addDir L (nextR′s g cl w ml)) (addDir R (nextR′s g cr w mr))

This states that if the the initial Guess says to look on the left-hand side first, then first
search for a redex in ml, adding an L to any resultant route. If this fails then search for a
redex in mr, adding an R to any resultant route.

Proof. Equational.
nextR′s (L:g) c w ml |||

p
∗ mr

= (nextR′s defn.)
firstRxWs w (redexLists (L:g) c (ml |||

p
∗ mr))

= (Lemma 4.4.3)
firstRxWs w (map (addDir L) (redexLists g cl ml)++map (addDir R) · · · )

= (Lemma 4.4.1, (viii))
firstRx (firstRxWs w (map (addDir L) (redexLists g cl ml))) (· · · )

= (Lemma 4.4.1, (xii))
firstRx (addDir L (firstRxWs w (redexLists g cl ml))) (addDir R (· · · ))

= (nextR′s defn.)
firstRx (addDir L (nextR′s g cl w ml)) (addDir R (nextR′s g cr w mr))

Lemma 4.4.7. If pf p c = (cl,cr) and ml,mr are not both values then

nextR′s(R:g) c w ml |||
p
∗ mr =

firstRx (addDir R (nextR′s g cr w mr)) (addDir L (nextR′s g cl w ml))

Proof. Similar to proof of Lemma 4.4.6.

We can now prove the key equivalence result.

Lemma 4.4.8. nextRs = nextR′s.

Proof. Induction on program structure. All base terms are deterministic, so the Guess is
irrelevant and it is a simple matter of showing that checks and redexTrees together behave
the same as nextRs. If the program is of the form m >>= f , m not a value, then Lemma 4.2.6
and Lemma 4.4.2 together convert nextRs and nextR′s respectively to the form of the IH.
If the program is ml |||

p
∗ mr, ml and mr not both values, then depending on whether the
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wfs : ς → (Prog ν α ρ) → B

wfs(c,m) M= length (preorder (redexTrees c m)) 6= ⊥

wfs(c, return v) wfs(c, action a) wfs(c, test a mt mf ) ¬wfs(c,⊥)

wfs(c,m >>= f) ⇐⇒ wfs(c, m)

if pf p c = ⊥, then ¬wfs(c,ml |||
p
∗ mr)

if pf p c = (cl,cr), then wfs(c,ml |||
p
∗ mr) ⇐⇒ (wfs(cl,ml) ∧ wfs(cr,mr))

Figure 4.4: Well-formedness of programs

Guess is of the form (L:g) or (R:g) use Lemma 4.4.3 or Lemma 4.4.4. With the IH for ml

and mr one can then show that nextR′s preserves (1) the order in which the implementation
of nextRs searches for redexes and (2) how the resultant route, if there is one, has either L
or R prepended to it depending on the location of the redex.

4.4.2 Well-formedness of programs

For the divergence proof we found it necessary to define the notion of a well-formed program
with respect to some context. The purpose of this is to distinguish programs which fail as
a result of their structure (programs which are not well-formed) and those that fail because
of actions and how they interact with world state (programs that are well-formed). The key
to the introduction of well-formedness is the proof that if a program is not well-formed then
it will always diverge, even though it is possible that it may never fail after a finite number
of steps. (Failure, as always, means immediate failure, ↑).

If a program m is well-formed with respect to context c then this is written as wfs(c,m).
The definition and some basic properties of well-formedness is given in Figure 4.4 – a program
is well-formed if the list of potential redexes returned by redexTrees is of defined length.
If ¬wfs(c,m) then we know m is partial (contains ⊥s), infinite or the context c was not
split successfully in m. The properties in Figure 4.4 are all simple consequences of the
implementation, requiring just a few basic results such as

length (xs++ys) = ⊥ ⇐⇒ (length xs = ⊥ ∨ length ys = ⊥)

To explain why we need this new terminology one needs to understand why an attempt
to prove the theorem relating failure to divergence would fail without it. Divergence, ⇑,
expresses the property that for a given world/program pair no reduction sequence of finite
length can result in convergence to some normal form. The way that one proves that a
world/program pair diverges is to prove, by inducting over i, that if it did converge to
normal form after i steps one can show a contradiction.
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It was originally thought that the following lemma would suffice: if PREs and
w ° m −→c w′ ° m′, then w ° m ↑c implies w′ ° m′ ↑c. In other words, if a program can
possibly fail, then it cannot escape from that possibility by reducing to a different world/pro-
gram pair. But this proof strategy doesn’t hold for some programs which are badly-formed,
and the following counter-example shows why: (to be run in model lock from Chapter 2,
with any context; world state should be True (the mutex is locked); f is irrelevant).

let waits = par () (action Wait) waits f

in par () (action Unlock) waits f

The program waits attempts to create an infinite number of processes, each of which
performs a single Wait action. The entire program above places an Unlock in parallel
with waits. If the mutex is locked and we first look for a redex on the right-hand side
then it will always fail (↑) – there are an unlimited number of stalled actions within waits

and the search for a redex simply will not terminate. After executing (action Unlock),
however, each of the infinite number of Waits are released, and there will always be a
redex, and thus no (immediate) failure can occur∗. One of the key intermediate results of
the following section is that badly-formed programs always diverge (Lemma 4.5.3). This
solves the problem with the waits counter-example. Since it is badly-formed it always
diverges, so is obviously true that if it can possibly fail it will also always diverge.

Some partial or infinite programs are well-formed. Take the example used in Chapter 3:

let reads = par BothRd (action ReadI) reads f

in test ReadI reads (return (-1))

reads itself isn’t well-formed, but the entire program, although “syntactically” infinite, is
well-formed. It is also worth noting that well-formedness is a property of programs for a
given context, not world/program pairs.

4.5 Failure implies divergence

We are now in a position to begin proving the following key theorem.

Theorem 4.5.1. If PREs, then w ° m ↑c implies w ° m ⇑c.

∗One may ask, though, that if the single-step reduction function is given a Guess which tells it always to
first try the right-hand side of a parallel reduction, it would also fail immediately, never observing an action.
That might solve it for this example, but the problem runs much deeper. What is of real interest is that when
we said it made the theorem unprovable, we didn’t mean it made it false. The issue is that our denotational,
domain theoretic model of computable programs contains denotations of non-existent programs - which is
an example of the full abstraction problem [84]. In the above example, to cause it to fail, the right-hand side
must be constantly traversed. But what if the side with an infinite number of actions alternates from left
to right? The domain of Prog ν α ρ admits any infinite sequence of L/R, but, since an infinite list of Bool
can encode any real number, and it’s well known that certain real numbers are uncomputable, one cannot
always compute a guess which would always pick the correct reduction path to guarantee failure. And the
guess must be computable, because of the admissibility constraints mentioned.
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Proof. If ¬wfs(c,m), use Lemma 4.5.3. If w ° m g 7→r ↑c
a, use Lemma 4.5.6. Otherwise it

must be true that wfs(c,m) and w ° m g 7→⊥ ↑c, so use Lemma 4.5.19.

Its proof is effectively the merging of three separate lemmas, and these three lemmas are
proved in the following three respective sub-sections.

4.5.1 Badly-formed programs

We prove that badly-formed programs diverge by showing that a program cannot reduce
out of a badly-formed state, and that no badly-formed program is in normal form.

Lemma 4.5.1. If w ° m ↓c then wfs(c,m).

Proof. Induction on m. A value is well-formed, as is a stalled action (or any action, for that
matter). The other base terms are not in normal form, so they don’t apply. This is easily
proved by induction if m = m′ >>= f . When m = ml |||

p
∗ mr is in normal form, ml and mr

must be as well. Therefore, by IH, wfs(cl,ml) and wfs(cr, mr) and since the concatenation
of two finite lists is a finite list, wfs(c,m).

Lemma 4.5.2. If ¬wfs(c,m) and w ° m −→c w′ ° m′, then ¬wfs(c,m′).

Proof. Induction on m.

� Base terms. The only base program which isn’t well-formed is ⊥, and it cannot reduce
successfully, so doesn’t apply.

� m = m1 >>= f : it must be true that ¬wfs(c,m1), so m1 is not a value, and w ° m1 −→c

w′1 ° w′ so, by the inductive hypothesis, ¬wfs(c,m′
1). Therefore m′

1 cannot be a value
either, and ¬wfs(c,m′

1 >>= f).

� m = ml |||
p
∗ mr: since ¬wfs(c,ml |||

p
∗ mr), that means at least one of the following

is true: ¬wfs(cl,ml) or ¬wfs(cr,mr). Now, say ml contains the reduced redex. This
means w ° ml −→cl w′l ° m′

l and m′ = m′
l |||

p
∗ mr, for some m′

l. If it was mr which
was badly-formed then the resultant program will still be badly-formed. If it was ml

that was badly formed then, by IH, ¬wfs(cl,m
′
l) and the resultant program remains

badly-formed. (The proof is symmetric if mr was reduced, not ml).

Lemma 4.5.3. (Part 1 of Theorem 4.5.1). If ¬wfs(c,m), then for all w, w ° m ⇑c.

Proof. Induction on the number of reduction steps it might take to reduce to normal form.
Base case (0): from Lemma 4.5.1, since m is badly-formed it cannot be in normal form.
Inductive case: it can’t converge to normal form after i + 1 steps because after one step it
is still badly-formed (Lemma 4.5.2) and it can’t converge after i steps (IH).
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4.5.2 Failure of actions

We prove that the failure of an action implies w ° m ⇑c by showing that even if w ° m can
also reduce successfully then it can never “escape” from the action that originally failed.
This is the property we originally wanted to prove for all programs, before we showed a
counter-example. That it is true for actions which fail is the result of the definition of |||s.
It preserves the fact that af a w = ⊥ after the world state is modified by another action.

Lemma 4.5.4. Given pres and cl ♦s cr, then if w ° mr
gr 7→rr ↑cr

ar
and w ° ml −→cl wl ° m′

l,
then wl ° mr

rr 7→rr ↑cr
ar

.

Proof. We know that the action ar failed: af ar w = ⊥. If ml reduces silently then wl = w,
and Lemma 4.3.13 can be used. If ml instead performs some action al then, from Lemma
4.3.4, wa al w = False, from Lemma 4.3.6, ap cl a = True, and from the definition,
af al w = (wl,vl), for some vl. With cl ♦s cr, then derive al |||s ar and allys(al, ar). Using
these two facts we can prove af ar wl = ⊥ and wa ar wl = False respectively. Apply
Lemma 4.3.11 to show that ar will fail when executed in world wl.

Lemma 4.5.5. If PREs, w ° m g 7→r ↑c
a and w ° m −→c w′ ° m′, then w′ ° m′ r 7→r ↑c

a.

Proof. Induction on m. True by contradiction for all base programs – they are deterministic,
and therefore cannot fail and successfully reduce. For m1 >>= f (where m1 isn’t a value)
apply IH. If m is of the form ml |||

p
∗ mr (and ml and mr aren’t both values) then do case

analysis on whether the failure and the reduction were on the same side or different sides.
If both failure and success are on the same side, apply the IH. If failure and success are
on opposite sides, apply Lemma 4.5.4 to prove that the side that fails will still fail after a
successful reduction on the opposite side. (Since reduction can succeed, pf p c = (cl,cr)

for some cl, cr, and from PREs this means pres and cl ♦s cr).

Lemma 4.5.6. (Part 2 of Theorem 4.5.1). If PREs, then if w ° m g 7→r ↑c
a, then w ° m ⇑c.

Proof. Induction on the number of reduction steps w ° m might take to reach normal form.
Base case (0): since w ° m ↑c, by Lemma 4.3.2 it can’t be in normal form. Inductive case:
it can’t reach normal form after i + 1 steps because, by Lemma 4.5.5, after one step it can
still fail, and by IH it can’t converge to normal form after i steps.

4.5.3 Well-formed failure of nextRs

Finally, we must prove that, assuming PREs and wfs(c,m), if w ° m g 7→⊥ ↑c then w ° m ⇑c.
The structure to the proof is rather similar to our proof of Lemma 4.5.6 at a high-level but
there are considerably more technical details.

The well-formedness of m has a direct consequence: it means that there are a finite
list of potential redexes, so we can induct over the length of the list without admissibility
constraints. One can therefore prove existential properties by induction, namely that if
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nextRs results in ⊥ then it failed for some specific potential redex identified by an integer.
Once we have an identifer for problematic redexes we can then prove admissible properties
about a lazy structure such as Prog ν α ρ.

This section of the proof is not pretty and requires the intricate and cumbersome ma-
nipulation of individual lists of redexes. (Our approach was influenced very much by the
existence of other pre-proved theorems relating to lists). Also, for the amount of effort
required, its relevance is disappointingly small. As we show below, if a program fails in
the above manner it is for one of two rather uninteresting reasons. We include the proof
for absolute completeness and as a testament to the rigour a proof-assistant imposes on its
user.

We begin by proving three lemmas relating lists of potential redexes of programs of the
form ml |||

p
∗ mr to that of ml and mr.

Lemma 4.5.7. If pf p c = (cl,cr), wfs(c,ml |||
p
∗ mr) and

redexLists (b:g) c (ml |||
p
∗ mr) !! i = Redex ((L:r),x)

then for some il, redexLists g cl ml !! il = Redex (r,x).

Proof. First, ml and mr cannot both be values since this would mean

redexLists (b:g) c (ml |||
p
∗ mr) = [Redex ([],(c,Silent))]

and (L:r) 6= []. Perform case analysis on b:

� b = L: apply Lemma 4.4.3. Because wfs(c,ml |||
p
∗ mr), there are a finite, defined

number of potential redexes for both ml and mr. If i < length (redexLists g cl ml)
then map (addDir L) $ redexLists g cl ml !! i = Redex ((L:r),x), so we know that
redexLists g cl ml !! i = Redex (r,x), so let il = i. If i ≥ length (redexLists g cl ml)
then map (addDir R) $ redexLists g cr mr !! i = Redex ((L:r),x) and this is a con-
tradiction since addDir R cannot modify the resultant route so that it becomes (L:r).

� b = R: apply Lemma 4.4.4. Similar to the above except mr is searched first. If
i < length (redexLists g cr mr) then we can prove a contradiction. Otherwise
i ≥ length (redexLists g cr mr), so let il = i− length (redexLists g cr mr).

Lemma 4.5.8. If pf p c = (cl,cr), wfs(c,ml |||
p
∗ mr) and

redexLists (b:g) c (ml |||
p
∗ mr) !! i = Redex ((R:r),x)

then for some ir redexLists g cr mr !! ir = Redex (r,x).

Proof. Similar to the proof of Lemma 4.5.7.
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Lemma 4.5.9. If pf p c = (cl,cr) and wfs(c,ml |||
p
∗ mr) then

redexLists g c (ml |||
p
∗ mr) !! i = Redex ([],x)

for some i if and only if ml and mr are both values.

Proof. If: by contradiction. If ml and mr were not both values then, depending on whether
g is (L:g′) or (R:g′) for some g′, use either Lemma 4.4.3 or Lemma 4.4.4 to show that the
resultant route must be either (L:r′) or (R:r′) for some r′. A route of value [] is impossible.

Only if: both ml and mr are values, so by the implementation there is just one silent
reduction at route [].

The next step is to identify how and why w ° m g 7→⊥ ↑c. The following three lemmas
together show that if w ° m g 7→⊥ ↑c then for some action a in its local context c1, either

� ap c1 a 6= True (that is: ap c1 a = False or ap c1 a = ⊥), or

� ap c1 a = True and wa a w = ⊥
Lemma 4.5.10. If a list rxs is finite and firstRxWs w rxs = ⊥ then there exists some i,
i ≥ 0, i < length rxs such that checks w (rxs !! i) = ⊥.

Proof. Induction on the length of rxs. If rxs = [], firstRxWs w rxs 6= ⊥. If rxs = [rx : rxs′]
then either checks w rx = ⊥ (let i = 0), or firstRxWs w rxs′ = ⊥, in which case let
i = i′ + 1, where i′ is the index from the IH.

Lemma 4.5.11. If wfs(c,m) and w ° m g 7→⊥ ↑c then there exists an integer i such that
(redexLists g c m) !! i = Redex (r,(c1,Action a)) and that checking this redex results
in failure: checks w (Redex (r,(c1,Action a))) = ⊥.

Proof. w ° m g 7→⊥ ↑c is defined as nextRs g c w m = ⊥, which is equivalent to
firstRxWs w (redexLists g c m) = ⊥. Since wfs(c,m) there are only a finite num-
ber of potential redexes, so apply Lemma 4.5.10 to prove that there is some i, such that
checks w (redexLists g c m !! i) = ⊥. redexLists g c m !! i must be of the form
Redex (r,(c1,Action a)) because checks never fails for silent redexes or NoRedex.
(There is also a separate and entirely uninteresting proof that redexLists cannot return a
list with ⊥ as an element. We omit this completely).

Lemma 4.5.12. checks w (Redex (r,(c,Action a))) = ⊥ if and only if either ap c a 6=
True or ap c a = True ∧ wa a w = ⊥.

Proof. Immediate.

We temporarily replace any reference to divergence with properties of redexLists and
checks and continue the proof in the style of previous sections. Lemma 4.5.14, Lemma 4.5.15
and Lemma 4.5.16 are really just re-workings of Lemma 4.3.6, Lemma 4.5.4 and Lemma 4.5.5
respectively.
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Lemma 4.5.13. If checks w (Redex (r,x)) = ⊥ then checks w (Redex (r1,x)) = ⊥ for
all r1.

Proof. A direct consequence of the implementation. checks never examines the route r.

Lemma 4.5.14. If wfs(c,m) and pres, then if

redexLists g c m !! i = Redex (r,(c1,Action a))

then c1 vs c – that is, ap c1 a = True implies ap c a = True.

Proof. Induction on m. For base terms, only action a meets the pre-condition and ap c a =
True implies ap c a = True. If m = m1 >>= f then apply Lemma 4.4.2 and IH. If
m = ml |||

p
∗ mr then apply either Lemma 4.5.7 or Lemma 4.5.8 depending on the route r.

If r = (L:r′) we can prove that redexTrees g′ cl ml !! il = Redex (r′,(c1,Action a)) for
some il. With IH, prove ap c1 a = True implies ap cl a = True and with pres prove that
cl vs c and therefore ap c a = True. The proof for the right-hand side is similar.

Lemma 4.5.15. If pres, cl ♦s cr, wfs(cr,mr) and the following hold

redexTrees gr cr mr !! i = Redex (rr,(cr1,Action ar))

checks w (Redex (rr,(cr1,Action ar))) = ⊥
w ° ml −→cl wl ° m′

l

then checks wl (Redex (rr,(cr1,Action ar))) = ⊥.

Proof. From Lemma 4.5.12, either ap cr1 ar 6= True or ap cr1 ar = True ∧ wa ar w = ⊥.
If it is the former then this will be unaffected by a reduced action, so regardless of wl,
checks will still fail. If ap cr1 ar = True and wa ar w = ⊥, then apply Lemma 4.5.14 to
prove ap c ar = True. Next examine the reduction of ml. If it is silent, then wl = w,
so mr can fail in the same way. If reducing ml performs an action al then apply Lemma
4.3.4 to prove wa al w = False and, from Lemma 4.3.6, ap cl a = True. With cl ♦s cr we
know allys(al, ar), which guarantees that wa ar wl = ⊥. This, by Lemma 4.5.12, proves that
checks will also fail with world wl.

Lemma 4.5.16. If wfs(c,m), PREs, redexTrees g1 c m !! i = Redex (r1,(c1,Action a)),
checks w (Redex (r1,(c1,Action a))) = ⊥ and w ° m

g2 7→r2−−→ c w′ ° m′ then
checks w′ (Redex (r1,(c1,Action a))) = ⊥

Proof. Induction on m.

� True by contradiction for all base redexes, since, being deterministic, they cannot both
reduce and fail to reduce.
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� For m = m1 >>= f (m1 not a value), from Lemma 4.4.2 redexTrees g1 c (m1 >>= f) =
redexTrees g1 c m1 and from the language semantics it is possible to derive both
w ° m1

g2 7→r2−−→ c w′ ° m′
1 and m′ = m′

1 >>= f from w ° m1 >>= f
g2 7→r2−−→ c w′ ° m′. Then

just apply IH.

� When m = ml |||
p
∗ mr, where ml and mr are not both values, perform case analysis

on the routes r1 and r2. Neither can be [] (Lemma 4.5.9, Lemma 4.2.5).

– If both redexes are on the same side, say the left-hand side, making r1 = (L:r′1)
and r2 = (L:r′2), apply Lemma 4.5.7 and Lemma 4.2.10. This lets one prove
with IH that checks w′ (Redex (r′1,(c1,Action a))) = ⊥. Then apply
Lemma 4.5.13 to prove the same is true with route (L:r′1).

– If the redexes are on opposite sides then from pf p c = (cl,cr) and PREs we can
prove pres and cl ♦s cr (and cr ♦s cl by symmetry). Apply Lemma 4.5.15.

We are finally in a position to “repackage” divergence. Lemma 4.5.17 shows that re-
using a previous route as a Guess will mean the redex at that route will be the first to be
chosen (a re-working of the proof of both Lemma 4.3.7 and Lemma 4.3.9). Lemma 4.5.18
uses this to tidy up Lemma 4.5.16, and Lemma 4.5.19 follows exactly the same procedure
as Lemma 4.5.6 to prove failure implies divergence.

Lemma 4.5.17. If wfs(c, m) and redexLists g c m !! i = Redex (r,x) then we know that
redexLists r c m !! 0 = Redex (r,x).

Proof. Induction on m. For base terms, ⊥ is not well-formed and otherwise there is just
one potential redex, the Guess is ignored and i must be 0 already. If m = m1 >>= f where
m1 is not a value, use Lemma 4.4.2 and IH. If m = ml |||p

∗ mr, where ml and mr are
not both values, then do case analysis on r. If r = (L:r′), apply Lemma 4.5.7 to prove
that for some il, redexLists g′ cl ml !! il = Redex (r′,x), where g = (b:g′). By IH, this
implies redexLists r′ cl ml !! 0 = Redex (r′,x), and by Lemma 4.4.3 this can be shown to
imply redexLists (L:r′) c (ml |||

p
∗ mr) !! 0 = Redex ((L:r′),x). That is: if x is the first

potential redex in ml with guess r′ then it will be the first potential redex in ml |||
p
∗ mr

with guess (L:r′), since it will be ml that is searched first. If r = (R:r′) then the proof is
similar.

Lemma 4.5.18. If PREs, wfs(c,m), w ° m g 7→⊥ ↑c and w ° m −→c w′ ° m′, then for some
g1 w′ ° m′ g1 7→⊥ ↑c.

Proof. First apply Lemma 4.5.11 to prove that for some i redexLists g c m !! i =
Redex (r,(c1,Action a)) and checks w Redex (r,(c1,Action a)) = ⊥. Using
Lemma 4.5.16 we can then prove checks w′ Redex (r,(c1,Action a)) = ⊥ (a can
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still cause failure in world w′). Apply Lemma 4.5.17 to prove redexLists r c m !! 0 =
Redex (r,(c1,Action a)) – if we chose Guess r the second time then the first redex to be
chosen will be action a. It can be shown easily that this means nextRs r c w′ m′ = ⊥, and
therefore, letting g1 = r, w′ ° m′ g1 7→⊥ ↑c.

Lemma 4.5.19. (Part 3 of Theorem 4.5.1). If PREs, then if wfs(c,m) and w ° m g 7→⊥ ↑c,
then w ° m ⇑c.

Proof. Induction on the number of reduction steps it might take to reach normal form. Base
case (0): since w ° m ↑c, by Lemma 4.3.2 it can’t be in normal form. Inductive case: it
can’t converge to normal form after i + 1 steps because, by Lemma 4.5.18, after one step it
can still fail, and by IH it can’t converge to normal form after i steps.

4.6 Confluence of reduction

The confluence result is finally proved in this section. As is standard for confluence proofs,
this is achieved by proving a so-called “diamond property”. This is a proof that if two
different non-deterministic reductions are possible, then there exists a common reduct to
which both sides can then reduce.

We assume for all of this sub-section that PREs holds.

Lemma 4.6.1. If w ° m 1 ²²²²
c w′ ° m′ (i.e. w ° m −→c w′ ° m′ and w′ ° m′ ↓c), then

w ° m 1⇓c w′ ° m′. (This is a proof of confluence for programs which require one reduction
step).

Proof. Induction on m.

� All base programs either cannot reduce or reduce deterministically.

� With m1 >>= f (m1 not a value), we know that w ° m1 −→c w′ ° m′
1, w′ ° m′

1 ↓c

and m′ = m′
1 >>= f . Because m′ is stalled, m′

1 cannot be a value, so apply IH.

� With ml |||
p
∗ mr first prove that neither side can fail (if one side did fail, then the

whole program could fail, and, by Theorem 4.5.1, the whole program could never
reduce to a normal form – but it does, after one step). Next, prove that it’s impossible
for both sides to be successfully reduced (if both were, then by Theorem 4.3.1, after
single-step reducing one particular side the program couldn’t be in normal form – the
opposite side could still either be reduced or fail). So any two reductions must be both
in ml or both in mr. Apply IH to prove that both reductions on that side will have
the same outcome.

Lemma 4.6.2. Diamond Property. If w ° m
g′ 7→r′−−→ c w′ ° m′ and w ° m

g′′ 7→r′′−−→ c w′′ ° m′′

then either
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� The same redex was reduced: w′ = w′′ and m′ = m′′.

� There is a common reduct: for some w′′′ and m′′′, w′ ° m′ r′′ 7→r′′−−→ c w′′′ ° m′′′ and

w′′ ° m′′ r′ 7→r′−−→ c w′′′ ° m′′′.

� Both sides will diverge: w′ ° m′ ⇑c and w′′ ° m′′ ⇑c.

Actually, in the last case we prove something slightly more specific which always implies
divergence. This is because actual divergence is inadmissible, requiring existential quantifi-
cation and negation. We prove instead that they either fail or reduce to a badly-formed
program. Both of these imply divergence, and it is easy to prove that if a “>>=” or a “par”
diverge in this special way then the whole program will also diverge in this way.

Proof. Induction on m.

� All base reduction rules either can’t reduce at all (contradiction), or deterministically
reduce to the same redex.

� w ° m1 >>= f −→c w′ ° m′
1 >>= f and w ° m1 >>= f −→c w′′ ° m′′

1 >>= f . If m′
1 or

m′′
1 are stalled, then by Lemma 4.6.1, w′ = w′′ and m′

1 = m′′
1. This case rules out

either m′
1 or m′′

1 being values, so the next reduction must be within m′
1 and m′′

1, and
not the application of f to something. Apply IH.

� w ° ml |||
p
∗ mr −→c w′ ° m′

l |||
p
∗ m′

r and w ° ml |||
p
∗ mr −→c w′′ ° m′′

l |||p
∗ m′′

r .
The two reductions may have reduced different sides, or the same side.

– If the same side was reduced, say that of ml, use Lemma 4.6.1 to account for
the possibility of m′

l or m′′
l being stalled or values (which would cause reduction

to flip to the other side the second time around). If either side was stalled or a
value then since it was the last reduction step before convergence to normal form
both reductions would have been the same. We can now apply IH.

– If one reduction was in ml and the other was in mr, then apply Theorem 4.3.1.
Either both reduction orders can then fail (which entails failure for the whole
program and therefore divergence by Theorem 4.5.1), or both reduction orders
can reduce once more to get the same result by reducing the opposite side to
that initially reduced. However, if one side reduces to a program which is ⊥
(which is still a successful reduction), then depending on the ordering, the parallel
execution may accidentally force the program’s evaluation.

This is why we need to mention divergence (as opposed to failure) in the diamond
property, and is a consequence of the side condition that ml 6= ⊥ and mr 6= ⊥ in
the single-step semantics. As an example, consider the program

par LeftWr (action (WriteI 6)) (return 2 >>= \_ -> ⊥) f
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Figure 4.5: Proving confluence using the diamond property

The left-hand side reduces to (return 0) and the right-hand side reduces to ⊥.
Reducing the left side then the right side yields par LeftWr (return 0) ⊥ f,
a badly-formed program (which diverges), but reducing the right side and then
the left will fail outright (which causes divergence).

Theorem 4.6.1. Confluence. If w ° m i ²²²²
c w1 ° m1 then w ° m i⇓c w1 ° m1.

Proof. Induction on i. If i = 0, then apply Lemma 4.3.2. In the inductive case (i = k + 1),
first prove for k = 0 using Lemma 4.6.1. Figure 4.5 demonstrates the sequence of steps
required to prove the full inductive case. Diagram (i) is the initial proof obligation.

Assuming k ≥ 1 (and i > 1), extract the first of the k + 1 reduction steps to yield
w ° m −→c w2 ° m2 and w2 ° m2

k ²²²²
c w1 ° m1, for some w2, m2 (diagram (ii)). To prove

confluence, we must show that for any arbitrary reduction of w ° m, it will eventually reduce
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to w1 ° m1. First prove that despite the non-determinism, w ° m cannot fail or be in normal
form. (It can’t be in normal form because it can reduce – Lemma 4.3.2; it can’t fail because
it does eventually converge to normal form – Theorem 4.5.1). Therefore, the only alternative
to reducing to w2 ° m2 is that there is some other w3 ° m3 such that w ° m −→c w3 ° m3

(diagram (iii)). We must now show that w3 ° m3
k ⇓c w1 ° m1. Apply IH twice in a

row: first in a forwards style to prove that we know w2 ° m2
k ⇓c w1 ° m1; second in a

backwards style to show that we need only prove w3 ° m3
k ²²²²

c w1 ° m1. Now, since we know
that w ° m −→c w2 ° m2 and w ° m −→c w3 ° m3, from the diamond property (Lemma
4.6.2), we can prove that either:

� w2 = w3 and m2 = m3: since we know that w2 ° m2
k ²²²²

c w1 ° m1, it is trivially true
that w3 ° m3

k ²²²²
c w1 ° m1.

� There is a common reduct w4 ° m4 (diagram (iv) in Figure 4.5) such that w2 ° m2 −→c

w4 ° m4 and w3 ° m3 −→c w4 ° m4: from the confluence of reduction of w2 ° m2,
prove that w4 ° m4

k−1 ²²²²
c w1 ° m1. Thus w3 ° m3

k ²²²²
c w1 ° m1 (diagram (v) in

Figure 4.5).

� w2 ° m2 ⇑c and w3 ° m3 ⇑c: proof by contradiction – we know that w2 ° m2 can
converge to normal form.

Corollary 4.6.3. Either w ° m ⇑c or there exists a w′, m′ such that w ° m ⇓c w′ ° m′

(and not both).

Proof. The definition w ° m ⇑c is that it’s not the case that w ° m ²²²²
c w′ ° m′, and

w ° m ²²²²
c w′ ° m′, by confluence, is equivalent to w ° m ⇓c w′ ° m′.

4.7 Chapter summary

This chapter presented the full, machine-verified proof that PREs guarantees confluence.
This required a great many technicalities, including two re-implementations of single-step
reduction, a theorem which related failure to divergence, a notion of “well-formedness” of
Curio programs, and, as is usual for confluence proofs, a diamond property. Although
many of the technicalities are of no relevance to the rest of the dissertation, the result in
itself is the most important single theorem in this document.

Chapter 5 takes the first step towards the construction of a large, practical I/O model
by developing “combinators”. These are functions which modify and combine existing I/O
models in a way which preserves pre-condition PREs.





Chapter 5

A toolkit for building I/O models

Up until now, we have had to prove the precondition PREs on a case-by-case basis for each
individual I/O model. The proofs all required a little creativity and effort, and this becomes
problematic for larger models. What we want is the ability to combine confluent I/O models
together in a way which both preserves confluence and has a useful common-sense intuition.

In this chapter we investigate some powerful tools that help in the construction of con-
fluent I/O models. These are:

� Some “combinators” which allow confluent I/O models to be modified and combined
in such a way as to preserve confluence.

� A notion of “location-based” I/O model. These models have a close formal relationship
to normal I/O models and encode the idea that certain actions need to be able to
distinguish different calling processes.

These tools and formalisms are intended mainly as a stepping-stone towards modelling a
real API. This is the goal of Chapter 6. In an ideal world one would like there to be a single
correct I/O model which perfectly captures the reasonable expected behaviour of the real
API. If this was the case we might even omit combinators completely and proceed towards
trying to model a real API, solving each technical program as it arises.

However, in reality what constitutes a correct I/O model is open to debate. Therefore, we
feel that it is better, initially, to tackle the modelling of APIs in as general a way as possible.
By constructing general purpose tools one gets a stronger insight into the flexibility of Curio

and one also confronts head-on the specific problems with modelling an API – for example,
dynamic allocation. Furthermore, it was found that without the use of combinators the
construction and machine-verification of complex I/O models became unwieldy. The main
danger is that the details in this chapter may give the false impression that a programmer
will be expected to deal with many different APIs, large and small, when writing programs
in Curio. We give small example programs for many different I/O models, but these are
primarily just to help the reader.

73
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(∗) :: IOModel ν1 α1 ρ1 ω1 ς1 → IOModel ν2 α2 ρ2 ω2 ς2

→ IOModel (Either ν1 ν2) (Either α1 α2) (ρ1,ρ2) (ω1,ω2) (ς1,ς2)

〈af1, wa1, ap1, pf1〉 ∗ 〈af2, wa2, ap2, pf2〉 M= 〈af1 ∗ af2, wa1 ∗ wa2, ap1 ∗ ap2, pf1 ∗ pf2〉

af1 ∗ af2
M= λa. λ(w1,w2).{

((w′1,w2),Left v1), a = Left a1, af1 a1 w1 = (w′1,v1)
((w1,w′2),Right v2), a = Right a2, af2 a2 w2 = (w′2,v2)

wa1 ∗ wa2
M= λa. λ(w1,w2).

{
wa1 a1 w1, a = Left a1

wa2 a2 w2, a = Right a2

ap1 ∗ ap2
M= λ(c1,c2). λa.

{
ap1 c1 a1, a = Left a1

ap2 c2 a2, a = Right a2

pf1 ∗ pf2
M= λ(p1,p2). λ(c1,c2). ((c1l,c2l),(c1r,c2r)),

where pf1 p1 c1 = (c1l,c1r), pf2 p2 c2 = (c2l,c2r)

Figure 5.1: The cartesian product of I/O models

In this chapter we make extensive use of strictness annotation in our proofs and data-
structures, but all details of this will be omitted. Effectively every structure that we utilise
is strict. This means that problems associated with reasoning about infinite or partial
structures, such as admissibility, are not present. Also, a great many smaller results contain
definedness side-conditions and these are completely removed to make the presentation
clearer. All important lemmas or theorems are presented as is, however. In particular, no
combinator requires the proof of obscure, hidden side-conditions about the I/O models that
one is manipulating. All omitted definitions can be found in Section A.2.

We begin in Section 5.1 by describing two quite simple combinators for traditional I/O
models. Section 5.2 then addresses the problem of dynamic allocation in Curio, and
presents a combinator called dmap, which is a basic, flawed attempt at a solution. Sec-
tion 5.3 motivates the need for a new type of I/O model, introduces “location-based” I/O
models, and demonstrates their close formal relationship to normal I/O models. Finally,
Section 5.4 introduces dmap′, a location-based version of the dmap combinator which has
more desirable properties.

5.1 Simple combinators

An I/O model is just a data-structure in our metalanguage and a combinator is a function
which creates a new I/O model data-structure from one or more existing ones in such a way
that confluence is fully preserved. We now present two useful combinators.
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5.1.1 Cartesian product combinator

Figure 5.1 describes the cartesian product combinator ‘∗’. s1 ∗ s2 represents the “gluing
together” of I/O models s1 and s2. The world state becomes the cartesian product of the
world states of s1 and s2, and an action can be either an action from s1 or one from s2.
Similarly, a context must be able to determine whether actions from either s1 or s2 are
allowed and, when performing concurrency, one must specify the permissions given to each
sub-program for both sides of the world state.

Theorem 5.1.1. If PREs1 and PREs2 then PREs1∗s2.

Proof. When splitting contexts, if (pf1∗pf2) (p1,p2) (c1,c2) = ((c1l,c2l),(c1r,c2r)), then
that means pf1 p1 c1 = (c1l,c1r) and pf2 p2 c2 = (c2l,c2r). The proof proceeds as follows:

� c1l vs1 c1 and c2l vs2 c2 imply (c1l,c2l) vs1∗s2 (c1,c2). If the action permitted by
context (c1l,c2l) is from s1 then use c1l vs1 c1 to show that it is permitted by context
(c1,c2). Otherwise use c2l vs2 c2.

� c1r vs1 c1 and c2r vs2 c2 imply (c1r,c2r) vs1∗s2 (c1,c2). Similar to above.

� c1l ♦s1 c1r and c2l ♦s2 c2r imply (c1l,c2l) ♦s1∗s2 (c1r,c2r): either the permitted
actions modify opposite sides of the tuple or the same side.

– Different sides: Left a1 |||s1∗s2 Right a2, allys1∗s2
(Left a1,Right a2) and

allys1∗s2
(Right a2,Left a1) are true because neither action modifies the side of

world state that affects the other.

– Same sides: Right a2 |||s1∗s2 Right a′2, allys1∗s2
(Right a2,Right a′2) and

allys1∗s2
(Right a′2,Right a2) are true because c2l ♦s2 c2r, ap2 c2l a2 = True

and ap2 c2r a′2 = True. (The proof is similar if both actions affect the left-hand
side world state).

For example, the lock ∗ bffr I/O model has the functionality of both lock and bffr. The
sample program in Figure 5.2 gives a quick (if mostly useless) example of how one programs
with this sort of I/O model. The next subsection contains a more practical example.

5.1.2 String map combinator

The second combinator is a string map. This turns an I/O model s into one in which the
world state is a map from String to the world state of s. The smap combinator has the
following type.

SMap β
M= String → β

smap :: IOModel ν α ρ ω ς →
IOModel ν (String,α) [(String,Splitter ρ)] (SMap ω) (SMap (Cxt ς))
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sample :: Proglock∗bffr Int
sample = do
action (Left Lock) -- lock the mutex
par -- run two concurrent processes
((),True) -- give send permission to LHS
(action (Right (Send 13))) -- LHS: send 13
(do

Right i1 <- action (Right Rcve) -- RHS: receive the integer i1
action (Left Unlock) -- unlock the mutex
return i1) -- return the integer

(\x y -> y) -- return the RHS’s return value

Figure 5.2: Sample cartesian product program

This is similar to the cartesian product, except there are an infinite number of s models,
each indexed by a different String (String could just as easily be replaced with any other
type with an equality function defined on it, but this generality does not interest us). This
is a useful model of indexed global storage, such as a file system. An action (s,a) performs
action a from s in the world state associated with name s.

The mapping is implemented using an actual function since this is simple to implement
and obeys the best extensional properties. As a data-structure it is extremely inefficient but
this is of no concern to us, since we are only interested in its properties as a formal model.
These maps are manipulated with the following operations:

lkpM :: ∀β. ∀γ. Eq γ ⇒ γ → (γ → β) → β

ovwM :: ∀β. ∀γ. Eq γ ⇒ γ → β → (γ → β) → (γ → β)

maskM :: ∀β. ∀γ. Eq γ ⇒ (γ → Bool) → β → (γ → β) → (γ → β)

stM :: ∀β. ∀γ. ∀δ. Eq γ ⇒ (β → (β,δ)) → γ → (γ → β) → (γ → β,δ)

lkpM s m queries the value indexed by s by applying the map function. ovwM s v m

overwrites the existing map by replacing the value pointed to by s with v. maskM f v m

modifies map m such that every s :: γ for which f s = True is modified to point to
v. stM f s is defined using lkpM and ovwM, and creates a new state-transformer on an
entire map by using a state-transformer f on the item indexed by s, and returning that
state-transformer’s value.

The above types contain “Eq γ”, which suggests that we use Haskell’s type-class mecha-
nism to overload the operator (==) :: γ → γ → Bool, guaranteeing that we can compute the
equality of two terms of type γ. We don’t do this, but the idea is the same. Sparkle currently
has no facilities for ad-hoc polymorphism∗, so we instead just have a few duplicates, one for
each specific type γ which we wish to use.

∗This is current research. See [119].
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Lemma 5.1.1. For each particular type γ used, the operations lkpM, ovwM, maskM and stM

obey the following properties†:

1. If s1 6= s2 then lkpM s1 (ovwM s2 v m) = lkpM s1 m.

2. lkpM s (ovwM s v m) = v

3. ovwM s v1 (ovwM s v2 m) = ovwM s v1 m

4. If s1 6= s2 then ovwM s1 v1 (ovwM s2 v2 m) = ovwM s2 v2 (ovwM s1 v1 m)

5. If f s = True then lkpM s (maskM f v m) = v.

6. If f s = False then lkpM s (maskM f v m) = lkpM s m.

7. If s1 6= s2 then cmmt(stM f1 s1, stM f2 s2, w).

8. If cmmt(f1, f2, lkpM s w) then cmmt(stM f1 s, stM f2 s, w)

Proof. These are all proved without difficulty using case analysis, extensionality and basic
properties of ==.

When performing concurrency, one must supply a list of how the permissions for each
String are to be distributed between the left- and right-hand sides. If a String n isn’t men-
tioned in the list then all the current permissions will be given to the right side, preventing
the left side from doing anything at all with the data indexed by n.

How do we give no permissions at all to a particular side? The type constructors Cxt

and Splitter are used for this purpose and are defined as follows:

Cxt ς
M= CxtB | Cxt ς Bool

Splitter ρ
M= AllLeft | Split ρ | AllRight

The type Cxt ς denotes the context ς extended to guarantee the existence of a context
which permits no actions and a context which permits every action. This is necessary
because we want all permissions to go to one side by default. (In Chapter 8 we investigate
a mathematical model of contexts which naturally incorporates both “all actions” and “no
action” contexts).

The context CxtB forbids all actions, and any attempt to split CxtB will result in
CxtB on both sides. A context that permits all actions is more subtle to model because it
is unclear how one should split such a context. This is solved using a small hack. The context
(Cxt c False) permits the same actions as context c and it will split into (Cxt cl False)
and (Cxt cr False) as determined by some p :: ρ. The context (Cxt c True) permits all

†The definition of the cmmt macro can be found in Figure 2.1 on page 24. cmmt(f1, f2, w) is the formal
definition of what it means for state-transformers f1 and f2 to be order independent on world state w.
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actions, but c is still necessary since, when we split the context, the sub-contexts will then
become (Cxt cl False) and (Cxt cr False).

The type Splitter is used to split contexts of type Cxt ς. Split p splits the context as
specified above using p. AllLeft gives all permissions to the left-hand side and AllRight

gives all permissions to the right-hand side.

The functions apCxt and pfCxt implement this. The function splitM is used to split a
context map into two separate maps. splitM pf f ps cm splits a context map cm of type
γ → Cxt ς into two contexts of the same type as specified by the list ps, each of element
of which is instructions on how the context of a particular γ is to be split. The function
f describes the default behaviour when a γ is not mentioned in ps. If f s = True all
permissions for s go to the left-hand side; if f s = False all permissions for s go to the
right-hand side.

Their types are as follows:

apCxt :: ∀ς. ∀α. (ς → α → Bool) → Cxt ς → α → Bool

pfCxt :: ∀ς. ∀ρ. (ρ → ς → (ς,ς)) → Splitter ρ → Cxt ς → (Cxt ς,Cxt ς)

splitM :: ∀ρ. ∀ς. ∀γ. Eq γ ⇒ (ρ → ς → (ς,ς)) → (γ → Bool) → [(γ,Splitter ρ)] →
(γ → Cxt ς) → (γ → Cxt ς,γ → Cxt ς)

The definition for smap can now be given as follows:

smap 〈af, wa, ap, pf〉 M= 〈λ(s,a). stM (af a) s,

λ(s,a). λm. wa a (lkpM s m),

λc. λ(s,a). apCxt ap (lkpM s c) a,

splitM pf (λc. False)〉

Lemma 5.1.2. If splitM pf f ps c = (cl,cr) then for all s :: γ there exists some p :: ρ

such that pfCxt pf p (lkpM s c) = (lkpM s cl,lkpM s cr).

Proof. Induction over the length of the list ps. If the length is ⊥ then we use a separate
lemma to show that splitM must also return ⊥. If ps = [] then that p will be either All-

Right or AllLeft depending on the value of f s. In the inductive case, ps = ((s′,p′):ps′).
If s = s′ then let p = p′. Otherwise use IH to show that some p exists, because the
modifications to the context mapped to by s′ will not affect those of s.

Theorem 5.1.2. If PREs then PREsmap s.

Proof. We use Lemma 5.1.2 to show that if splitM splits a map c of type SMap (Cxt ς) into
two separate maps cl and cr then the context associated with each individual string will
have been split with pfCxt.
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cl vsmap s c and cr vsmap s c can then be shown directly. If an action is permitted by
the sub-context then either the context for that particular string is identical to the parent
context, in the case of AllLeft/AllRight, or it was split using Split p, for some p. In
this case PREs may be applied.

To prove that cl ♦smap s cr, we do case analysis on whether the left-hand and right-hand
actions (s1,a1) and (s2,a2) affect different worlds. In other words, is s1 = s2 or not? If
s1 = s2 then it is impossible that s1’s context was split with either AllLeft or AllRight

since that would render one or the other action disallowed. We must use PREs to show that
the actions are order independent. If s1 6= s2 then this will be true automatically because
both actions will be affecting different parts of the world state, and therefore won’t interfere
with each other.

As an example, imagine a basic I/O model called file which describes the contents of
a file and the basic actions one could perform on it, such as fOpen, fClose, etc. The I/O
model smap file can then be used as an effective model of a file system, (and this is exactly
what is done in Chapter 6).

The program wordCounter ns counts the total number of words within each file in
the list ns of filenames by concurrently running a separate wordCount program on each
individual file. If that file is locked out by the current context then wordCount returns 0.
This may happen if a particular filename occurs twice in ns, or if wordCounter is executed
in parallel with other processes which have already claimed access to a particular file that
is wanted.

wordCounter :: [String] → Progsmap file Int

wordCounter [] = return 0

wordCounter (n:ns) = par [(n,AllLeft)] (wordCount n) (wordCounter ns) (+)

wordCount :: String → Progsmap file Int

wordCount fname = test (fname,fOpen)

(do

action (fname,fOpen)

-- ...

action (fname,fClose)

return i)

(return 0)

5.1.3 Other possible combinators

The reader will probably have noticed that some combinators, particularly ∗, tend to make
the API somewhat ugly. Our actions and return values become things like Left Rcve and
Right 3 and it no longer looks like a real API. The appearance of an API is important if
people are to understand how it corresponds to real system calls.
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This could be solved by adding ‘cosmetic’ combinators which perform alpha conversion
on the various types, turning them into something more realistic. For example,

alphaa :: (α → α1) → IOModel ν α ρ ω ς → IOModel ν α1 ρ ω ς

alphav :: (ν → ν1) → IOModel ν α ρ ω ς → IOModel ν1 α ρ ω ς

We could do this but we decide not to. We instead just write library functions which
wrap the actual API calls in a pretty, usable interface and this works just as well.

Sometimes the function pf, which is used to split contexts in an I/O model, can behave
in a way which is not symmetric. If pf p c = (cl,cr) then there may not necessarily be
a p′ such that pf p′ c = (cr,cl). This shortcoming becomes serious when a smaller I/O
model is modified using combinators. Imagine an I/O model lbffr which always forces the
left-hand process to receive and the right-hand process to send. While lbffr is only slightly
less powerful than bffr on its own, the model lbffr ∗ lbffr is severely limited compared to
bffr ∗ bffr: the left-hand process will only be allowed to send to both buffers and the right
hand will only be allowed receive from both buffers.

It is not difficult to develop a combinator that gets around this by adding an extra
Boolean bit to the ρ type. This indicates if the left and right contexts should be swapped.

5.2 Attempting dynamic allocation

5.2.1 The problem

The string map combinator allows one to safely control concurrent access to multiple re-
sources. Its downside is that we first need to know the string which identifies that resource
before any concurrency takes place. This is not a problem when controlling access to entire
files, but consider the act of opening a file for reading, or allocating memory on the heap. In
these two cases an API call allocates a new structure (an internal read handle; memory) and
returns information about how this structure may be accessed (a file descriptor; a memory
address).

Ideally we would like to develop a combinator which was similar to the string map
combinator with the exception that it also defined a new, special API call. This new action
would create a structure on the fly, a buffer, say, and return information to indicate how
this buffer can be accessed.

This is what we would ideally like but there are some immediate difficulties.

1. Two concurrent processes should be able to allocate new buffers without affecting one
another. If they do, then how can we ensure that the returned handles and the world
state will be identical even if the interleaving of threads differs?

2. When performing concurrency, we must ensure that each process is able to access the
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resources it may want to use. In this case resources are identified by handles, so how
do we know in advance which handles each process may need access to?

3. Assuming a process has no control over the allocated handle, what happens if a process
allocates a handle which it does not have access to? I/O contexts can only prevent
actions taking place based on their arguments not their possible return values.

Number (1) could be said to relate to our language semantics which layers an outer
operational semantics on top of an inner denotational semantics for the host language.
Although handles may be internally represented by, perhaps, an integer, that actual integer
value is irrelevant. As long as handles are used in a normal fashion then there should be
no difficulties. Similarly, if the internal world state is a list of buffers, then the ordering
shouldn’t matter if we don’t have any means of distinguishing it as a programmer.

Unfortunately this sort of fine-grained control over what the programmer can and can-
not do, or should and should not do, is beyond the limits of the semantics. Denotationally,
a function of the type Handle → Progs can be any mathematical function from a handle
(whatever it may be) to a resultant program. Once we accept that certain handles are dif-
ferent to others, we must also accept that, without completely altering the denotational and
operational semantics of the host language, a program can then distinguish them whatever
way it likes.

5.2.2 A basic solution

As an initial solution, we at first describe a weak dynamic combinator.
We leave problem (1) unsolved by forcing allocation to be explicitly sequenced. However

once a structure has been allocated then any amount of concurrency may take place on it.
The second problem becomes something that the programmer must look after him/herself.
One can still easily give a process the right to allocate structures without giving it access to
any of those structures. Our solution to problem (3) is to turn allocation into two separate
steps, as we shall now show.

The new dmap combinator has the following type:

dmap :: ω → IOModel ν α ρ ω ς →
IOModel (Either ν Int) (DynAction Int α) [(Int,Splitter ρ)] [ω] (Bool,Int → Cxt ς)

Handles are represented by Ints. World state becomes a list of ω and the allocation of
new structures must be single threaded. Each action is an element of the DynAction Int α

type.

DynAction ι α
M= DynAct ι α | Next | Alloc ι

One can either do
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� DynAct i a, which performs action a on the structure identified by i.

� Next, which retrieves the next free index in the list.

� Alloc i, which allocates a new structure at index i, failing if it is not the next free
index. The first argument to the dmap combinator gives the initial value of this new
structure.

The return value type becomes Either ν Int because an action DynAct i a must return
a ν, and Next must return an Int. (Alloc i returns some fixed Int which the programmer
will presumably just ignore).

The context is a tuple of type (Bool,Int → Cxt ς). If the first Bool is False then
a program running in that context cannot perform either Next or Alloc. If a context
permits allocation, then only the right-hand sub-context can inherit this capability. This
guarantees single threaded allocation by ensuring that at most one concurrent sub-program
can perform Next and Alloc.

The map of type Int → Cxt ς indicates the permissions associated with the structure
at each individual index, and it is this which determines whether an action DynAct i a

is allowed. These maps are split using splitM. Crucially, however, one can only perform
Alloc i if, as well as being the only sub-process that is allowed to allocate, one has complete
access to index i. In other words, the context associated with index i must be the context
which permits all actions. It is only by doing this that we can guarantee that another
process cannot accidentally interfere with the allocation of that index. A parallel process
with partial access to that index could be affected by the creation of a new structure.

The world state is manipulated with these operations:

(!!) :: ∀β. [β] → Int → β

ovwL :: ∀β. Int → β → [β] → [β]

newL :: ∀β. Int → β → [β] → [β]

stL :: ∀β. ∀δ. (β → (β,δ)) → Int → [β] → ([β],δ)

(!!) is the standard Haskell list look-up operation. ovwL i b bs overwrites the i’th
element of the list bs with b, failing if i is out of bounds. newL i b bs concatenates element
b to the end of the list bs succeeding only if i equals the length of bs. The function stL

is similar to stM. stL f i is a state-transformer which modifies the i’th element of a list
according to f , returning f ’s return value.

Lemma 5.2.1.

1. If i1 6= i2 then (ovwL i2 v l) !! i1 = l !! i1.

2. (ovwL i v l) !! i = v
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applySnd :: (γ → δ) → (β,γ)→ (β,δ) isTopCxt :: Cxt ς → Bool

applySnd f (a,b)
M= (a,f b) isTopCxt CxtB

M= False

isTopCxt (Cxt c b) M= b

dmap w0 〈af, wa, ap, pf〉 M= 〈
λla. λwl. case la of

DynAct i a → applySnd Left (stL (af a) i wl)
Next → (wl,Right (length wl))
Alloc i → (newL i w0 wl,Right 0),

λla. λwl. case la of
DynAct i a → wa a (wl !! i)
Next → False
Alloc i → False,

λ(b,cm). λla. case la of
DynAct i a → apCxt ap (lkpM i cm) a
Next → b
Alloc i → b && isTopCxt (lkpM i cm),

λps. λ(b,cm). case (splitM pf (λc. False) ps cm) of
(cml,cmr)→ ((False,cml),(b,cmr))

〉

Figure 5.3: Definition of dmap

3. ovwL i v1 (ovwL i v2 l) = ovwL i v1 l

4. length (ovwL i1 v l) = length l.

5. If i1 6= i2 then ovwL i1 v1 (ovwL i2 v2 l) = ovwL i2 v2 (ovwL i1 v1 l)

6. ovwL i1 v1 (newL i2 v2 l) = newL i2 v2 (ovwL i1 v1 l)

7. If i1 6= i2 then cmmt(stL f1 i1, stL f2 i2, l).

8. If cmmt(f1, f2, l !! i) then cmmt(stL f1 i, stL f2 i, l)

9. cmmt(stL f1 i1, (λw. (newL i2 v2 w,x)), l).

Proof. The first six are proved by straightforward induction, and the last three use these
results to show how state-transformers on individual list elements may commute. The
interaction between newL and other operations is probably the most subtle aspect to these
proofs. newL is unaffected by ovwL and stL only because newL appends one element to the
end of the list, and ovwL/stL only modify existing elements of the list.

The full definition of dmap is given in Figure 5.3 and we now show that it preserves
confluence.

Theorem 5.2.1. If PREs then PREdmap w0 s.
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Proof. Like with smap we must apply Lemma 5.1.2 to show that the left- and right-hand
sub-contexts have been split correctly for each index. We also have the added knowledge
that at most one sub-context can allow allocation.

cl vdmap s c and cr vdmap s c can be shown in a similar way to that of smap with the added
knowledge that if a sub-context permits allocation then the parent context must also.

Proving cl ♦dmap s cr is somewhat more complex since we have three different types of
action. Actions relating to allocation cannot run concurrently with one another so there are
only three possible pairs which we have to prove for:

� DynAct il al and DynAct ir ar. If il 6= ir then the actions are order indepen-
dent regardless of context information because each action affects a different index –
Lemma5.2.1 (1) and (7). If il = ir then we must apply PREs using the knowledge
that the context associated with il(= ir) was split in a way which makes al and ar

commute – Lemma5.2.1 (2) and (8).

� Next and DynAct ir ar. Next |||dmap w0 s DynAct ir ar holds because Next does
not change world state, and action DynAct ir ar cannot change the length of the list.
allydmap w0 s(Next,DynAct ir ar) is true because Next doesn’t change world state,
and allydmap w0 s(DynAct ir ar,Next) is true trivially because Next is never stalled.

� Alloc il and DynAct ir ar. The proof of Alloc il |||dmap w0 s DynAct ir ar relates
to the fact that il cannot equal ir, because for Alloc il to be permitted it must have
complete access to index il, thus forbidding any other actions. Once il 6= ir is known we
use the fact that newL doesn’t affect stL. Similarly, allydmap w0 s(Next,DynAct ir ar)
holds because newL will not affect index ir, thus not causing DynAct ir ar to become
stalled. allydmap w0 s(DynAct ir ar,Alloc il) is true trivially because Alloc il is
never stalled.

5.2.3 Usage of dmap

Figure 5.4 defines three helper functions which are of assistance when writing programs for
I/O models constructed directly using the dmap combinator. These are introduced for the
reader’s benefit – they will not be used outside of this chapter.

� allocateD attempts to allocate a new structure, whatever it may be, returning a new
index to that structure. It performs both the Next and the Alloc actions, and
returns Nothing if one or both are not permitted by the program’s context.

� actionD i a performs action a on the structure at index i, where it is assumed that α

and ν are the types of actions and return values respectively in I/O model s.
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allocateD :: Progdmap w0 s (Maybe Int) actionD :: Int → α → Progdmap w0 s ν

allocateD = test Next actionD i a = do
(do Left v <- action (DynAct i a)

Right i <- action Next return v
test (Alloc i)

(do testD :: Int → α → Progdmap w0 s Bool

action (Alloc i) testD i a = test (DynAct i a)
return (Just i)) (return True)

(return Nothing)) (return False)
(return Nothing)

Figure 5.4: Helper functions for the dmap combinator

� testD i a returns a Bool which indicates if actionD i a is permitted by the current
context.

The following example program creates two buffers, spawns a new process which performs
a separate task and then proceeds, communicating with that new process. The new process
receives an integer i from one buffer and returns i ∗ 2 on the other buffer. This continues
until it receives −1.

bffrProgram :: Progdmap [] bffr ()
bffrProgram = do

Just i1 <- allocateD -- allocate two new buffers

Just i2 <- allocateD --

par -- LHS: can send on i1 & rcve on i2

[(i1,Split True),(i2,Split False)] -- RHS: can do everything else

(doubleBffr i2 i1) -- run doubleBffr using i1 i2

(restOfProgram i1 i2)

(\_ _ -> ())

doubleBffr :: Int → Int → Progdmap [] bffr ()
doubleBffr inB outB = do

i <- actionD inB Rcve -- receive an integer ’i’ from ’in’

if (i==-1) -- if i=-1 finish, otherwise

then (return ()) -- send i*2 and repeat

else (actionD outB (Send (i*2)) >> doubleBffr inB outB)

Of course, this is a terrible use of buffers in its own right. It could have been done in
a purely functional style without requiring monads at all. But if doubleBffr also needed
access to a particular file then this would have been out of the question, and we will show
more practical uses such as this in Chapter 6.

We can use this example to discuss a few subtleties regarding the dmap combinator.
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� Since the two buffers have just been allocated we can be certain that they are empty.
We usually do not know the initial state of part of an I/O model because a program,
in general, cannot control the world state with which it interacts initially.

� If doubleBffr needed to create internal communication buffers then this would not
be possible. With dmap allocation must be single threaded, and we have chosen to
give restOfProgram this right.

� The buffers identified by i1 and i2 are neither local nor lambda-bound. Once created
they will exist as a part of global state for the duration of the program and may be
reused if the sub-program’s context permits it.

We don’t consider deallocation, garbage collection or the re-use of indices to be se-
mantically interesting. If one needs to model deallocation and the fact that actions
on a deallocated buffer will fail, then this should be incorporated as part of the bffr

model itself. In this situation the world state would become a buffer and a value to
indicate if the buffer is no longer to be used (see, for example, chan in Section 6.3.1).

5.3 Location-based I/O models

The dmap combinator defined above is not entirely satisfactory. Its chief fault is that allo-
cation must be sequenced explicitly. For small examples this may suffice but it does not
scale well. Moreover, it is at odds with our intuition – surely the allocation of arrays or
read handles isn’t really affected by concurrency just as long as access to each new resource
is properly controlled once it is created?

Single threaded allocation is necessary because as long as we have one single API call for
allocation then it cannot distinguish the needs of two different concurrent processes. The
returned handles must always be distinguishable – after all, they refer to distinct structures
– and the new structures must occupy a unique places in a global state. This means that
two processes calling that action will always affect one another.

In this section we present the seeds of a solution to the above difficulty. We do this
by re-thinking the sentence “one single API call . . . cannot distinguish the needs of two
different concurrent processes”. What if each process could calculate, at runtime, a piece of
knowledge that allowed it to distinguish itself from every other process currently running?
By passing this as an argument to the allocation action, and using a suitable data-structure,
one could then allow any process to allocate when it wants.

5.3.1 The approach

Our solution begins by finding a way of identifying processes at runtime. Since a program
is a tree of concurrent processes, each process can be identified by the route to that leaf.
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The structure Loc, which we refer to as “locations”, does this:

Dir
M= L | R

Loc
M= [Dir]

l1 4 l2 indicates that location l1 is a prefix of the location l2. For example, [L,R] 4
[L,R,L]. The relation 4 is a partial order (reflexive, anti-symmetric and transitive) and
has the following characteristic property:

l1 4 l2 ⇔ ∃l3∈Loc.l1++l3 = l2

We can now propose the following possible approach.

� The context becomes a tuple of the form (Loc,ς).

� When we split a context (l,c) this becomes contexts (l++[L],cl) and (l++[R],cr).

� An action which needs location information must have its location supplied explicitly
as a parameter. This is to ensure that the action can use this location when changing
world state and also to guarantee that if one supplies an illegal location then the action
will be disallowed.

� A process must be able to determine the location in which it is executing. The test

command can extract a boolean value from the current context (i.e. whether a par-
ticular action is permitted), so we must use this multiple times to calculate the entire
location.

This is roughly the solution that we adopt but there are two notable problems with this:

� The I/O context only needs to record location information once. In the presence of
combinators this may end up being needlessly duplicated. While there is nothing
technically wrong with the location being duplicated, it is confusing (what if the two
locations are different?) and unnecessary.

� The new API call will no longer look like a real system call. The appearance of an
API is not of great importance, as mentioned earlier, since it can be tidied up with
libraries. But this is going further because to make it look realistic a whole argument
to the API call would then have to be completely invisible to the user.

To solve this we propose a new I/O model IOModelL ν α ρ ω ς which is closely related
to IOModel ν α ρ ω ς except that locations are in-built as part of its definition. In this I/O
model certain actions are location-sensitive and, as well as the normal constraints imposed
by contexts, two location-sensitive actions cannot be executed in the same location. We
give a new precondition PRE′s for this type of location-based I/O model, give conversion
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s :: IOModelL ν α ρ ω ς
M= 〈af′ :: (Loc,α) → ω → (ω,ν),

wa′ :: (Loc,α) → ω → Bool,

ap′ :: ς → α → Bool,

pf′ :: Loc → ρ → ς → (ς,ς),

ig′ :: α → Bool〉

♦′s : ς → ς → B

cl ♦′s cr
M= ∀al∈α.∀ll∈Loc.∀ar∈α.∀lr∈Loc.

ap′ cl al ∧ ap′ cr ar ∧ (ig′ al = True ∨ ig′ ar = True ∨ ll 6= lr) =⇒
(ll,al) |||s (lr,ar) ∧ allys((ll,al), (lr,ar)) ∧ allys((lr,ar), (ll,al))

PRE′s
M= ∀l∈Loc.∀p∈ρ.∀c∈ς .∀cl∈ς .∀cr∈ς .

pf′ l p c = (cl,cr) =⇒ cl vs c ∧ cr vs c ∧ cl ♦′s cr

Figure 5.5: Definition of location-based I/O models

functions which convert one I/O model type to the other, and show that these preserve the
respective pre-conditions.

The central idea is that locations need to be added to the context only once. Any normal
I/O model may be made location-based by denoting every action as one that does not care
about its location. We can then combine many location-based models together using various
combinators, constructing a useful large I/O model, and only at the end do we convert it
back to a traditional model.

5.3.2 Definition and relationship to normal I/O models

Location-based I/O models and their respective pre-condition are defined in Figure 5.5.
This structure differs in that

� In the API, the effect of each action on world state is determined also by another
argument of type Loc. Hence the types of the functions af′ and wa′ differ from that
of af and wa.

� There is a new function ig′ (short for ‘ignore’) which indicates if an action should
ignore the extra location. If ig′ a = False then action a is said to be “location-
sensitive”.

� The function pf′ which splits contexts also takes an additional Loc argument. This is
handy because sometimes the current location will affect the way in which contexts
are split, as will become clearer later in the chapter.

PRE′s is mostly similar to PREs. The definitions of allys, v and |||s remain unchanged,
and the only extra condition is that given two actions (ll,al) and (lr,ar), if al and ar
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DAction α
M= Probe | Act α

MtoLM :: IOModel ν α ρ ω ς → IOModelL ν α ρ ω ς

LMtoM :: IOModelL ν α ρ ω ς → IOModel ν (Loc,DAction α) ρ ω (Loc,ς)

MtoLM 〈af, wa, ap, pf〉 M= 〈
λ(l,a). λw. af a w,
λ(l,a). λw. wa a w,
ap,
λl. pf,
λa. True

〉

LMtoM 〈af′, wa′, ap′, pf′, ig′〉 M= 〈
λ(l,Act a). λw. af′ (l,a) w,
λ(l,Act a). λw. wa′ (l,a) w,
λ(lc,c). λ(la,a). case a of

Act a → ap′ c a && (ig′ a || lc 4 la)
Probe → lc 4 la,

λp. λ(l,c). case (pf′ l p c) of
(cl,cr)→ ((l++[L],cl),(l++[R],cr))

〉

Figure 5.6: Converting between IOModel and IOModelL

are both location-sensitive then it is assumed that ll 6= lr hold before we try to prove the
non-interference property.

The two functions for converting between the two I/O models are in Figure 5.6.

The function MtoML converts a traditional I/O model to a location-based one. The
conversion is relatively simple – no action becomes location-sensitive, and all location infor-
mation is ignored.

Theorem 5.3.1. If PREs then PRE′MtoLM s.

Proof. If pf′ l p c = (cl,cr) then pf p c = (cl,cr), so we know from PREs that cl vs c,
cr vs c and cl ♦s cr. cl vMtoLM s c and cr vMtoLM s c are immediately true. cl ♦′MtoLM s cr follows
because, since no action is location-sensitive, the extra condition ig′ al ∨ ig′ ar ∨ ll 6= lr in
PRE′ always holds, and the new state-transformer behaves identically because it ignores ll

and lr.

The conversion of an IOModelL back to an IOModel using LMtoM is a little more difficult to
explain and motivate. When we convert an IOModel into an IOModelL location information
is introduced. When converting back, however, this information is not removed, it is merely
made explicit in the model. It is best to think of LMtoM as giving the semantics of location-
based I/O models (a new concept) in terms of normal I/O models (an established concept).
In these converted models certain aspects of actions and I/O contexts are hardwired to
behave in a special way.

The conversion requires the insertion of a Loc into the context, and the requirement that
all actions have an extra Loc as a parameter. As for the actions themselves, another action
Probe is included when converting back to a IOModel. This should never be executed (it
always fails) but the action (l,Probe) is permitted if lc 4 l, where lc is the current location.
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Using test this lets a process query its location. Other actions, those of the form (l,Act a),
are permitted by context (lc,c) only if ap′ c a, and if action a is location-sensitive then
lc 4 l must also hold.

When context (l,c) is split with p then the current location l is given to the function
pf′ as well as p and c. If pf′ l p c = (cl,cr) then the resultant left- and right-hand contexts
become (l++[L],cl) and (l++[R],cr).

The following important result shows that this conversion preserves confluence:

Theorem 5.3.2. If PRE′s then PRELMtoM s.

Proof. If the context (l,c) has successfully been split into (l++[L],cl) and (l++[R],cr) then
pf′ l p c = (cl,cr). This is applied to PRE′s to prove cl vs c, cr vs c and cl ♦′s cr. We use
this to prove the following:

� (l++[L],cl) vLMtoM s (l,c). If action (ll,Act al) is permitted by context (l++[L],cl)

then al must be permitted by context cl, and is either not location-sensitive or l++[L] 4
ll. Therefore, by cl vs c, al is also permitted by context cl and if action al is location-
sensitive then l 4 ll can be proved from l++[L] 4 ll.

If (ll,Probe) is permitted by context (l++[L],cl) then l++[L] 4 ll, which implies
l 4 ll, proving that (ll,Probe) is permitted by context (l,cl).

� (l++[R],cr) vLMtoM s (l,c). Similar to the proof for cl.

� (l++[L],cl) ♦LMtoM s (l++[R],cR). If either the left-hand or right-hand action is of the
form (ll,Probe) then this holds trivially, because Probe never successfully executes.
To prove this for any actions (ll,Act al) and (lr,Act ar) it must be shown that
ig′ al∨l++[L] 4 ll and ig′ ar∨l++[R] 4 lr (from the definition of ap in LMtoM) together
imply ig′ al ∨ ig′ ar ∨ ll 6= lr (from the definition of PRE′). This becomes a proof that
l++[L] 4 ll and l++[R] 4 lr implies ll 6= lr, which requires one or two small lemmas.
The actions can then be shown to be order independent using cl ♦′s cr.

The action Probe can be used by a process to determine its location at runtime with
the small program probeLoc :: ProgLMtoM s Loc whose implementation is given in Section A.2.
It is unfortunately extremely inefficient, but it does what is required of it.

Assume a location-based I/O model s :: IOModelL ν α ρ ω ς. After converting s back to
a standard model, we can now both perform an action and check if an action is permitted
by the current context in a “normal” way (i.e. making location information transparent):

actionL :: α → ProgLMtoM s ν

actionL a = probeLoc >>= \l -> action (l,Act a)
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testL :: α → ProgLMtoM s Bool

testL a = probeLoc >>= \l -> test (l,Act a) (return True) (return False)

Since location-based I/O models have been shown to be inter-convertible with the ex-
isting models it perhaps is a suitable candidate as a full replacement. There is a messy
loop-back in this approach: a process must determine its location, give it as an argument to
a particular action and then (assuming that we want the use of locations to be transparent)
discard it. We will not consider it further in this dissertation, but perhaps this should be
automated entirely using only location-based I/O models.

5.3.3 Simple location-based combinators

The combinators ∗ and smap also have location-based equivalents, ∗′ and smap′. The types
of these combinators are extremely similar and their omitted definitions are also largely
equivalent, requiring few changes. The extra Loc argument to af′, wa′ and pf′ is passed
unchanged to the respective functions of the I/O models being modified, and an action
remains location-sensitive if it instead modifies a small part of a much larger world state.

(∗′) :: IOModelL ν1 α1 ρ1 ω1 ς1 → IOModelL ν2 α2 ρ2 ω2 ς2

→ IOModelL (Either ν1 ν2) (Either α1 α2) (ρ1,ρ2) (ω1,ω2) (ς1,ς2)

smap′ :: IOModelL ν α ρ ω ς →
IOModelL ν (String,α) [(String,Splitter ρ)] (SMap ω) (SMap (Cxt ς))

These all preserve confluence as before. We omit the proofs but like all other results in
this chapter they have been machine-verified.

Theorem 5.3.3. If PRE′s1
and PRE′s2

then PRE′s1∗′s2
.

Theorem 5.3.4. If PRE′s then PRE′smap′ s.

Also, the following three lemmas show that these combinators are related to the old
combinators in a natural way.

Lemma 5.3.1. MtoLM (s1 ∗ s2) = (MtoLM s1) ∗′ (MtoLM s2)

Lemma 5.3.2. MtoLM (smap s) = smap′ (MtoLM s)

One might ask if we could prove that, for example, LMtoM (smap′ s) = smap (LMtoM s).
This is not true and it demonstrates one of the very reasons we introduced location-based
I/O models. The I/O model LMtoM (smap′ s) contains location information just once but
with smap (LMtoM s) the context contains an infinite number of locations, one for each String.

Also, MtoLM (LMtoM s) 6= s. These two models are certainly equivalent in some sense but
the context in the model on the left contains extra redundant location information, none of
which has any effect on the behaviour of actions.
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5.4 The dmap′ combinator

Having defined location-based I/O models, the dmap combinator can now be re-written
so that it lets many processes allocate concurrently. We use the extra Loc argument in
conjunction with a special data-structure to guarantee the non-interference of two allocation
commands.

The new combinator dmap′ has the following type:

dmap′ :: ω → IOModelL ν α ρ ω ς →
IOModelL (Either ν HndP) (DynAction HndP α)

[(HndP,Splitter ρ)] (Pool ω) (HndP → Cxt ς)

5.4.1 Pools

The Pool β structure, used as the world state in dmap′, is in effect a binary tree of lists and
it replaces the plain lists used in dmap to store the newly allocated structures. With dmap

there was just one list and any new structure was appended to this list. The new combinator
dmap′ creates an I/O model in which world state is partitioned into many different lists in
such a way that each process, when allocating, can modify its own unique list.

Once again, like with dmap, the newly created structure will still be global and may be
modified and accessed long after the process which created it has gone. This partitioning
exists only to ensure that if two processes are concurrently allocating two new structures
then the interleaving of threads will in no way affect the resultant handles or the final world
state.

A Loc identifies the route to a node in the Pool tree, and an Int identifies a particular
element of that list. Therefore individual elements of Pool β are identified using a tuple
(Loc,Int), shortened to HndP.

Pool β
M= PoolLeaf | PoolNode (Pool β) [β] (Pool β)

HndP
M= (Loc,Int)

Pools are manipulated with the following operations. These are all quite similar to the
list operations and the individual lists within a pool are modified and queried using those
actions.

nextP :: ∀β. Loc → Pool β → Int

lkpP :: ∀β. HndP → Pool β → β

ovwP :: ∀β. HndP → β → Pool β → Pool β

newP :: ∀β. HndP → β → Pool β → Pool β

stP :: ∀β. ∀δ. (β → (β,δ)) → HndP → (Pool β → (Pool β,δ))
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nextP l p returns the next free index in pool p at the list identified by location l. If
nextP l p = i then the handle (l,i) can be used later to refer to that index. lkpP and
ovwP are look-up and overwrite operations for a particular element of a pool. As with the
list operations, these fail if that element does not already exist. newP h b p creates a new
structure in pool p of initial value b at h, and this only succeeds if h is actually the next free
index. stP f h is a state-transformer on an entire pool which modifies the element identified
by h using the state-transformer f and returns its value.

The definition of newP is complicated by the following question: a pool is a finite struc-
ture, so what happens if a particular location does not yet have a list associated with it
when we want to allocate a new structure? The function padP solves this. padP l p modifies
pool p by guaranteeing that for every location l1 such that l1 4 l, if there is not already a
list associated with l1 then a new empty list will be created.

padP :: ∀β. Loc → Pool β → Pool β

The following properties can be shown to hold. As per usual, many side-conditions
relating to definedness are omitted.

Lemma 5.4.1.

1. lkpP h (ovwP h v p) = v

2. ovwP h v1 (ovwP h v2 p) = ovwP h v1 p

3. If h1 6= h2 then lkpP h1 (ovwP h2 v2 p) = lkpP h1 p

4. If h1 6= h2 then ovwP h1 v1 (ovwP h2 v2 p) = ovwP h2 v2 (ovwP h1 v1 p)

5. If h1 6= h2 then newP h1 v1 (ovwP h2 v2 p) = ovwP h2 v2 (newP h1 v1 p)

6. If l1 6= l2, newP (l1,i1) v1 (newP (l2,i2) v2 p) = newP (l2,i2) v2 (newP (l1,i1) v1 p)

7. nextP l1 (ovwP h2 v2 p) = nextP l1 p.

8. If l1 6= l2 then nextP l1 (newP (l2,i2) v2 p) = nextP l1 p.

9. If h1 6= h2 then cmmt(stP f1 h1, stP f2 h2, p).

10. If cmmt(f1, f2, lkpP h p) then cmmt(stL f1 h, stL f2 h, p)

11. If h1 6= h2 then cmmt(stP f1 h1, (λw. (newP h2 v2 w,x)), p).

Proof. The proof for many of the above results is intricate. They involve induction over the
tree structure of pools, induction over the list structure of locations and the use of all the
results in Lemma 5.2.1. Since newP is defined using padP, we also need to prove a collection
of separate lemmas that describe how lkpP and ovwP interact with padP. There are many
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dmap′ w0 〈af′, wa′, ap′, pf′, ig′〉 M= 〈
λ(l,la). λp. case la of

DynAct h a → applySnd Left (stP (af′ (l,a)) h p)
Next → (p,Right (l,nextP l p))
Alloc (lh,ih)→ if (l = lh) then ((newP (lh,ih) w0 p,Right ([],0))),

λ(l,la). λp. case la of
DynAct h a → wa′ (l,a) (lkpP h p)
Next → False
Alloc i → False,

λcm. λla. case la of
DynAct h a → apCxt ap′ (lkpM h cm) a
Next → True
Alloc h → isTopCxt (lkpM h cm),

λl. λps. λcm. splitM (pf′ l) (λ(lh,ih). l++[L] 4 lh) ps cm,
λ(l,la). case la of

DynAct h a → ig′ a
Next → False
Alloc h → False

〉

Figure 5.7: Definition of dmap′ combinator

of these, and they are omitted entirely, and are only accessible from the machine-readable
proof sections (see Section B.3).

The difficulties are largely due to newP and padP. We have to prove that any nextP,
lkpP and ovwP operations behave identically when attempting to access a location with no
associated list, and a location with an associated empty list.

5.4.2 Definition

The definition of the dmap′ combinator can found in Figure 5.7.
This definition is somewhat similar to the dmap definition found in Figure 5.3 and makes

use of the same helper functions. Actions are elements of the type DynAction HndP α.
Assuming that the current location is passed implicitly,

� DynAct h a performs action a on the structure identified by handle h, possibly
stalling. This action is location-sensitive if and only if a is location-sensitive.

� Next returns the HndP of the next free handle. This never stalls and it is always
location-sensitive (the implicit location must be a valid one for that process). The
location part of the returned handle will be identical to that passed implicitly to it.
It is the index which we need to obtain.

� Alloc h creates a brand new structure at h. This is both location-sensitive and,
like with dmap, subject to the condition we have complete access to the structure at
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handle h. There is also a small side-condition that the implicitly passed location and
the location in h must be identical for the action to succeed. Because Alloc h will
normally be performed straight after Next this should always hold.

When we split a context we must be careful when deciding what permissions are given by
default to each side. If we are to allow multiple concurrent processes to allocate concurrently
then these processes must have access to the future handles they may need. The default is
that when splitting a context (l,c) into (l++[L],cl) and (l++[R],cr), the right-hand side
by default gets access to all handles (lh,ih) except those where l++[L] 4 lh. This means
that under normal circumstances both sides will be able to allocate – that is, as long as one
doesn’t decide to distribute permissions for an as yet unallocated handle.

Theorem 5.4.1. If PRE′s then PRE′dmap′ w0 s.

Proof. Once again we apply Lemma 5.1.2 to show that the left- and right-hand sub-contexts
have been split correctly for each index.

cl vdmap′ s c and cr vdmap′ s c are shown to hold in the same style as with the smap

combinator. The main difficulty is in proving cl ♦′dmap′ s cr. There are three different types
of actions and this means that there are six possible pairs of actions to account for. In each
case the context and whether the actions are location-sensitive affects whether two actions
can every be expected to run concurrently. For each action there is also the implicit location
ll and lr, and we can assume that ll 6= lr if both actions are location-sensitive.

� DynAct hl al and DynAct hr ar. Similar to dmap in that we check if hl = hr. If
hl 6= hr then both actions affect different sections of the pool, and therefore commute.
If hl = hr then we must use PRE′s. Whether or not the actions are context sensitive
carries over directly.

� Next and DynAct hr ar. These actions commute because Next does not change
world state and DynAct hr ar does not change the length of any list within a pool.
Since Next never changes world state it cannot cause DynAct hr ar to stall.

� Alloc hl and DynAct hr ar. Like with dmap the proof of Alloc hl |||dmap′ w0 s

DynAct hr ar arises from the fact that hl cannot equal hr, because for Alloc il

to be permitted it must have complete access to handle hl, thus forbidding any other
actions. Once hl 6= hr is known we use the fact that newP doesn’t affect stP.

� Next and Next. Neither change world state so they both commute.

� Alloc hl and Next. Both actions are location-sensitive so we know that the implicit
locations ll and lr are not equal to each other. Therefore newP and nextP do not affect
one another and the actions commute.

� Alloc hl and Alloc hr. Both actions are location-sensitive, so the two newP calls
will allocate in different locations, and therefore be order independent.
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The helper functions given for dmap in Figure 5.4 are almost identical when using dmap′.
The main difference is that after converting a location-based model dmap′ w0 s back to a
normal I/O model using LMtoM we must replace action and test with actionL and testL.
These are used to pass the implicit Loc argument to each action.

5.5 Chapter summary

We have presented, in this chapter, a collection of useful, stock techniques for building
larger, more sophisticated I/O models from simpler, smaller ones. Location-based I/O
models were developed in order to solve some technical problems related to I/O actions
which allocate structures dynamically. Through the use of location-based models, an action
can now determine the identity of the process which calls it. Three basic combinators
were developed – ∗, smap and dmap – as well as their more sophisticated location-based
equivalents, ∗′, smap′ and dmap′.

In Chapter 6 these are all put to good use, as we build a model of Haskell’s I/O interface.

� The dmap′ combinator is used to let the user allocate communication channels.

� The smap′ combinator is used to construct the file system.

� The file model itself makes direct use of location-based facilities – the act of opening
a file for reading requires one to allocate a new read handle.

� All the individual parts of the API are joined using the ∗′ combinator.



Chapter 6

A real world API and applications

In this chapter we finally put the theory to work and attempt to give a formal model of a
real API. As one can expect, this is not a precise task. We try to anchor our semantics to
reality as much as possible by remaining dedicated to the exact Haskell 98 I/O interface.
The important contribution of this chapter is a semantics for a large, useful subset of the
built-in Haskell I/O actions, additional deterministic communication primitives, and some
applications which demonstrate the power and flexibility of Curio.

We begin in Section 6.1 by discussing which aspects of Haskell’s I/O interface we either
cannot model or are uninterested in modelling. Section 6.2 presents an I/O model file

which models an individual file in the file system. Section 6.3 describes two deterministic
communication primitives, chan and qsem. Section 6.4 then combines these smaller models
using the combinators defined in Chapter 5 to give a full, real world I/O model io, and
we provide libraries which mimic that of the Haskell API. Section 6.5 gives a few example
applications.

6.1 Dissecting Haskell’s I/O API

6.1.1 I/O primitives in Haskell 98

Our starting point is the standard libraries of Haskell 98, as defined in [90]. As well as
providing a large collection of pure, non I/O-related libraries – such as for monads, arrays,
complex arithmetic, and lists – there are also actual monadic I/O actions for accessing files,
directories, doing terminal I/O, accessing the system clock etc. Naturally enough we are
only concerned with those built-in functions which take place “within” the IO monad.

The libraries which contain IO actions are: PreludeIO (part of the main Haskell Prelude,
containing very common I/O actions), IO (file access), Directory (directory access), System
(calls such as getArgs, system, exit), Time and CPUTime (which allows us to retrieve the
current clock time), and Random (a random number generator within the IO monad).

In general, we are concerned solely with modelling aspects of I/O which either:

97
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� Give rise to opportunities for deterministic concurrency.

� May allow useful properties to be proved about them.

If, for some I/O action, neither of the above hold then we must ask what value there
would be in giving a semantics to that action.

The actions which we do not consider interesting are:

� I/O actions which are merely convenient wrappers for other, predefined actions.
This includes: hPrint, readLn, which make use of the Show and Read type classes
and pre-process any text-based I/O; hReady, defined in terms of hWaitForInput;
putChar, getChar and isEOF, which can be defined in terms of hPutChar, hGetChar
and hIsEOF∗; writeFile and appendFile which, although defined as primitive in
PreludeIO, may be written just as well using other file operations.

� Semantically transparent actions which are solely related to efficiency. This in-
cludes: file buffering operations such as getBuffering, setBuffering, hFlush; the
renameFile action which is semantically no different to a program which copies a file
and then deletes the original.

� Actions related to exception handling or errors, such as catch, ioError, and the
collection of actions which allow one to examine an IOError. We don’t consider error
handling to be a critical part of modelling I/O since a great many error/exceptions
can be predicted in advance by checking EOF conditions, whether a file exists etc.

� System-dependent calls.

� Lazy file I/O. One of the most convenient features of the Haskell’s file API is its use
of lazy file I/O. The action

hGetContents :: Handle→ IO String

reads the contents of a file lazily into a String. This means that the action terminates
immediately, supposedly returning a string containing the complete file (or handle)
contents. However the data is only read from disk when the contents of this string are
queried, and in the meantime the file is in an intermediate “semi-closed” state. While
convenient, this comes at a price:

“The contents of this final list is only partially specified: it will contain at
least all the items of the stream that were evaluated prior to the handle
becoming closed.” [90]

∗Actually, getChar, putChar and a few other actions related to standard input/output are not defined
using hGetChar and hPutChar in Haskell since the former appear in PreludeIO and the latter in IO. But this
is irrelevant since it is only done to ensure that one can do terminal I/O without having to import the whole
IO module.
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A subsequent hClose may close this handle and it is possible that parts of the string
have not yet been evaluated. In the presence of lazy evaluation this may hard to
predict, and the Haskell runtime system cannot guarantee that the resultant list will
contain the entire file contents. (The actions getContents and readFile use the same
mechanism).

We do not try to give a semantics for hGetContents not because its behaviour is
uninteresting – quite the opposite – but since to do so properly would require a full
operational semantics of lazy evaluation (i.e. Launchbury’s [65]) and this is beyond
the current capabilities of Curio.

� Directory operations. The Directory library contains several actions which let the
user create, delete and query the contents of directories. As far as we are concerned,
directories are merely a convenient form of organising individual files – a form of
bookkeeping – and therefore do not exhibit many opportunities for concurrency beyond
that of files themselves. Nor do they have many interesting semantic properties in their
own right.

� Temporal/time-related actions, such as getModificationTime, getClockTime or
getCPUTime. The simple reason for excluding these actions is that they are of limited
use and where they are of use there is little of interest we can say about them in the
semantics. One would need a useful way of modelling the fact that each primitive
action takes a non-zero amount of time. This might not be too difficult. One can
imagine a combinator which takes an I/O model and creates a new one in which there
is a time counter and an extra action which lets one query the current time. Yet
an action which queried the time could not then be performed concurrently with any
other action, since that would cause non-determinism.

Perhaps a more useful action would be one which waited until the current time counter
exceeded some specific fixed timestamp. But the question remains: why would you do
this, and if you did, what properties could you expect then to be able to prove about
your program?

The problem is that although temporal aspects of I/O are important, they come in
three general varieties:

1. Requirements that something takes place after something else, probably in sep-
arate processes. These relative time constraints do not need a global clock and
basic interprocess communication primitives would suffice for this task.

2. Interactive reasons: we want a program to display the modification time of a
file, or write the current clock time to a file, or perhaps wait a fixed number of
milliseconds so as to get a more desirable user interaction. It is hard to see how
we could give a useful semantics to this.
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3. Efficiency: for example we want a process to perform a low-priority task such
as logging once every minute or two, so we must deliberately pause a process.
As mentioned, these efficiency concerns are semantically transparent and not
something we are interested in modelling.

For the above reasons, we do not attempt to model temporal properties of an I/O
model.

� System or OS information. The effects of actions such as getArgs, system, exit or
getCurrentDirectory are not worth trying to model, and similarly we don’t try to
give a semantics to the stderr handle.

� Random Number actions. Although not really related to I/O, the Random library
defines a collection of standard random number libraries within the IO monad because
it is convenient. Random numbers are difficult for us to model. In one sense reading
a random number is an entirely commutative action (as mentioned in [87]), because
the randomness of a number is not affected by the numbers which have gone before
it. It should therefore be a perfect candidate for concurrency.

But in another sense surely every program which relies on randomness is inherently
non-deterministic? If we were to permit a single random number generator action to
be called by multiple processes then our semantics would have to “know” that the
actual value returned by this would be somehow irrelevant.

Another possibility would be to use location-based models to guarantee that each
process has its own local random number generator. This would work. Our programs
would remain deterministic in the same sense that our model of terminal I/O is deter-
ministic. That is: although we cannot really predict what will happen when we call
the action, that same, unpredictable thing would have always occurred.

Despite this, since random number generation is only in the IO monad for convenience,
we choose to ignore it altogether.

Having removed many actions which are either uninteresting or difficult from a semantic
point of view, we now have a core collection of I/O actions and structures which we will
try to model. These can be found in Figure 6.1. The types are all identical to those given
in the Haskell Report, with the exception of hWaitForInput. This function, which waits
for input on a specific handle, normally contains a time-out mechanism whereby if after a
set length of time no input has appeared on the handle then it returns. Since we are not
modelling temporal properties of I/O, we force hWaitForInput to wait indefinitely.

6.1.2 Communications primitives

Concurrency primitives will be necessary if we are to write interesting programs which
contain processes which communicate with one another. However, these cannot be normal
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FilePath
M= String

SeekMode
M= AbsoluteSeek | RelativeSeek | SeekFromEnd

IOMode
M= ReadMode | WriteMode

| AppendMode | ReadWriteMode

Handle
M= · · ·

HandlePosn
M= · · ·

stdin, stdout :: Handle

openFile :: FilePath → IOMode → Progio Handle

hClose :: Handle → Progio ()
hFileSize :: Handle → Progio Int

hIsEOF :: Handle → Progio Bool

hGetPosn :: Handle → Progio HandlePosn

hSetPosn :: HandlePosn → Progio ()
hSeek :: Handle → SeekMode → Int → Progio ()

hWaitForInput :: Handle → Progio ()
hGetChar, hLookAhead :: Handle → Progio Char

hPutChar :: Handle → Char → Progio ()
hIsOpen, hIsClosed :: Handle → Progio Bool

hIsReadable, hIsWritable :: Handle → Progio Bool

hIsSeekable :: Handle → Progio Bool

removeFile :: FilePath → Progio ()
doesFileExist :: FilePath → Progio Bool

Figure 6.1: Chosen Haskell 98 I/O actions
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concurrency actions because we must ensure that they do not admit non-determinism.
It is surprisingly hard to find details of general-purpose deterministic concurrency prim-

itives in the literature. The dataflow language Id used “I-structures” [8], a kind of shared
variable, to concurrently compute matrices in a deterministic, functional style. I-structures
were modelled in Chapter 2 but they are extremely weak since they may only ever be written
to once. We instead look to Concurrent Haskell to see what operations we could salvage.

Concurrent Haskell [89] describes the concurrent, non-deterministic extensions to the
Haskell language. The Revised Haskell Report does not describe these new communication
primitives but both the Glasgow Haskell Compiler [34] and Hugs [55] implement them. All
communication in Concurrent Haskell is implemented using MVars, mutable variables which
allow synchronisation between processes – if a process tries to obtain an empty MVar then
it will block until it has been written to. The other more high-level communication tools
are Chans (unbounded FIFO channels) and QSems (quantity semaphores).

In order to ensure determinism we must never allow actions to compete for a limited
resource. This means that any MVar-like synchronisation variable implemented as primi-
tive could have only one reader and one writer. Therefore, writing a stream of data to a
reading process would have to be done in lock-step. While it may be possible to implement
communication channels this way, it would appear to be a bit low-level for our needs. In-
stead we use channels themselves as our primary means of letting processes communicate.
This gives a more satisfactory interface, because we already access files and terminal I/O
via handles which allow the reading and writing of streams of data. By defining a handle
structure which at a high-level also accommodates communication channels we can unify
our high-level interface to both file I/O and interprocess communication.

There are two specific sorts of communication channel which we want to permit. These
can both be encapsulated within the read/write file handle framework:

� One-to-one FIFO communication channels: one process sends, the other receives. This
example was given in Chapter 2, but we will enhance it slightly to allow for some extra
operations. If one needs a one-to-many communication buffer in which the sent data
is duplicated to each individual writer then this can be emulated with a collection of
one-to-one channels. These channels will only be able to communicate Chars.

� Many-to-one quantity semaphores: these are necessary because in practice multiple
processes may communicate with a single one deterministically just as long as those
individual sender processes cannot actually be distinguished. This is really just a
quantity semaphore, where the multiple “sender” processes increment a counter while
the “receive” process decrements the counter, blocking if the counter is zero. Thus the
receiving process cannot tell the many sending processes apart. This is a somewhat
weak primitive but it is included because it cannot be emulated with a collection of
one-to-one buffers – any primitive which allowed a process to wait simultaneously for
the first input on two different channels would then immediately be non-deterministic.
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6.1.3 Extending the Haskell interface

Since we propose to incorporate communication channels and quantity semaphores within
the file-handle framework, and because I/O contexts mean that certain actions may not be
permitted, we must provide a few more library functions in addition to those defined in the
Haskell 98 report. These are:

newChannel, newQSem :: Progio (Handle,Handle)

fIsOpen :: FilePath → Progio Bool

hAllowed :: Handle → Progio Bool

fAllowedR, fAllowedW :: FilePath → Progio Bool

parIO :: [Handle] → Progio β → [Handle] → Progio γ → Progio (β,γ)

newChannel is used to dynamically allocate a new communication channel, returning its
separate read and write handles. newQSem behaves in the same way for quantity semaphores.
fIsOpen returns whether a file is currently opened, either for reading or writing. The
function hAllowed is used to check to see if the current I/O context allows one to use a
particular handle. fAllowedW and fAllowedR check to see if the current context has write-
access (i.e. complete access) or read access to a particular file. The behaviour of these
three actions is entirely orthogonal to that of the actions isReadable and isWritable,
which merely query information about the handle itself. To be completely safe, when, say,
opening a file for reading, we must check first whether the action is permitted by the I/O
context, and then also check to see if the action, though allowed, will not cause an error
(i.e. if the file is already open for writing, or if the file doesn’t exist). Lastly, parIO is a
convenient wrapper for Curio’s par, allowing one to perform concurrency by specifying the
handles we wish each sub-process to have access to.

A handle is admittedly a rather crude interface to a quantity semaphore – one signals
using hPutChar and one waits using hGetChar, but no data is actually transferred. There
is a great advantage, however, to accessing all I/O resources via a single data type: when
performing concurrency it allows us to unify the way in which we allocate permissions to
different processes, as we shall show later.

6.2 Modelling an individual file

Our primary concern when modelling real world I/O is describing a file system. In this
section we define an I/O model file which forms the cornerstone of our file system model.
This model will be far removed from the elegant Haskell 98 interface – it will be shown later
how the interface to these actions can be tidied up.

We want the following basic properties to hold for each individual file:

� A file may or may not exist, and if it exists it should contain a finite sequences of
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characters (the file contents).

� If a file exists it should also contain information concerning whether it is open for
(possibly shared) reading or (exclusive) writing, appending or reading/writing, and
in both cases contain a structure which maintains knowledge of the various active
file-pointers.

� Two concurrent processes should be able to simultaneously perform actions which
manipulate two different read handles opened on a single file.

� Two processes should ideally also be able to simultaneously open a file for shared
reading – that is, the creation of a new read handle should not be order dependent.

� We should be able to perform all the actions defined in Figure 6.1.

There have been a few other attempts to develop a semantic model of a file system with
a view to proving correctness properties [7, 125, 14]. None of these try to give an adequate
interpretation of what it means for the opening of two read handles to be order independent,
so we developed our own approach ([14] probably comes closest, but its read handles for a
given file cannot be distinguished, meaning that a file handle may be closed twice).

6.2.1 The file world state and I/O contexts

How should the internal file-state be represented? The file data can be stored as a list of
characters, [Char], and if the file is open for writing then the single write pointer can be
stored as an integer.

The most difficult obstacle to overcome is how we should permit two concurrent processes
to allocate, modify and close two distinct read pointers. The main question is: what struc-
ture should be used to store these pointers, and how does that structure guarantee that two
processes can create new read pointers in an order independent fashion? Also there must be
some notion of a closed file-pointer. How do we ensure that the closing of a file-pointer in
one process does not affect the creation of a new file-pointer in another concurrent process,
causing that process to possibly obtain a different pointer? This also applies to the closing
of an entire file. Presumably a file becomes closed once each file-pointer which was in use
becomes closed. If a file is closed, and then two processes concurrently open a new file-
pointer, read from it and then close it, we must also guarantee that when a file is closed
that we don’t “reset” our structure for storing read pointers.

We solve this in the following way:

� A Pool FPtr is used to store all the individual read pointers†. This guarantees that we
can allocate and modify two separate read pointers concurrently.

†Pools were defined in Section 5.4.



6.2. Modelling an individual file 105

� A FPtr denotes either an active read pointer or one which has been closed. This makes
sure that even after a read pointer has been closed it is still present, somehow, and
cannot be reused.

� Instead of having a separate tag which indicates if the file itself is closed, we just define
a file to be closed when all read pointers are themselves closed.

Since we use pools it makes sense to make the model location-based. So file has the
following overall structure:

file :: IOModelL νFile αFile ρFile ωFile ςFile

file
M= 〈af′File, wa′File, ap′File, pf′File, ig′File〉

The world state of a file, ωFile is defined as:

ωFile
M= NoFile | File [Char] (WrPtr Int IOMode | RdPtrs (Pool FPtr))

FPtr
M= FPtr Int | Stale

If a file doesn’t exist it is NoFile. If it does exist then it is either File cs (WrPtr i m),
where i is the single write pointer and m represents the mode in which the file was opened,
or File cs (RdPtrs p), where p is the pool of read pointers, some of which may be closed,
or Stale. In both cases cs is the file data.

Each FPtr within the pool is identified using a handle h :: HndP. When performing
concurrency we must guarantee that different processes accessing the same file have access
to different read pointers. This gives rise to the following I/O context for files:

ςFile
M= FTotal | FReadAccess (HndP → Bool) | FNone

A program may either have complete access to a particular file, FTotal, it may have
access to a particular set of read handles, FReadAccess m, or it may have no access to the
file at all, FNone. (There are approaches to allowing concurrency on a single file which are
more fine-grained. As an example, if a file is open for writing but is not allowed to reopen
that file, thereby truncating it, then we may allow another concurrent process to wait until
that file has exceeded a certain length. We will not consider these here).

One splits I/O context ςFile using the following type:

ρFile
M= [(HndP,Dir)]

pf′File is defined in a similar fashion to that of the dmap′ combinator. We omit the
definition, but supplied with parameters l :: Loc, p :: ρFile and c :: ςFile it behaves as
follows:

� If c is FNone then both sub-contexts become FNone.
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� If c is FReadAccess m then p :: ρFile, the list of (HndP,Dir), dictates whether the
left-hand or right-hand side gets access to the various read handles originally accessible.
By default a handle (lh,ih) goes to the left-hand-side if and only if l++[L] 4 lh.

� If c is FTotal and p = [] then the resultant left- and right-hand contexts become
FNone and FTotal. Otherwise it behaves as if c = FReadAccess m0, where m0

indicates that all handles may be accessed.

6.2.2 File actions

Next we must isolate those actions which only affect a single read pointer from the actions
which affect the entire file. It was found that there were two general varieties of actions on
a file, and four other anomalous actions which had to be treated entirely separately. This
means that at the top-level there are just six actions, and the action type αFile is:

αFile
M= WholeFileAct WholeFileAction

| FilePtrAct (WPtr | RPtr HndP) FilePtrAction

| FDoesExist | FNextRdPtr | FRdOpen HndP | FRdHIsOpen HndP

WholeFileAction
M= FRemove | FPutChar Char | HWrOpen IOMode

| FWrIsOpen | FIsOpen

FilePtrAction
M= FGetChar | FIsEOF | FSeek SeekMode Int

| FLookAhead | FClosePtr | FileSize | FGetPosn

The two general schemas for file actions are

� WholeFileAct: actions which affect the entire file and must be explicitly sequenced
with respect to all other actions on that file. These are:

– FRemove: delete the file.

– FPutChar: write a character to the file, failing if it is not open for writing.

– HWrOpen: open the file for writing in a particular mode, failing if it it not
closed.

– FWrIsOpen: return whether the file is open for writing.

– FIsOpen: return whether there are any active read or write pointers.

� FilePtrAct: actions which only affect an existing write pointer or read pointer, and
query, but do not change, the file contents. These actions are:
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– FGetChar: read the next character from the file, incrementing the pointer.
This fails if the pointer is invalid.

– FIsEOF: return whether the pointer points to the end-of-file. This returns true
if the pointer equals the length of the file data.

– FSeek: change the current pointer.

– FLookAhead: read the next character without incrementing the pointer.

– FClosePtr: close the pointer. Closing an already closed pointer is not an error.

– FileSize: return the length of the file data.

– FGetPosn: return the current pointer position.

The anomalous actions are:

� FNextRdPtr and FRdOpen, which together open a file for reading. Firstly one
determines the next free handle in the pool; then one creates a new read pointer at
that handle. These two actions are location-sensitive – and they are the only location-
sensitive actions in the file model.

� FRdHIsOpen: check if the pointer associated with a read handle is open. This is a
meta-pointer operation. Unlike all the other actions that modify pointers we do not
want this to fail if the pointer is closed or not yet in existence.

� FDoesExist: check if a file exists. We could have classified this as an action which
must be single threaded (like deleting a file, or writing to a file), but this would be
overkill. If many processes have only read access to a file then they cannot either
delete or create that file, so those processes can also query whether the file exists. It
can therefore be run by a process if it has access to at least one read handle, because
this guarantees that there will be no writing process in parallel.

This is formalized in Figure 6.2. The semantics of the actions actions which fall under
one of the two schemas are encoded with doWFA and doFPA. These function are defined in
Appendix A.3. The definition is of no relevance to the confluence proof for file – the interface
by which the actions are defined guarantees all the necessary properties (i.e. actions which
affect only a single read pointer are incapable of changing the file contents).

The type of return values, νFile, is just a sum-type which lets one store whatever par-
ticular values file actions may return.

νFile
M= RNull | RBool Bool | RHndP HndP | RInt Int | RChar Char

6.2.3 Confluence of file model

We now prove that the I/O model file is confluent.
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ig′File :: αFile → Bool

af′File :: (Loc,αFile)→ ωFile → (ωFile,νFile)

wa′File :: (Loc,αFile)→ ωFile → Bool

doWFA :: WholeFileAction → ωFile → (ωFile,νFile)

doFPA :: FilePtrAction → [Char] → Int → (FPtr,νFile)

af′File ( ,WholeFileAct a) w = doWFA a w
af′File ( ,FilePtrAct WPtr a) (File cs (WrPtr i m)) = case (doFPA a cs i) of

(FPtr i1,v)→(File cs (WrPtr i1 m),v)
(Stale,v)→ (File cs (RdPtrs PoolLeaf),v)

af′File ( ,FilePtrAct (RdPtr h) a) (File cs (RdPtrs p)) = case (lkpP h p) of
FPtr i → case (doFPA a cs i) of

(f,v)→ (File cs (RdPtrs (ovwP h f p)),v)
af′File ( ,FDoesExist) w = constST (λw.case w of

NoFile → RBool False
File → RBool True)

af′File (l,FNextRdPtr) w = constST (λ(File cs (RdPtrs p)). RHndP (l,nextP l p))
af′File (l,FRdOpen (lh,ih)) (File cs (RdPtrs p)) =

if (l = lh) then (File cs (RdPtrs (newP (lh,ih) (FPtr 0) p)),RNull)
af′File ( ,FRdHIsOpen h) w = constST (λw.case w of

File cs (RdPtrs p) → case (lkpP h p) of
FPtr i →RBool True
Stale → RBool False

→ RBool False)

ap′File FTotal a = True
ap′File FNone a = False

ap′File (FReadAccess m) a =





False , a = WholeFileAct x
False , a = FilePtrAct WrPtr x
lkpM h m , a = FilePtrAct (RdPtr h) x
lkpM h m , a = FRdOpen h
lkpM h m , a = FRdHIsOpen h
True , a = FDoesExist
True , a = FNextRdPtr

constST :: ∀β. ∀γ. (β → γ) → β → (β,γ)
constST f s = (s, f s)

wa′File (l,a) w
M= False

ig′File a
M=

{
False , a = FNextRdPtr, a = FRdOpen h
True , otherwise

Figure 6.2: High-level semantics of file actions
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Theorem 6.2.1. PRE′file.

Proof. Assuming pf′File l p c = (cl,cr) it must be proved that cl vfile c, cr vfile c and
cl ♦′file cr.

If cl = FNone and cr = FTotal then this is not difficult. The context c must equal
FTotal. FNone vfile FTotal and FNone ♦′file FTotal both hold because context
FNone does not permit any actions at all. FTotal vfile FTotal is true by reflexivity.

Otherwise cl = FReadAccess ml and cr = FReadAccess mr, and for any h, it is
impossible that both lkpM h ml and lkpM h mr are True (for any given read pointer
no more than one of the two contexts will permit access to it). cl vfile c and cr vfile c

are proved using the knowledge that c is either FTotal which permits all actions or it is
FReadAccess m, where for each individual handle h, ml and mr cannot permit access to
a read pointer if m forbids it.

The main proof obligation now becomes FReadAccess ml ♦′file FReadAccess mr.
Since no action is ever stalled in the file model the allyfile condition always holds triv-
ially. This means we just need to show that for all actions al, ar permitted by contexts
FReadAccess ml and FReadAccess mr respectively, al |||file ar. There are six types of
action (the two schemas and the four anomalous actions), so this would immediately suggest
21 different possible pairs of actions, up to symmetry, which need to be proved for. These
can be pruned down quite quickly:

� Action of the form WholeFileAct a or FilePtrAct WPtr a can only be run in
context FTotal, so can be excluded entirely.

� Actions FDoesExist, FRdHIsOpen h and FNextRdPtr do not change world
state, so all of these actions automatically commute with one another.

� The only actions which create or delete the file are of the form WholeFileAct a,
and these are excluded. Therefore the action FDoesExist commutes with all relevant
actions.

There are seven remaining pairs of actions. From the way contexts are split we know that
if two actions have associated handles hl and hr then hl 6= hr.

1. FilePtrAct (RPtr hl) a′l |||file FRdOpen hr

2. FNextRdPtr |||file FRdOpen hr.

3. FRdOpen hl |||file FRdOpen hr.

4. FilePtrAct (RPtr hl) a′l |||file FNextRdPtr.

5. FilePtrAct (RPtr hl) a′l |||file FilePtrAct (RPtr hr) a′r.

6. FilePtrAct (RPtr hl) a′l |||file FRdHIsOpen hr.
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7. FRdOpen hl |||file FRdHIsOpen hr.

For the first five the proofs are very similar to that of the dmap′ combinator – actions
FilePtrAct (RPtr h) a, FNextRdPtr and FRdOpen h closely correspond to the
actions DynAct h a, Next and Alloc h used with dmap′. For the final two pairs of
actions we use the fact that hl 6= hr. Neither FilePtrAct (RPtr hl) a′l nor FRdOpen hl

can affect whether there is a read pointer at hr or, if one does exist, if it is closed.

6.3 Two communication primitives

We now develop two simple models which act as communication primitives:

� A one-to-one FIFO communication channel, chan. This is slightly more complex than
the bffr example given in Chapter 2 in that it allows the channel to be closed by the
sender, signalling that no more communication will take place. It also allows one to
observe the next character from the channel without consuming it. These changes are
made so as to make channels fit Haskell’s file-handle interface more neatly.

� A quantity semaphore, qsem. Many concurrent processes may increase an integer
counter, and one single process may decrease it, stalling if the counter is zero or
negative.

We will develop both of these as normal I/O models, without location information,
converting them afterwards to location-based models using MtoLM.

6.3.1 Communication channels

The I/O model chan is defined in full in Figure 6.3. There are five actions:

� ChSend c: send character c.

� ChClose: close the channel permitting no further sending.

� ChIsClosed: check if the channel is closed.

� ChRcve: read a character if one is present. If no character is present and the channel
is closed then return immediately. Otherwise wait until either a character appears or
the channel is closed.

� ChLook: the same as ChRcve except it does not consume the character.

The I/O context for channels lumps the five actions into two groups: those associated
with sending, the first three above, and those associated with receiving, the final two. It is in
this fashion that permissions are allocated to sub-programs. At most one process is allowed
to perform ChSend, ChClose and ChIsClosed, and one (probably different) process is
allowed to perform ChRcve and ChLook.
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Theorem 6.3.1. PREchan.

Proof. When a context c = ChCxt bs br is split into two sub-contexts the sub-contexts are
cl = ChCxt (bs && not b′s) (br&& not b′r) and cr = ChCxt (bs && b′s) (br&& b′r).

That cl vchan c and cr vchan c hold is the result of the fact that bs && not b′s and bs && b′s
both imply bs, and similarly that br && not b′r and br && b′r both imply br.

To prove cl ♦chan cr, the only permitted, non-trivial case is when one context permits
sending and the other permits receiving. That is, cl = ChCxt True False and cr =
ChCxt False True (or where cl and cr are swapped, for which the proof is identical).

Only ChLook and ChRcve can become stalled and this only happens when the channel
is both empty and open. However, neither of the three other actions can either cause a non-
empty channel to become empty or cause a closed channel to become open, so the allychan

condition always holds.
There are six pairs of actions which we must prove to be order independent, but we

ignore the three involving ChLook since its behaviour is so similar to ChRcve.

� ChRcve |||chan ChSend c. If the channel is closed then neither actions do anything. If
it is open then, for the receive action to be non-stalled the channel must be non-empty.
Therefore both actions modify different sections of the list of characters.

� ChRcve |||chan ChClose. If a character was available to receive then closing the
channel will still cause the character to be read correctly. If no characters were available
then the channel must have been closed (both actions must be non-stalled), and closing
it again will have no effect.

� ChRcve |||chan ChIsClosed. Not difficult. ChIsClosed does not affect the list of
characters and ChRcve does not affect whether the channel is closed.

6.3.2 Quantity semaphores

Figure 6.4 defines the I/O model qsem, a quantity semaphore. This is a very simple model.
The world state is just an integer and there are two actions: SWait waits until the counter
is positive and then decrements it and SSignal increments the counter. It is always possible
to perform SSignal, but only one process is allowed to perform SWait. The I/O context
is a Bool which indicates whether the process can perform SWait.

Theorem 6.3.2. PREqsem.

Proof. A context c is split into two sub-contexts False and c – if c permits SWait then
only one sub-process may inherit this capability. Depending on value of p :: ρQSem, this may
be given to the left- or right-hand sub-context, but since the behaviour is symmetric, let us
assume that cl = False and cr = c.



112 Chapter 6. A real world API and applications

chan :: IOModel νChan αChan ρChan ωChan ςChan
M= 〈afChan, waChan, apChan, pfChan〉

νChan
M= Maybe Char

ρChan
M= ChSpl Bool Bool

ςChan
M= ChCxt Bool Bool

αChan
M= ChSend Char | ChClose | ChIsClosed
| ChLook | ChRcve

ωChan
M= ([Char],ChOpen | ChClosed)

afChan (ChSend c) (cs,ChClosed)
M= ((cs,ChClosed),Nothing)

afChan (ChSend c) (cs,ChOpen)
M= ((cs++[c],ChOpen),Just c)

afChan ChClose (cs,oc)
M= ((cs,ChClosed),Nothing)

afChan ChIsClosed (cs,oc)
M= ((cs,oc),case oc of

ChOpen → Just ′O′

ChClosed → Just ′C ′)
afChan ChLook ((c : cs),oc) M= (((c : cs),oc),Just c)

afChan ChLook ([],Closed)
M= (([],Closed),Nothing)

afChan ChRcve ((c : cs),oc) M= ((cs,oc),Just c)

afChan ChRcve ([],Closed)
M= (([],Closed),Nothing)

waChan (ChSend c) (cs,oc)
M= False

waChan ChClose (cs,oc)
M= False

waChan ChIsClosed (cs,oc)
M= False

waChan ChLook (cs,oc)
M= null cs && oc = ChOpened

waChan ChRcve (cs,oc)
M= null cs && oc = ChOpened

apChan (ChCxt bs br) (ChSend c) M= bs

apChan (ChCxt bs br) ChClose
M= bs

apChan (ChCxt bs br) ChIsClosed
M= bs

apChan (ChCxt bs br) ChLook
M= br

apChan (ChCxt bs br) ChRcve
M= br

pfChan(ChSpl b′s b′r)(ChCxt bs br)
M=

(ChCxt (bs && not b′s) (br&& not b′r),ChCxt (bs && b′s) (br && b′r))

Figure 6.3: chan – a one-to-one communication channel

qsem :: IOModel νQSem αQSem ρQSem ωQSem ςQSem
M= 〈afQSem, waQSem, apQSem, pfsQSem〉

νQSem
M= ()

ρQSem
M= L | R

ωQSem
M= Int

ςQSem
M= Bool

αQSem
M= SWait | SSignal

afQSem SWait i
M= (i− 1,())

afQSem SSignal i
M= (i + 1,())

pfQSem L b
M= (b,False)

pfQSem R b
M= (False,b)

waQSem SWait i
M= i ≤ 0

waQSem SSignal i
M= False

apQSem b SWait
M= b

apQSem b SSignal
M= True

Figure 6.4: qsem – a quantity semaphore
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Proving cl vqsem c and cr vqsem c is not hard. cr vqsem c holds because cr = c, and
cl vqsem c holds because context cl permits only SSignal, and context c, whatever it is, will
also permit this. SWait cannot be performed concurrently with SWait, so when proving
cl ♦qsem cr we need to prove |||qsem and allyqsem for the remaining two valid pairs of actions.

� SSignal and SSignal. SSignal |||qsem SSignal holds because incrementing a
counter is order independent. allyqsem(SSignal,SSignal) is trivially true because
SSignal is never stalled.

� SSignal and SWait. SSignal |||qsem SWait is true because the resultant effect in
both cases is that the counter remains unchanged. allyqsem(SSignal,SWait) holds
because incrementing a counter cannot cause it to become 0 or negative if it was
previously positive. allyqsem(SWait,SSignal) holds because SSignal is never stalled.

6.4 A unified I/O library

Finally, using the combinators defined in Chapter 5 we can combine all our small models
into a single unified I/O model io as follows:

qsem′ M= MtoLM qsem chan′ M= MtoLM chan term′ M= MtoLM term ch0 = ([],ChOpen)

io′ M
= (term′ ∗′ smap′ file) ∗′ (dmap′ ch0 chan′ ∗′ dmap′ 0 qsem′)

io
M= LMtoM io′

This unified model lets the user

� do terminal I/O (via term, defined in Chapter 2),

� access a potentially infinite number of files, each identified by a different string,

� dynamically allocate communication channels, whose initial world state is ch0, an
empty open channel, and

� dynamically allocate quantity semaphores with initial value 0.

One can also, when splitting contexts, allocate to a process access to a particular file, a
collection of files, or, perhaps, full access to one file, read access to another and write access
to a particular channel.
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The type of the model io’ is enormous:

io′ :: IOModelL

Either (Either νTerm νFile) (Either (Either νChan HndP) (Either νQSem HndP))

Either (Either αTerm (String,αFile))

(Either (DynAction HndP αChan) (DynAction HndP αQSem))

((ρTerm,[(String,Splitter ρFile)]),([(HndP,Splitter ρChan)],[(HndP,Splitter ρQSem)]))

((ωTerm,String → ωFile),(Pool ωChan,Pool ωQSem))

((ςTerm,String → Cxt ςFile),(HndP → Cxt ςChan,HndP → Cxt ςQSem))

This is cumbersome to use directly, but this can be solved by providing a set of libraries
to give a more usable interface.

6.4.1 Semantics of Haskell’s I/O actions

The actions in Figure 6.2 are implemented in model io by first giving a definition to the
Handle type.

Handle
M= StdInHnd | StdOutHnd | FileHnd String (WPtr | RPtr HndP)

| ChanRdHnd HndP | ChanWrHnd HndP

| QSemRdHnd HndP | QSemWrHnd HndP

A handle, in a nutshell, identifies something in the unified I/O model which may be
written to or read from. With stdin, stdout and files this behaves as expected, but in the
interface to io a handle may also refer to a communication channel or a quantity semaphore.

Figures 6.5 and 6.6 give the implementations‡ of a select number of actions from Fig-
ure 6.2 and two extra actions, newChannel and hAllowed. The remaining omitted definitions
may be found in Appendix A.3.

What is important to note is that we can write whatever libraries or programs we want
for the io model and we do not have to worry about non-determinism. Similarly, one can
bypass the libraries altogether. Confluence is now fully guaranteed in either case. The world
state can still only ever be modified using a primitive action of the form action a. The
definitions can also be seen as giving a full semantics to the various Haskell I/O actions,
and this, I believe, may be one of the most useful contributions of this dissertation. Usually
actions such as openFile are just defined as primitive, yet now we have given a rigorous
semantics which actually attempts to explain its behaviour.

The command openFile n m attempts to open file n with I/O mode m. If m is

‡The functions actionL and testL, used in the implementations, are defined on page 90.
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ReadMode it internally performs the two-step process for allocating a new read pointer
and returns the new handle. Otherwise it attempts to open the file for writing, and this
requires access to the whole file. The other file actions have roughly their desired effect as
specified in the Haskell Report.

As mentioned earlier in the chapter, newChannel and newQSem dynamically create new
communication channels or quantity semaphores, returning the respective read and write
handle. The read and write handles associated with channels are different to file-handles in
that they are not seekable, and the user may only close a write handle. If h is a read handle
associated with a channel then hIsEOF h will return true if and only if the channel has been
closed by the writer and there are no more characters to read from it. The interface to
quantity semaphores is extremely limited. A putChar to a quantity semaphore signals it,
ignoring the sent character, and a getChar performs a wait action, returning some constant,
token character which the user will presumably just ignore. Since quantity semaphores can
have multiple “writers” there is no easy way of implementing closing – how do we keep track
to all the different writing processes and determine which have closed and which haven’t?
Handles which refer to quantity semaphores cannot, therefore, be closed.

6.4.2 Using handles to organise concurrency

We can now define parIO, a useful high-level interface to par for the io model. This allows
one to control the resources given to each concurrent sub-program by simply listing the
handles which each side requires access to. The full implementation details are rather
involved and can be found in Appendix A.3. As per usual, the default behaviour is to give
most permissions to the right-hand process. As mentioned previously, we don’t want all
permissions to go to one side by default since we want both processes to be able, say, to
allocate any number of new communication channels. Also, unlike par which requires an
extra function as parameter, parIO returns a tuple containing the return values of the left
and right process. This, in general, is more convenient.

parIO :: ∀β. ∀γ. [Handle] → Progio β → [Handle] → Progio γ → Progio (β,γ)

parIO hsl ml hsr mr = par ((tp,fsp),(chp,qsp)) ml mr (\vl vr -> (vl,vr))

where

tp = splitHndsTerm hsl hsr

fsp = splitHndsFiles hsl hsr

chp = splitHndsChans hsl hsr

qsp = splitHndsQSems hsl hsr

Sometimes we want to give a sub-process access to an entire file n. This can be achieved
using the “handle” wholeFile n. A process must have complete access to a file before it
may be allowed to write to it, and wholeFile n is FileHnd n WPtr, the single write pointer
for that file.
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stdin, stdout :: Handle
stdin = StdInHnd
stdout = StdOutHnd

openFile :: FilePath → IOMode → Progio Handle
openFile n ReadMode = do
Left (Right (RHnd h)) <- actionL (Left (Right (n,FNextRdPtr)))
actionL (Left (Right (n, FRdOpen h)))
return (FileHnd n (RPtr h))

openFile n m = do
actionL (Left (Right (n, WholeFileAct (HWrOpen m))))
return (FileHnd n WPtr)

hGetChar :: Handle → Progio Char
hGetChar StdInHnd = do
Left (Left c) <- actionL (Left (Left GetC))
return c

hGetChar (FileHnd n p) = do
Left (Right (RChar c)) <-
actionL (Left (Right (n,FilePtrAct p FGetChar)))

return c
hGetChar (ChanRdHnd h) =
actionL (Right (Left (DynAct h ChRcve))) >>=
\(Right (Left (Left (Just c)))) -> return c

hGetChar (QSemRdHnd h) =
actionL (Right (Right (DynAct h SWait))) >> return ’X’

hPutChar :: Handle → Char → Progio ()
hPutChar h c = do
case h of
StdOutHnd -> actionL (Left (Left (PutC c)))
(FileHnd n WPtr) ->
actionL (Left (Right (n,WholeFileAct (FPutChar c))))

(ChanWrHnd h) -> actionL (Right (Left (DynAct h (ChSend c))))
(QSemWrHnd h) -> actionL (Right (Right (DynAct h SSignal)))

return ()

hClose :: Handle → Progio ()
hClose (FileHnd n p) = do
actionL (Left (Right (n, FilePtrAct p FClosePtr)))
return ()

hClose (ChanWrHnd h) = do
actionL (Right (Left (DynAct h ChClose)))
return ()

hClose _ = return ()

Figure 6.5: Implementation of unified I/O libraries (Part I)
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removeFile :: FilePath → Progio ()
removeFile n = do
actionL (Left (Right (n,WholeFileAct FRemove)))
return ()

hIsEOF :: Handle → Progio Bool
hIsEOF (FileHnd h p) = do
Left (Right (RBool b)) <- actionL (Left (Right (n,FilePtrAct p FIsEOF)))
return b

hIsEOF (ChanRdHnd h) = do
Right (Left (Left mc)) <- actionL (Right (Left (DynAct h ChLook)))
return (isNothing mc)

hIsEOF _ = return False

hIsOpen :: Handle → Progio Bool
hIsOpen (FileHnd n p) = do
Left (Right (RBool b)) <- case p of
RPtr h -> actionL (Left (Right (n, FRdOpen h)))
WPtr -> actionL (Left (Right (n, WholeFileAct HWrOpen)))

return b
hIsOpen (ChanWrHnd h) = do
Left (Right (Left c)) <- actionL (Right (Left (DynAct h ChIsClosed)))
return (c==’O’)

hIsOpen _ = return True

newChannel :: Progio (Handle,Handle)
newChannel = do
Right (Left (Right h)) <- actionL (Right (Left Next))
actionL (Right (Left (Alloc h)))
return (ChanRdHnd h, ChanWrHnd h)

hIsWritable :: Handle → Progio Bool
hIsWritable h = case h of
StdInHnd -> return False
ChanRdHnd h -> return False
QSemRdHnd h -> return False
FileHnd n (RPtr h) -> return False
_ -> return True

hAllowed :: Handle → Progio Bool
hAllowed StdInHnd = testL (Left (Left GetC))
hAllowed StdOutHnd = testL (Left (Left (PutC ’X’)))
hAllowed (FileHnd n WPtr) = testL (Left (Right (n, FPutChar ’X’)))
hAllowed (FileHnd n (RPtr h)) =

testL (Left (Right (n, FilePtrAct (RPtr h) FGetChar)))
hAllowed (ChanWrHnd h) = testL (Right (Left (DynAct h (ChSend ’X’))))
hAllowed (ChanRdHnd h) = testL (Right (Left (DynAct h ChRcve)))
hAllowed (QSemWrHnd h) = return True
hAllowed (QSemRdHnd h) = testL (Right (Right (DynAct h SWait)))

Figure 6.6: Implementation of unified I/O libraries (Part II)
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wholeFile :: FilePath → Handle

wholeFile n = FileHnd n WPtr

Occasionally, also, we will want to allow both sub-processes to be able to open a file
for reading even though we do not, as yet, possess a read handle for that file. One can
solve this with a dummy read handle readAccess n. The HndP of value ([], − 1) cannot
refer to an existing read pointer, and any attempt to use it will fail outright. However it is
still possible that a context can permit it. By using this handle we can avoid the default
behaviour whereby if the parent process has complete access to the file then the left-hand
process receives no permissions at all.

readAccess :: FilePath → Handle

readAccess n = FileHnd n (RPtr ([],-1))

6.4.3 Other issues

We include library functions to check if the I/O context permits access to certain handles or
files but we omit any library calls which check if the allocation of a new channel or quantity
semaphore is legal. It is assumed that under normal circumstances this will not be necessary.
In other words, we presume that a program will only use a handle returned by an existing
library call such as newChannel, and not write something arbitrary such as:

parIO [ChanRdHnd ([L,R,L],22)] p1 [QSemWrHnd ([R],345)] p2

which may cause a process not to have access to the very handle that a call to newChannel

would return.
For this to work we need an intuition concerning the outermost I/O context in which

a program runs. In general it can be assumed that each program begins with access to all
resources – every channel or semaphore handle, both terminal devices, and complete access
to all files. With regard to files this could possibly be weakened. Perhaps we would want to
exclude files which, at runtime, the program does not have access to.

6.5 Applications

At long last we can now give a collection of real applications for Curio. All the applications,
as one might expect, make use of the fact that over-specifying the sequence in which actions
are performed can be inconvenient and inelegant.

6.5.1 A file encoder with user interface

For the first and most comprehensive example, let us say that I want to write a file encoder
which has an accompanying user interface. The encoder and the interface should probably
be understood as two relatively distinct pieces of code – one reads and writes to files, and
the other communicates with the user. Yet if actions are sequenced explicitly as they are
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in plain Haskell then either user input will have to halt while a file is being encoded, or the
two applications will have to be merged together somehow. Concurrent Haskell, however,
would be overkill – we know that our program should be deterministic and we want the
language and runtime system to enforce this. Lazy file I/O such as hGetContents would be
inadvisable since the files in question could be enormous.

Curio may be used to solve this problem. The skeleton of this kind of file encoder can be
found in Figures 6.7 and 6.8§. We omit all details of the actual encoding algorithm because
this is not the point of the exercise – what is important is that encoding a file requires
access to one or two files and may take a long time. encoderMain starts the program and is
mainly a wrapper for encoderUI. encoderUI continually reads input commands from the
user and performs them whilst maintaining an (initially empty) list of the processes running
concurrently. The commands are:

� Encode a source file to a target file, with some options. The I/O context must permit
read access to the source file and write access to the target file. First a channel is cre-
ated to allow the encoding process to communicate with the user interface. Execution
is then split using parIO.

The left-hand process runs encodeFile and is explicitly given read access to the source
file, write access to the target file, and the right to send data along the new channel.
Each time a block of data is encoded it sends a ‘.’ along the channel and closes the
channel when finished.

The right-hand process gets the permissions that are left over, as is always the case
with parIO. It may do one of two things depending what the user specified:

– Sequential encoding. The right-hand process merely waits until the file is en-
coded, printing the ‘.’s sent from the encoding process. This is achieved using
joinHnds which connects the encoding process’s channel to stdout until the
channel is closed.

– Concurrent encoding. The right-hand process immediately begins accepting user
input again, adding the concurrent process’s details to the list that it maintains.

� Wait for a target file to be encoded. This reads the characters from that file’s associated
communication channel, terminating when the channel is closed.

� List the processes which are running.

� Exit. If this command is entered then once all concurrent processes have terminated
the program execution will return finally to encoderMain, which was the original caller
of encoderUI.

§The implementation makes use of the standard Haskell functions putStr and putStrLn. These write a
string to stdout with or without a carriage return respectively, and both are defined using hPutChar.
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encoderMain :: Progio ()
encoderMain = do
b1 <- hAllowed stdin
b2 <- hAllowed stdout
if (not (b1 && b2)) then (return ()) else (encoderUI [])

encoderUI :: [(FilePath,FilePath,Handle)] → Progio ()
encoderUI hnds = do
putStr "Enter next command: " -- print user prompt
cmd <- readEncoderCmd -- get command from user
case cmd of

-- encode file ’sf’ to file ’tf’ with various options.
Encode sf tf mode encoding_options -> do
b1 <- fAllowedR sf -- do we have read access to sf?
b2 <- fAllowedW tf -- .. write-access to tf?
b3 <- doesFileExist sf -- and does sf exist?
if (not (b1 && b2 && b3))
then (do
putStrLn stdout "Access denied."
encoderUI hnds) -- try again if not

else (do
(irh,iwh) <- newChannel -- otherwise, make a channel
parIO -- initiate concurrency
[wholeFile tf, readAccess sf, iwh]
(encodeFile sf tf iwh encoding_options) -- LH: encode the file
[irh,stdin,stdout]
(case mode of -- the RH process:

Sequential -> do -- if we want seqential encoding..
putStr ("Encoding "++sf)
joinHnds irh stdout -- connect the handle irh to stdout
putStrLn " Done!" -- (show ’.’ for each encoded block)
encoderUI hnds -- when finished resume UI

Concurrent ->
-- for concurrent encoding resume interaction immediately
-- and add to ’hnds’
encoderUI ((sf,tf,irh):hnds)))

-- wait until file ’tf1’ has been fully written to
WaitFor tf1 -> do
putStr ("Waiting for "++sf1)
joinHnds (hndsTFLkp hnds tf1) stdout -- for each block written to tf1
putStrLn " Done!" -- print a ’.’
encoderUI hnds -- ... then resume user input
-- display all elements of ’hnds’ to the user

ListProcesses -> putStr (prettifyHandleList hnds) >> encoderUI hnds
-- exit encoder. This will propagate back to encoderMain once all
-- concurrent processes are complete.

ExitEncoder -> return ()

Figure 6.7: A file encoder in Curio (Part I)
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encodeFile :: FilePath → FilePath → Handle → EncoderOptions → Progio ()
encodeFile srcfile tgtfile infoch opts = do

removeFile tgtfile -- delete the target file
ht <- openFile tgtfile WriteMode -- create target for writing
hs <- openFile srcfile ReadMode -- open source for reading

-- prepare the target for encoding (no implementation given)
encoderLoop ht hs infoch opts -- perform encoding
-- finalise (no implementation given)

hClose infoch -- close the communication channel
hClose hs -- close the source read handle
hClose ht -- close the target write handle
return ()

where
encoderLoop ht hs hi = do
b <- hIsEOF hs -- if EOF then stop
if b
then (return ())
else (do
-- read a block from ’hs’, encode, and write to ’ht’
-- (no implementation given)
hPutChar hi ’.’ -- signal to UI with a ’.’
encoderLoop ht hs hi) -- .. then repeat

joinHnds :: Handle → Handle → Progio ()
-- ’connect’ a read handle directly to a write handle. It returns once the
-- read handle has been closed, but does not close the write handle
joinHnds rh wh f = do
b <- hIsEOF rh -- if there is no more input
if b -- on the read handle
then (return ()) -- ... then finish
else (do
c <- hGetChar rh -- otherwise read ’c’
hPutChar wh c -- write ’c’
joinHnds rh wh f) -- .. and repeat

EncoderCmd :: Encode FilePath FilePath EncoderMode EncoderOptions

| WaitFor FilePath | ListProcesses | ExitEncoder

EncoderMode :: Sequential | Concurrent

readEncoderCmd :: Progio EncoderCmd

prettifyHandleList :: [(FilePath,FilePath,Handle)] → String

Figure 6.8: A file encoder in Curio (Part II)



122 Chapter 6. A real world API and applications

There are some important points worth noting:

� It is possible for a single file to be encoded concurrently by many processes (presumably
with different options) just as long as the target files differ in each occurrence. Without
shared reading this would not be possible.

� encoderUI can only terminate once all created encoder processes have also terminated.
Therefore, once a file is opened for writing then one will not be able to reopen it until
encoderUI has terminated.

� We check the I/O context to guarantee that we have access to the various files (which
internally makes use of the test primitive) and we also check if the source file actually
exists (which is, internally, a primitive action which returns information about the
world state). This demonstrates once again that I/O contexts are entirely orthogonal
to the dynamic properties of a file system.

6.5.2 A background log file

Imagine that one wishes to write a large, I/O-intensive application which also maintains a
log file of the various actions it performs. This may be achieved sequentially by running a
particular monadic I/O program logData each time new data is ready to be logged.

logData :: LogStructure -> IO ()

However, there are a number of disadvantages to this:

� The logData function could be non-trivial and need to maintain local state which
must be accessed and modified every time the function is called. For example, each
time some data is to be logged it may be added to a complex internal structure before,
after some time, being written to disk. If this is the case then logData will have to
maintain this structure in global state somehow (for example, using Haskell’s IORefs).

� Logging data may possibly be time-consuming and we do not want to force the rest of
the program to freeze when logging is in progress. We may instead require the logging
of data to take a lower precedent compared to that of the rest of the application.

� If the main application is suspended for long periods of time, perhaps waiting for user
input, we may want any buffered log data still be processed regardless after a specific
period of idle time.

On the whole this sequential approach is a poor design strategy. What we want is to
run the logging process concurrently with the rest of the application and have the language
guarantee that program execution will be deterministic. In Curio this may be achieved
quite simply as follows:
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logApplicationMain :: Progio ()
logApplicationMain = do

(logr, logw) <- newChannel

parIO

[wholeFile "logFile.txt", logr] (logProcess logr)

[logw] (applProcess logw)

return ()

logProcess repeatedly reads information from handle logr, processes it and writes it
to file “logFile.txt”. The rest of the application is contained in applProcess and this
behaves as normal with the exception that any data for logging will be written to handle
logw. Once logApplicationMain terminates both concurrent processes will be guaranteed
to have also finished.

We do not mention how the logging process might lower its priority or pause for a
number of milliseconds. Concurrent Haskell has facilities like this, and introduces some
extra primitives such as yield, which forces a context switch to occur, and threadDelay,
which delays a process for a specific number of milliseconds. Our semantics is too high-level
to even begin to describe this type of behaviour usefully. With confluence, however, we
can be certain that these sort of actions – those actions that merely change the order in
which concurrent processes are interleaved – would be semantically transparent in a real
implementation.

6.5.3 Concurrent file processing

An advantage to not over-sequencing actions is that one may process individual files in a
concurrent fashion. Not only is this a clearer specification of the program’s desired behav-
iour, but by loosening the order in which actions must be performed a clever implementation
may be able to optimise the program’s performance.

foldlFile, defined in Figure 6.9, is a general function for scanning a file. The program
foldlFile f b0 n performs a foldl operation on the files contents, but behaves sensibly,
returning b0, if the file is locked out by the sub-program’s I/O context or it doesn’t exist. We
can use foldlFile to write programs wordCount and getFContents, shown below, which,
respectively, counts the number of words in a file and (strictly) reads the entire file contents
into a list.

wordCount :: FilePath → Progio Int

wordCount n = do

(count,inword) <- foldlFile wordCountTail (0,False) n

return count

where

wordCountTail (count,inword) c =

(count + if (inword && isSpace c) then 1 else 0, isSpace c)
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foldlFile :: ∀β. (β → Char → β) → β → FilePath → Progio β
foldlFile f b0 n = do

canread <- fAllowedR n -- can I read from ’n’?
exists <- doesFileExist n -- and does it exist?
if (not (canread && exists))
then (return b0)
else (do h <- openFile n ReadMode -- if so, open it

b <- foldlHandle f b0 h -- process the file
hClose h -- close it
return b) -- then return the result

where
foldlHandle f b0 h = do
eof <- hIsEOF h
if eof -- if EOF
then (return b0) -- return b0
else (do c <- hGetChar h -- otherwise get a Char

foldlHandle f (f b0 c) h) -- and continue, updating b0

Figure 6.9: Definition of foldlFile

getFContents :: FilePath → Progio [Char]
getFContents n = foldlFile (flip (:)) [] n

All the previous functions could have just as easily been written in Haskell, but now we
can make use of deterministic concurrency. mapFile takes a function f and a list of file
paths ns as an argument and concurrently, for each file n in ns, runs the I/O performing
program f n attempting to give it complete access to file n. In the event that a particular
name n appears twice in the list then the second of the two processes will have no access to
file n.

mapFile :: ∀β. (FilePath → Progio β) → [FilePath] → Progio [β]
mapFile f [] = return []

mapFile f (n:ns) = do

(b,bs) <- parIO [wholeFile n] (f n) [] (mapFile f ns)

return (b:bs)

So, for example, wordCounter concurrently counts the number of words in the files
associated with a list of filenames.

wordCounter :: [FilePath] → Progio [Int]
wordCounter ns = mapFile wordCount ns

6.5.4 Quantity semaphore example

As admitted previously, quantity semaphores are a somewhat weak communication primitive
because the one reading process is not able to distinguish the many writing processes. They
do have their uses, however. If multiple files are being processed concurrently then the user
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may want visual feedback concerning the number of files that have yet to be fully scanned.
A quantity semaphore is an ideal tool for this, since we are not required to ask which files
have been fully read (this could be different on each program execution).

waitFor i h waits for i characters on handle h and then exits, and each time a character
is read it prints to stdout the number remaining.

waitFor :: Int → Handle → Progio ()
waitFor i h | i<=0 = putStrLn "Finished!" >> return ()

waitFor i h | otherwise = do hGetChar h

putStrLn (show i ++ " yet to do...")

waitFor (i-1) h

wordCountStdout ns concurrently performs a word count on a list of files and also
indicates to the user on stdout each time a file has been scanned, eventually printing all
the respective word counts, and a sum total.

wordCountStdout :: [FilePath] → Progio ()
wordCountStdout ns = do

(qsr,qsw) <- newQSem

(_,is) <- parIO

[qsr, stdout] (waitFor (length ns) qsr)

[qsw] (mapFileWith [qsw] (\n -> do

i <- wordCount n

hPutChar qsw ’X’

return i)

ns)

putStrLn ("Individual word counts: " ++ show (zip ns is))

putStrLn ("Total words: " ++ show (sum is))

return ()

mapFileWith is a small, easy modification to the mapFile function shown earlier. It
takes an extra argument hs, a list of handles, and it attempts to give each created sub-
process access to these handles. Even though a quantity semaphore may have an unlimited
number of writers, the default, when performing concurrency, is still just to blindly give one
process exclusive access to the structure.

6.6 Chapter summary

This chapter presented a full I/O model io which gave the semantics to a subset of Haskell’s
API extended with deterministic concurrency communication primitives. The chief com-
ponent I/O models were file, term, chan and qsem, and these were combined using the
location-based combinators described in Chapter 5. The chapter concluded with four ex-
ample applications which harnessed the power of the new, extended API.
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Having shown that Curio’s I/O models can handle substantial, real world I/O, we now
turn our back on these specific capabilities of Curio. The final two technical chapters of
this dissertation are concerned with semantics properties of the general Curio language
and I/O model structure. The following chapter, Chapter 7, gives a semantic model which
describes the behaviour of arbitrary Curio programs.



Chapter 7

Axiomatic semantics

Having proved confluence in Chapter 4 we are now in the powerful position of being able
to identify a world/program pair solely by its resultant normal form, if one exists. In this
chapter we build upon this theory to attempt to give a full axiomatic semantics for Curio.

An axiomatic semantics [43, 124] can be understood as the act of describing a language
by stating the properties which hold for terms of the language. Unlike an operational or
denotational semantics, an axiomatic semantics is somewhat high-level and vague since it
doesn’t attempt to actually explain the behaviour of terms. In some sense, however, the
ultimate goal of language design is a rich axiomatic semantics, since if programs cannot be
manipulated and understood at a high-level then the language is most likely neither modular
or compositional.

We begin in Section 7.1 by constructing a big-step operational semantics for Curio,
allowing one to relate the evaluation of a term’s sub-terms to the evaluation of that term
as a whole. Section 7.2 uses this to develop a co-inductive definition of what it means for
two programs to behave the same with respect to some given I/O context. This definition
defines the meaning of a program fragment in terms of both how it affects world state, and
how it responds to arbitrary changes to world state made by other processes. In Section 7.3
we generalise this relation to all I/O contexts and use it to prove some important results,
such as the monad laws. Also demonstrated is the fact that the equivalence relation is a
congruence with respect to the I/O constructs in the language. This effectively shows that
it is a useful equality relation, since in this way equivalent programs may be substituted for
one another within a larger program. Section 7.4 gives some equivalence proofs for programs
which perform actions, one of which is non-trivial. Section 7.5 concludes the chapter with a
discussion about real world proofs and how the language design affects the ease with which
properties are proved.

Due to the denotational style which we adopt when giving the operational semantics to
Curio, we are unable to machine-verify some higher-order properties. These are shown to
be true “by hand”.

Note: For all of this chapter we assume implicitly that PREs holds.

127
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7.1 A big-step semantics

A big-step semantics is used to demonstrate that the normal form of some term t in a
language can be somehow understood with respect to the normal forms of t’s sub-terms.
Although a single-step semantics gives an excellent intuition for how a program executes
over time, it is somewhat low-level. By proving that world/program pairs can be identified
by their normal forms, or lack thereof, we have effectively shown that individual single-step
reduction does not really matter, which in turn suggests that the language semantics should
be re-written using⇓c and ⇑c rather than −→c, ↓c and ↑c. This is the goal of this section.

7.1.1 Preliminaries

We begin by proving some initial results, mainly concerning >>= and par.
Having proved confluence, the operator⇓ can now safely replace any occurrence of ²²²² . At

times, however, we need to retain // // , and this is still non-deterministic. Even with conflu-
ence, w ° m // // c w1 ° m1 only indicates that, in the process of reducing to some normal
form w2 ° m2 or diverging, that it is possible that one can “pass through” world/program
pair w1 ° m1.

Proposition 7.1.1. w ° m i1+i2 ⇓c w2 ° m2 if and only if there is some (not necessarily
unique) w1 ° m1 such that w ° m i1 // // c w1 ° m1 and w1 ° m1

i2 ⇓c w2 ° m2.

Proof. Both sides of the implication can be proved by showing that, assuming confluence,
⇓c is always completely equivalent to ²²²²

c. Therefore, expanding the definition of ²²²²
c, it

becomes a proof of the following: w ° m i1+i2 // // c w2 ° m2 and w2 ° m2 ↓c if and only
if there is some (not necessarily unique) w1 ° m1 such that w ° m i1 // // c w1 ° m1 and
w1 ° m1

i2 // // c w2 ° m2 and w2 ° m2 ↓c. This is obviously true from the transitivity of
// // c.

The above proposition, used quite often below, is a straightforward property of conflu-
ence: if a program always converges to the same normal form, then if we fix the first i1

reduction steps then it will still, also, always converge to that same normal form. This is
natural since removing some non-determinism cannot make reduction more unpredictable.

Lemma 7.1.1. If w ° ml
i⇓cl w′ ° m′

l, and assuming pf p c = (cl,cr) and mr 6= ⊥, then
w ° ml |||

p
∗ mr

i // // c w′ ° m′
l |||

p
∗ mr.

Proof. Induction on i. Base case (i = 0): trivial, since w′ = w, m′
l = ml and // //

is reflexive. Inductive case (i = k + 1): it is true that w ° ml −→cl w′′ ° m′′
l and

w′′ ° m′′
l

k ⇓cl w′ ° m′
l for some (not necessarily unique) w′′ and m′′

l (Proposition 7.1.1).
Apply IH to prove w′′ ° m′′

l |||p
∗ mr

k // // c w′ ° m′
l |||

p
∗ mr, and from the language se-

mantics w ° ml |||
p
∗ mr −→c w′′ ° m′′

l |||p
∗ mr. From the transitivity of // // , prove

w ° ml |||
p
∗ mr

k+1 // // c w′ ° m′
l |||

p
∗ mr.
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Lemma 7.1.2. If w ° ml |||
p
∗ mr

i ⇓c w′′ ° m′′ and pf p c = (cl,cr) then there is some
w′ ° m′

l and i1 such that w ° ml
i1 ⇓cl w′ ° m′

l.

Proof. Induction on i. Base case (i = 0): w′′ = w and m′′ = ml |||p
∗ mr and since

it is in normal form, ml is also in normal form in context cl. Let i1 = 0, w = w′ and
ml = m′

l. Inductive case (i = k + 1): if w ° ml is in normal form in context cl then let
i1 = 0 like in the base case. Otherwise w ° ml −→cl w′′′ ° m′′′

l for some w′′′, m′′′
l . From

the language semantics this implies w ° ml |||
p
∗ mr −→c w′′′ ° m′′′

l |||p
∗ mr, and, from

confluence, w′′′ ° m′′′
l |||p

∗ mr
k ⇓c w′′ ° m′′. Apply IH to prove that for some i′1, w′ and

m′
l, w′′′ ° m′′′

l
i′1 ⇓cl w′ ° m′

l, and use confluence to prove that w ° ml
i′1+1 ⇓cl w′ ° m′

l

(that is, let i1 = i′1 + 1).

Lemma 7.1.3. If w ° mr
i⇓cr w′ ° m′

r, and assuming pf p c = (cl,cr) and ml 6= ⊥ then
w ° ml |||

p
∗ mr

i // // c w′ ° m′
r |||

p
∗ mr.

Proof. Similar to proof of Lemma 7.1.1.

Lemma 7.1.4. If w ° ml |||
p
∗ mr

i ⇓c w′′ ° m′′ and pf p c = (cl,cr) then there is some
w′ ° m′

r such that w ° mr ⇓cr w′ ° m′
r.

Proof. Similar to proof of Lemma 7.1.2.

Lemma 7.1.5. If w ° m >>= f i⇓c w′′ ° m′′ then there is some w′ ° m′ and i1 such that
w ° m i1 ⇓c w′ ° m′ and either

� There is a v such that m′ = return v and w′ ° f v i−i1−1⇓c w′′ ° m′′.

� m′ is not a value, w′ = w′′, m′′ = m′ >>= f and i1 = i.

Proof. Induction on i.

� Base case (i = 0): this means w′′ = w, m′′ = m >>= f and w ° m >>= f ↓c, which
implies w ° m ↓c, since m is not a value. Therefore w′ = w, m′ = m and i1 = 0, and
it is the second of the two possibilities.

� Inductive case (i = k + 1): we know w ° m >>= f −→c w′′′ ° m′′′ and w′′′ ° m′′′ k ⇓c

w′ ° m′ for some w′′′ ° m′′′.

– If m is some value return v then w′′′ = w, m′′′ = f v and i1 = 0 (any value is in
normal form after 0 steps, so w′ = w and m′ = m), and it is the first possibility.

– If m is not a value, then the reduced redex must be within m itself: w ° m −→c

w′′′ ° m′′′
1 and m′′′ = m′′′

1 >>= f . In this case, apply IH to prove that for some
w′ ° m′, i′1 such that w′′′ ° m′′′

1
i′1 ⇓c w′ ° m′, and therefore w ° m i′1+1 ⇓c

w′ ° m′. Let i1 = i′1 + 1. Both of the two possibilities carry over directly from
the inductive hypothesis.
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Lemma 7.1.6. If w ° m i ⇓c w′ ° m′ and m′ is not a value then w ° m >>= f i ⇓c

w′ ° m′ >>= f .

Proof. Induction on i. Base case (i = 0): w = w′, m = m′ and w ° m ↓c, and since m is not a
value, w ° m >>= f ↓c. Inductive case (i = k + 1): w ° m −→c w′′ ° m′′ and w′′ ° m′′ k ⇓c

w′ ° m′ for some w′′, m′′ (Proposition 7.1.1). Using IH, prove that w′′ ° m′′ >>= f k ⇓c

w′ ° m′ >>= f , and from the language semantics show w ° m >>= f −→c w′′ ° m′′ >>= f .
Therefore, w ° m >>= f k+1⇓c w′ ° m′ >>= f .

Lemma 7.1.7. If w ° m i1 ⇓c w′ ° return v and w′ ° f v i2 ⇓c w′′ ° m′′ then it is true
that w ° m >>= f i1+i2+1⇓c w′′ ° m′′.

Proof. Induction on i1. Base case (i1 = 0): w′ = w, m = return v, and since we know
that w ° return v >>= f −→c w ° f v, we can prove w ° return v >>= f i2+1⇓c w′′ ° m′′.
Inductive case (i1 = k1 +1): for some w′′′ ° m′′′, w ° m −→c w′′′ ° m′′′ and w′′′ ° m′′′ k1 ⇓c

w′ ° return v. Apply IH to prove w′′′ ° m′′′ >>= f k1+i2+1⇓c w′′ ° m′′, and since from the
semantics of >>=, w ° m >>= f −→c w′′′ ° m′′′ >>= f , it is true that w ° m >>= f i1+i2+1⇓c

w′′ ° m′′.

7.1.2 World/program equivalence

In order to proceed we develop an equivalence relation on world/program pairs. As a result
of confluence it is natural to identify two world/program pairs in some context if either

1. they both converge to the same resultant world/program pair, or

2. they both diverge.

The 'c operator denotes this equivalence of two world/program pairs in context c, and
its formal definition can be found in Figure 7.1. Despite this operator’s existence as a half-
way house, the seeds of a big-step semantics are to be found in the properties which it enjoys.
If w ° m ⇓c w1 ° m1 then it is obviously true that w ° m 'c w1 ° m1. Therefore, by
showing how the equivalence of two world/program pairs is preserved in the presence of >>=,
par, and test we immediately know how program reduction is preserved in the presence of
the various constructors – a program is equivalent to the normal form to which it reduces.

Proposition 7.1.2. 'c is an equivalence relation (symmetric, reflexive and transitive).

Proof. Clear from the definition.

Proposition 7.1.3. If w ° m // // c w1 ° m1 then w ° m 'c w1 ° m1.

Proof. w ° m either converges or diverges.
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w1 ° m1 'c w2 ° m2
M=

w1 ° m1 ⇑c ∧ w2 ° m2 ⇑c

∨

∃w3∈ω.∃m3∈Prog ν α ρ.




w1 ° m1 ⇓c w3 ° m3

∧
w2 ° m2 ⇓c w3 ° m3




Figure 7.1: Definition of world/program equivalence

w1 ° m1 'c w2 ° m2

w1 ° m1 >>= f 'c w2 ° m2 >>= f

pf p c = (cl,cr)





w1 ° ml1 'cl w2 ° ml2

w1 ° ml1 |||
p
∗ mr 'c w2 ° ml2 |||

p
∗ mr

w1 ° mr1 'cr w2 ° mr2

w1 ° ml |||
p
∗ mr1 'c w2 ° ml |||

p
∗ mr2

ap c a = True
w1 ° mt1 'c w2 ° mt2

w1 ° test a mt1 mf1 'c w2 ° test a mt2 mf2

ap c a = False
w1 ° mf1 'c w2 ° mf2

w1 ° test a mt1 mf1 'c w2 ° test a mt2 mf2

Figure 7.2: Equivalence of world/program pairs

� If w ° m ⇓c w2 ° m2, then apply Proposition 7.1.1 to show w1 ° m1 ⇓c w2 ° m2.

� If w ° m ⇑c then prove w1 ° m1 ⇑c by contradiction by showing that if, for some
w2 ° m2, w1 ° m1 ⇓c w2 ° m2 then w ° m ⇓c w2 ° m2 from Proposition 7.1.1,
since w ° m reduces to w1 ° m1.

From the above proposition, it is clear that many world/program pairs are equivalent
– if two world/program pairs can possibly reduce to one another, or reduce to a common
reduct, then they are equivalent. Five of the most interesting equivalence rules can be found
in Figure 7.2. These relate to the recursive constructs >>=, par and test, and their proofs
are below.

Lemma 7.1.8. If w ° m ⇓c w′ ° return v then w ° m >>= f 'c w′ ° f v.

Proof. Case analysis on whether w ° m >>= f converges:
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� w ° m >>= f ⇓c w′′ ° m′′, for some w′′ ° m′′: apply Lemma 7.1.5. It must be the
first of the two possibilities, since m reduces to value v, and we can use the lemma to
prove that w′ ° f v ⇓c w′′ ° m′′.

� w ° m >>= f ⇑c: we prove by contradiction that w′ ° f v ⇑c. If f v did converge then,
from Lemma 7.1.7, so would m >>= f .

Lemma 7.1.9. If w ° m 'c w′ ° m′ then w ° m >>= f 'c w′ ° m′ >>= f .

Proof. Case analysis on whether w ° m and w′ ° m′ either both converged or both diverged:

� w ° m ⇓c w1 ° m1 and w′ ° m′ ⇓c w1 ° m1 for some w1 ° m1: if m1 is not
a value, then by Lemma 7.1.6 both w ° m >>= f and w′ ° m′ >>= f converge to
w1 ° m1 >>= f , making them equivalent. Otherwise, if m1 is some value return v

then from Lemma 7.1.8, w ° m >>= f 'c w1 ° f v and w′ ° m′ >>= f 'c w1 ° f v

which, by the transitivity of 'c implies w ° m >>= f 'c w′ ° m′ >>= f .

� w ° m ⇑c and w′ ° m′ ⇑c: we must prove both w ° m >>= f ⇑c and w′ ° m′ >>= f ⇑c,
and we prove the contrapositive, namely that if either w ° m >>= f or w′ ° m′ >>= f

did converge then so would w ° m or w′ ° m′, respectively. Apply Lemma 7.1.7 to
w ° m >>= f and w′ ° m′ >>= f to guarantee that w ° m and w′ ° m′ would have to
both converge to some resultant world/program pair.

Lemma 7.1.10. If w ° mr 'cr w′ ° m′
r and pf p c = (cl,cr) then w ° ml |||

p
∗ mr 'c

w′ ° m′
r |||

p
∗ mr.

Proof. Since w ° mr and w′ ° m′
r are equivalent, they either both diverge or both converge

to the same normal form:

� If both w ° mr and w′ ° m′
r diverge: show, using Lemma 7.1.4, that this would cause

both parallel programs to diverge, making them equivalent.

� If both w ° mr and w′ ° m′
r converge to some pair w2 ° m2 then apply Lemma 7.1.3

to both. This lets us prove that both w ° ml |||
p
∗ mr

// // c w2 ° ml |||
p
∗ m2 and

w′ ° ml |||
p
∗ m′

r
// // c w2 ° ml |||

p
∗ m2. By Proposition 7.1.3 this means both

w ° ml |||
p
∗ mr and w′ ° ml |||

p
∗ m′

r are equivalent to w2 ° ml |||
p
∗ m2, so by the

transitivity of 'c they, themselves, are equivalent.

Lemma 7.1.11. If w ° ml 'cl w′ ° m′
l and pf p c = (cl,cr) then w ° ml |||

p
∗ mr 'c

w′ ° m′
l |||

p
∗ mr.
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Proof. Similar to the proof of Lemma 7.1.10.

Lemma 7.1.12. If ap a c = True then w1 ° mt1 'c w2 ° mt2 implies

w1 ° test a mt1 mf1 'c w2 ° test a mt2 mf2

Proof. First prove that for all w, mt, and mf , since ap c a = True, w ° test a mt mf 'c

w ° mt. This is easy since, w ° test a mt mf −→c w ° mt, and therefore from Proposition
7.1.3 they are equivalent. Simply apply this rule to w1 ° mt1 and w2 ° mt2 to show by
transitivity of 'c that w1 ° test a mt1 mf1 'c w2 ° test a mt2 mf2.

Lemma 7.1.13. If ap a c = False then w1 ° mf1 'c w2 ° mf2 implies

w1 ° test a mt1 mf1 'c w2 ° test a mt2 mf2

Proof. The same as the proof for Lemma 7.1.12.

7.1.3 Deriving a big-step semantics

Having defined a useful equivalence relation 'c on world/program pairs, we can now quickly
give a big-step semantics to Curio.

Figure 7.3 gives a “standard” big-step semantics for Curio – “standard” in the sense that
it shows how the convergence of a program may somehow be inferred from the convergence
of that program’s sub-terms. Figure 7.4 gives the flip side of the coin, namely how the
divergence of a program may be inferred.

All the rules are simple consequences of the 'c rules given in Figure 7.2, or of the
language semantics given in Chapter 3. Here is one example: the convergence rule for the
right-hand side of par.

Lemma 7.1.14.

w ° mr ⇓cr w′ ° m′
r w′ ° ml |||

p
∗ m′

r ⇓c w′′ ° m′′

w ° ml |||
p
∗ mr ⇓c w′′ ° m′′

Proof. If w ° mr ⇓cr w′ ° m′
r then w ° mr 'cr w′ ° m′

r, so from the equivalence rule
proved in Lemma 7.1.10, this means w ° ml |||

p
∗ mr 'c w′ ° ml |||

p
∗ m′

r. Therefore both
sides will converge to the same normal form, so w ° ml |||

p
∗ mr ⇓c w′′ ° m′′

The reason why we first develop 'c should now be clear enough. Each equivalence
result says two things: either both sides diverge, or both converge to the same resultant
world/program pair. So from each equivalence relation in Figure 7.2 we get (at least) two
big-step rules.

The rules formalize the following intuitions:

� w ° return v converges to itself.
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w ° return v ⇓c w ° return v

w ° m ⇓c w1 ° m1

w ° m >>= f ⇓c w1 ° m1 >>= f
(m1 not a value)

w ° m ⇓c w1 ° return v w1 ° f v ⇓c w2 ° m2

w ° m >>= f ⇓c w2 ° m2

pf p c = (cl,cr)





w ° return vl |||
p
∗ return vr ⇓c w ° return vl ∗ vr

w ° ml ⇓cl w′ ° m′
l w′ ° m′

l |||
p
∗ mr ⇓c w′′ ° m′′

w ° ml |||
p
∗ mr ⇓c w′′ ° m′′

w ° mr ⇓cr w′ ° m′
l w′ ° ml |||

p
∗ m′

r ⇓c w′′ ° m′′

w ° ml |||
p
∗ mr ⇓c w′′ ° m′′

ap c a = True





w ° action a ⇓c w ° action a
wa a w = True

w ° action a ⇓c w1 ° return v
wa a w = False, af a w = (w1,v)

w ° mt ⇓c w′ ° m′
t

w ° test a mt mf ⇓c w′ ° m′
t

ap c a = True

w ° mf ⇓c w′ ° m′
f

w ° test a mt mf ⇓c w′ ° m′
f

ap c a = False

Figure 7.3: Big-step operational semantics for Curio
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w ° ⊥ ⇑c

w ° m ⇑c

w ° m >>= f ⇑c

w ° m ⇓c w1 ° return v w1 ° f v ⇑c

w ° m >>= f ⇑c

w ° action a ⇑c
wa a w = ⊥

w ° action a ⇑c
ap c a 6= True

w ° action a ⇑c
wa a w = False, af a w = ⊥

pf p c = (cl,cr)





w ° ml ⇑cl

w ° ml |||
p
∗ mr ⇑c

w ° ml ⇓cl w′ ° m′
l w′ ° m′

l |||
p
∗ mr ⇑c

w ° ml |||
p
∗ mr ⇑c

w ° mr ⇑cr

w ° ml |||
p
∗ mr ⇑c

w ° mr ⇓cr w′ ° m′
l w′ ° ml |||

p
∗ m′

r ⇑c

w ° ml |||
p
∗ mr ⇑c

w ° ml |||
p
∗ mr ⇑c

pf p c = ⊥
w ° test a mt mf ⇑c

ap c a = ⊥

w ° mt ⇑c

w ° test a mt mf ⇑c
ap c a = True

w ° mf ⇑c

w ° test a mt mf ⇑c
ap c a = False

Figure 7.4: Big-step operational semantics for Curio – divergence
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� w ° m >>= f requires us to first reduce w ° m to normal form. If this stalls then so
does m >>= f . If it converges to return v then we must then reduce w ° f v to normal
form.

� w ° action a either performs the action a, converging to a resultant w ° return v,
or it is stalled.

� w ° test a mt mf reduces in the same manner as w ° mt if ap c a = True, and as
w ° mf if ap c a=False.

The behaviour of the pair w ° ml |||
p
∗ mr is somewhat trickier since the world state

must always be maintained throughout and sequenced in some order. To elaborate, given a
world/program pair w ° ml |||

p
∗ mr then if we know that w ° ml and w ° mr have normal

forms wl ° m′
l and wr ° m′

r respectively, we do not (at the moment) have any means of
composing these two to get the resultant normal form of w ° ml |||

p
∗ mr.

There are two aspects to this. Firstly, despite our knowledge that with confluence the
order in which the left- and right- hand sides are performed is irrelevant, we still have no
way of merging wl and wr back together into a resultant world state. Secondly, even if we
could “create” this resultant world state w2, then w2 ° m′

l |||
p
∗ m′

r may not be in normal
form. This is due to the existence of stalling/communication in our system. By executing
ml on its own we may have released certain actions which were stalled in world wr – the
very actions which caused mr to originally converge to a normal form.

So the big-step rules for w ° ml |||
p
∗ mr come in pairs – one for ml and one for mr.

What is slightly confusing is that it does not matter which one we choose. Figure 7.5
demonstrates this by showing how the pair w0 ° ml0 |||

p
∗ mr0 can converge to normal form

wF ° mlF |||p
∗ mrF . The column of reductions in the middle of the figure shows how

w0 ° ml0 |||
p
∗ mr0 converges as a single program. Yet there are two different ways of un-

derstanding this convergence as the repeated application of big-step rules, as shown by the
left- and right-hand sides of Figure 7.5. It depends on whether ml0 or mr0 is the first
sub-program to be reduced.

Reducing ml0 initially Reducing mr0 initially

w0 ° ml0 |||
p
∗ mr0 w0 ° ml0 |||

p
∗ mr0

wl1 ° ml1 |||
p
∗ mr0 wr1 ° ml0 |||

p
∗ mr1

wr2 ° ml1 |||
p
∗ mr2 wl2 ° ml2 |||

p
∗ mr1

wl3 ° ml3 |||
p
∗ mr2 wr3 ° ml2 |||

p
∗ mr3

...
...

wlF ° mlF |||p
∗ mrn wrF ° mln |||p

∗ mrF

wF ° mF |||p
∗ mF wF ° mF |||p

∗ mF

As a comparison, there are two big-step rules for proving that w ° m >>= f ⇓c w2 ° m2,
namely that w ° m either stalls or reduces to a value. But unlike with par, only one of
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these two rules can hold on any occasion.

A typical example of how the behaviour in Figure 7.5 could occur is if ml0 and mr0

repeatedly communicate with each one another via two channels.

7.2 Weak program equivalence

Pure functional languages are famous for allowing equational reasoning – the substitution of
denotationally equal terms within a larger program. To substantiate our claim that Curio

helps us reason about I/O, it must at least allow some form of equational reasoning.

In the literature, many rigorous conditions must be imposed on program equivalence
relations to guarantee their usefulness. We will consider these later, but for the moment
let us begin with the basics. We have a way of identifying world/program pairs for a given
context. How do we extend this to program equivalence for some given context?

7.2.1 Definition of weak program equivalence

An initial, näıve solution might be to define m1 as equivalent to m2 in context c if for all world
states w, w ° m1 'c w ° m2. This is certainly an equivalence relation, but it is not a good
one. The point of an equivalence relation is to identify programs depending on what they
do, not on their syntax, or “how they look”. If w ° m1 ⇓c w′ ° m′

1, w ° m2 ⇓c w′ ° m′
2

and both m′
1 and m′

2 are stalled in world w′, then although they may be distinguishable,
they may still always do the same thing. The 'c relation uses plain denotational equality in
the meta-language to identify programs. As an example, in model bffr since action Rcve

is denotationally different to (action Rcve) >>= λv. return v, and both may be stalled in
certain world states, under the above scheme they would not be considered equivalent.

In reality, the behaviour of a program is understood in terms of how it behaves in the
presence of the other arbitrary changes to the world state made by concurrent processes.
We instead give the following modified, co-inductive definition of weak program equivalence
which identifies two programs if, for all world states, either

� they both evaluate to exactly the same resultant world program pair in some given
context.

� they both diverge.

� they both converge, after at least one reduction step, to the same world state in the
given context, and, co-inductively, two equivalent programs.

We call it weak program equivalence because it is really a family of equivalence relations,
one for each I/O context. Like most co-inductive definitions it is best understood intuitively
in terms of observations. Proving that two programs m and m′ are equivalent is really a proof
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w0 ° ml0 w0 ° ml0 |||
p
∗ mr0 w0 ° mr0

wl1 ° ml1 wl1 ° ml1 |||
p
∗ mr0 wr1 ° ml0 |||

p
∗ mr1 wr1 ° mr1
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Figure 7.5: Convergence of parallel terms
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that, given any infinite list of unrelated world-states w0, w1, w2, · · · , we can observe that the
two programs produce the same, possibly finite list of output world states w′0, w

′
1, w

′
2, · · ·

w0 ° m ⇓c w′0 ° m1; w1 ° m1 ⇓c w′1 ° m2; w2 ° m2 ⇓c w′2 ° m3; · · ·

w0 ° m′ ⇓c w′0 ° m′
1; w1 ° m′

1 ⇓c w′1 ° m′
2; w2 ° m′

2 ⇓c w′2 ° m′
3; · · ·

which may either continue indefinitely or until both programs simultaneously converge to
the same resultant world/program pair, or simultaneously diverge.

The observation sequences of two individual concurrent programs do not compose to give
the observation sequence of the single concurrent program. Consider Figure 7.5 once again,
where programs ml0 and mr0 communicate with one another. The middle column shows
how ml0 |||

p
∗ mr0 in world w0 converges directly to world wF , yet the left- and right-hand

sides on their own require a number of intermediate states. So the observable effect of a
program hides all the communication between its constituent sub-processes.

This co-inductive definition, for some given context c, is defined∗ as the greatest fixpoint
of the functional f c

eqv (a “functional” is a function whose argument and result are themselves
functions).

f c
eqv : (Prog ν α ρ → Prog ν α ρ → B) → (Prog ν α ρ → Prog ν α ρ → B)

f c
eqv (∼=1) m1 m2

M= ∀w∈ω.w ° m1 'c w ° m2 ∨
∃w′∈ω.∃w′1∈Prog ν α ρ.∃w′2∈Prog ν α ρ.

w ° m1
≥1⇓c w′ ° m′

1 ∧ w ° m2
≥1⇓c w′ ° m′

2 ∧ m′
1
∼=1 m′

2

The elements of type Prog ν α ρ → Prog ν α ρ → B form a complete lattice. The bottom
and top elements are ∼=⊥ and ∼=> respectively, and u and t are the ‘meet’ and ‘join’ of the
lattice:

∼=⊥
M= λm1. λm2. False

∼=>
M= λm1. λm2. True

(∼=1) t (∼=2)
M= λm1. λm2. m1

∼=c
1 m2 ∨ m1

∼=2 m2

(∼=1) u (∼=2)
M= λm1. λm2. m1

∼=c
1 m2 ∧ m1

∼=2 m2

This induces an ordering on all relations:

(∼=1) v (∼=2)
M= ∀m1∈Prog ν α ρ.∀m2∈Prog ν α ρ.m1

∼=1 m2 =⇒ m1
∼=2 m2

Lemma 7.2.1. For all relations ∼=1 and ∼=2, (∼=1) v (∼=2) implies f c
eqv(∼=1) v f c

eqv(∼=2). In

∗This type of higher-order definition is not permitted in Sparkle, so from now on, in this chapter, we must
abandon our use of a proof-assistant and work “by hand”.



140 Chapter 7. Axiomatic semantics

other words, f c
eqv is monotonic for all c.

Proof. Expanding, this a proof that if for all m3 and m4, m3
∼=1 m4 implies m3

∼=2 m4, then
for all m1, m2, m1(f c

eqv
∼=1)m2 implies m1(f c

eqv
∼=2)m2. In other words, given some m1 and

m2, and world state w, if either w ° m1 'c w ° m2 or w ° m1 and w ° m2 converge to
some w′ ° m′

1 and w′ ° m′
2 respectively and m′

1
∼=1 m′

2, then if for all m3, m4 m3
∼=1 m4

implies m3
∼=2 m4, it can be proved that m1(f c

eqv
∼=2)m2.

� w ° m1 'c w ° m2: regardless of ∼=2, m1(f c
eqv

∼=2)m2 directly holds.

� w ° m1 and w ° m2 converge to some w′ ° m′
1 and w′ ° m′

2 respectively and m′
1
∼=1

m′
2: we can prove that m′

1
∼=2 m′

2 from the side condition, which together implies ∼=c
2,

m1(f c
eqv

∼=2)m2.

The monotonicity proof for f c
eqv implies that its greatest fixpoint is well defined [110].

We use a greatest fixpoint, instead of a least fixpoint, to allow us to identify two infinite
sequences of world state “observations”.

Our program equality relation ∼=c is defined as:

∼=c : Prog ν α ρ → Prog ν α ρ → B
∼=c M= ν(∼=1).f c

eqv(∼=1)

where the definition of greatest fixpoint is a standard one [40, 80]:

(νX.f(X)) M=
⊔
{X ′ | X ′ v f(X ′)}

Lemma 7.2.2. ∼=c is an equivalence relation.

Proof.

� Reflexivity, m1
∼=c m1: trivial from reflexivity of 'c.

� Symmetry, m1
∼=c m2 implies m2

∼=c m1: if w ° m1 'c w′ ° m2 then w ° m2 'c

w′ ° m1. If w ° m1 ⇓c w′ ° m′
1, w ° m2 ⇓c w′ ° m′

2 and m′
1

∼=c m′
2 then

m′
2
∼=c m′

1 holds by co-induction and, therefore m2
∼=c m1.

� Transitivity, m1
∼=c m2 and m2

∼=c m3 together imply m1
∼=c m3: similar to proof

of symmetry.
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7.2.2 Laws of weak program equivalence

We begin with a more convenient rearrangement of the definition of ∼=c.

Lemma 7.2.3. m1
∼=c m2 is equivalent to stating that for all w either both w ° m1 ⇑c

and w ° m2 ⇑c or for some w′, m′
1 and m′

2, w ° m1 ⇓c w′ ° m′
1, w ° m2 ⇓c w′ ° m′

2 and
m′

1
∼=c m′

2.

Proof. The case in which w ° m1 ⇓c w′ ° m′
1, w ° m2 ⇓c w′ ° m′

2, where m′
1 = m′

2 (i.e.
both resultant programs are indistinguishable) is subsumed by m′

1
∼=c m′

2.

We now use the new definition to show two fundamental equivalences. These demon-
strate that if context information is treated carefully then ∼=c behaves somewhat like a
congruence relation, in that equivalence is preserved by primitives >>= and par.

Lemma 7.2.4. If m1
∼=c m2 then m1 >>= f ∼=c m2 >>= f .

Proof. We must prove that if, for all world states w1 either both w1 ° m1 ⇑c and w1 ° m2 ⇑c

or w1 ° m1 ⇓c w′1 ° m′
1, w1 ° m2 ⇓c w′1 ° m′

2 and m′
1

∼=c m′
2, for some w′1, m′

1

and m′
2, then for all world states w either both w ° m1 >>= f ⇑c and w ° m2 >>= f ⇑c or

w ° m1 >>= f ⇓c w′ ° m′′
1, w ° m2 >>= f ⇓c w′ ° m′′

2 and m′′
1
∼=c m′′

2, for some w′, m′′
1

and m′′
2.

� If w ° m1 ⇑c and w ° m2 ⇑c then from the big-step semantics, both w ° m1 >>= f ⇑c

and w ° m2 >>= f ⇑c.

� If w ° m1 ⇓c w′1 ° m′
1, w ° m2 ⇓c w′1 ° m′

2 and m′
1
∼=c m′

2, then if either m′
1 are

m′
2 are identical values return v or both are stalled.

– Either m′
1 or m′

2 are values, in which case they both must be since they are
equivalent. Since m′

1 = return v = m′
2 then clearly m1 >>= f ∼=c m2 >>= f .

– Neither m′
1 nor m′

2 are values. This, from the big-step semantics, means that
w ° m1 >>= f ⇓c w′1 ° m′

1 >>= f and w ° m2 >>= f ⇓c w′1 ° m′
2 >>= f , and co-

inductively we know that m′
1
∼=c m′

2 implies m′
1 >>= f ∼=c m′

2 >>= f . Together
this shows that m1 >>= f ∼=c m2 >>= f .

Lemma 7.2.5. If pf p c = (cl,cr), ml1
∼=cl ml2 and mr1

∼=cr mr2 then ml1 |||
p
∗ mr1

∼=c

ml2 |||
p
∗ mr2.

Proof. Like with Lemma 7.2.4 we must prove that for any w, either w ° ml1 |||
p
∗ mr1 ⇑c

and w ° ml2 |||
p
∗ mr2 ⇑c, or for some w′, m′

1 and m′
2, w ° ml2 |||

p
∗ mr2 ⇓c w′ ° m′

1,
w ° ml2 |||

p
∗ mr2 ⇓c w′ ° m′′

2 and m′
1
∼=c m′

2.
From ml1

∼=cl ml2 we know that either w ° ml1 ⇑cl and w ° ml2 ⇑c or that both
converge to two equivalent programs. If it is the former then from the big-step semantics
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we can prove that both w ° ml1 |||
p
∗ mr1 ⇑c and w ° ml2 |||

p
∗ mr2 ⇑c. We continue with

the latter case, where w ° ml1 ⇓cl w1 ° m′
l1, w ° ml2 ⇓cl w1 ° m′

l2 and m′
l1
∼=cl m′

l2.
Similarly, from mr1

∼=cr mr2, we can eliminate as trivial the case where both programs
diverge, this time on world state w1. We now have the following six facts

1. w ° ml1 ⇓cl w1 ° m′
l1

2. w ° ml2 ⇓cl w1 ° m′
l2

3. m′
l1
∼=cl m′

l2

4. w1 ° mr1 ⇓cr w2 ° m′
r1

5. w1 ° mr2 ⇓cr w2 ° m′
r2

6. m′
r1
∼=cr m′

r2

1 and 4 combine to give w ° ml1 |||
p
∗ mr1

// // c w2 ° m′
l1 |||

p
∗ m′

r1 using Lemmas 7.1.1
and 7.1.3. Similarly, 2 and 5 combine to give w ° ml2 |||

p
∗ mr2

// // c w2 ° m′
l2 |||

p
∗ m′

r2. 3
and 6 together, through co-induction, give m′

l1 |||
p
∗ m′

r1
∼=c m′

l2 |||
p
∗ m′

r2.
From the final, inferred equivalence we can prove that ml1 |||

p
∗ mr1

∼=c ml2 |||
p
∗ mr2.

Both ml1 |||p
∗ mr1 and ml2 |||p

∗ mr2 reduce to equivalent programs, therefore they them-
selves must be equivalent.

The following four lemmas are all easily proved. Since program ⊥ always diverges, if a
program is equivalent to ⊥ in some context then it also always diverges.

Lemma 7.2.6. If ap c a = True then mt1
∼=c mt2 implies test a mt1 mf1

∼=c

test a mt2 mf2.

Lemma 7.2.7. If ap c a = False then mf1
∼=c mf2 implies test a mt1 mf1

∼=c

test a mt2 mf2.

Lemma 7.2.8. If ap c a = ⊥ then test a mt mf
∼=c ⊥.

Lemma 7.2.9. If pf p c = ⊥ then ml |||
p
∗ mr

∼=c ⊥.

The “monad laws” [122] may also be proved. (As a result of the extra context infor-
mation, these are in fact not quite as general as the actual monad laws yet, but this tiny
technicality will be resolved soon).

Lemma 7.2.10. return v >>= f ∼=c f v.

Proof. Straightforward, since for every world state w, w ° return v >>= f −→c w ° f v.

Lemma 7.2.11. m >>= λv. return v ∼=c m.
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Proof. Case analysis on how m reduces in some given world w.

� w ° m ⇑c: then, from the big-step semantics, w ° m >>= λv. return v ⇑c.

� w ° m ⇓c w′ ° return v1:

From Lemma 7.1.8, w ° m >>= λv. return v 'c w′ ° (λv. return v) v1 and deno-
tationally (λv. return v) v1 is equal to return v1. From the transitivity of 'c,
w ° m >>= λv. return v 'c w ° m because both are equivalent to w′ ° return v1.

� w ° m ⇓c w′ ° m′, where m′ is not a value: from the big-step semantics we can prove
that w ° m >>= λv. return v ⇓c w′ ° m′ >>= λv. return v, so use co-induction to
prove that m′ >>= λv. return v ∼=c m′.

Lemma 7.2.12. m >>= (λv. f1 v >>= f2) ∼=c (m >>= λv. f1 v) >>= f2.

Proof. Similar to the proof of Lemma 7.2.11. Case analysis on how m reduces in given
world w. If w ° m ⇑c, then, from the big-step semantics, both programs diverge. If
w ° m ⇓c w′ ° return v1 then both world/program pairs can be proved equivalent to
w′ ° f1 v1 >>= f2. It w ° m ⇓c w′ ° m′, where m′ is not a value, the ms within both
expressions reduce to m′s, changing world state to w′. Then use co-induction.

7.3 Full program equivalence

Full, complete program equivalence, ∼=, can now be defined as might be expected – one
quantifies over all contexts:

m1
∼= m2

M= ∀c∈ς .m1
∼=c m2

7.3.1 Full equivalence rules

Many of the existing weak equivalence rules were originally proved true for all contexts,
such as the monad laws. Therefore they give rise directly to full equivalence relations. The
other rules, such as the congruence rules for test and par are easily proved. It is also very
easy to show that ∼= is an equivalence relation.

These rules are shown in Figure 7.6.

7.3.2 Is full equivalence substitutive?

This is probably the single most important question one can ask about an equivalence
relation over terms in a language. So, can two programs which are equivalent under ∼= be
substituted for one another within another larger program and yield another, equivalent,
larger program? (This is also known as contextual equivalence).
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m >>= λv. return v ∼= m

return v >>= f ∼= f v

m >>= (λv. f1 v >>= f2) ∼= (m >>= λv. f1 v) >>= f2

test a (test a m1 m2) m3
∼= test a m1 m3

test a m1 (test a m2 m3) ∼= test a m1 m3

m1
∼= m2

m1 >>= f ∼= m2 >>= f

ml1
∼= ml2 mr1

∼= mr2

ml1 |||
p
∗ mr1

∼= ml2 |||
p
∗ mr2

mt1
∼= mt2 mf1

∼= mf2

test a mt1 mf1
∼= test a mt2 mf2

Figure 7.6: Derived full equivalence rules

The answer is: a guarded “yes”, subject to a few side-conditions and a little hand-
waving. The issues relate largely to our meta-encoding and the higher-order nature of
functional languages and monadic programming.

Monadic programming is higher-order in the sense that a program may return another
monadic program. For example, consider the Haskell program:

getCharRet :: IO (IO Char)

getCharRet = return getChar

Surely if prog1 ∼= prog2 then return prog1 ∼= return prog2, so how should our
equivalence relation accommodate this – currently we just identify returned values deno-
tationally. One option could be to define two programs return v1 and return v2 to be
equivalent only if in some sense v1 and v2 are also equivalent. But in the general case,
anything at all may be returned – for example a list of I/O actions or, as the following
example shows, a function returning an action.

putStrRet :: IO (String -> IO ())

putStrRet = return putStr

The difficulty here is that we have abstracted away from the various building-blocks of our
metalanguage syntax, such as lambda abstraction and lists, yet we all of a sudden need them
back again to define our notion of program equivalence. The semantics of lazy functional
languages are often given, co-inductively, by bisimulation, in which each constructor, from
the outermost in, is viewed as a transition in a process calculus (see Chapter 1). We must
therefore apply the same trick to our equivalence relation:
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Side Condition 1: We must assume that our equivalence relation is defined,
coinductively, to hold over all constructors in the metalanguage.

The second problem concerns our use of the metalanguage (i.e. Core-Clean) both to
implement reduction in Curio and as the basis for most of the computational power of
Curio itself. We can prove that return x >>= λv. return v ∼= return x. Yet consider the
following perfectly valid program in our metalanguage, which examines whether a program
is, internally, a direct value or a monadic bind:

sniffer :: Prog ν α ρ → Prog ν α ρ

sniffer p = case p of

Ret v -> Ret 0

_ -> Ret 1

So even if we assume that our equivalence relation is defined coinductively under all
constructors, the program

(return (return x >>= λv. return v)) >>= sniffer

will not behave the same as
return x >>= sniffer

since the latter will identify the returned program as being a single value but the former
will not. This leads to:

Side Condition 2: We must assume that functions in the metalanguage, in
Curio, do not examine the internal term-structure of any other Curio program.

This is a standard property of lazy languages such as Haskell. Unlike in reflective
languages such as LISP [70], one is not allowed to write programs which examine or rewrite
other programs at runtime.

Both of these side-conditions are necessary for reasons that relate to programs which
return other programs as values. Let us say we have a program m >>= f . If m returns some
structure which contains another program m1 then since f cannot examine m1’s internal
term structure (side-condition 2) all it can do is schedule program m1, whatever may be, to
be performed at some later stage. Because other programs may be manipulated and stored
in data-structures, the first side-condition states that those stored programs, since they may
at some time be executed, should also be identified up to equivalence.

With these two side conditions it is safe to say that ∼= really is a congruence. To
elaborate, in monadic I/O, all actions must eventually be “flattened” into a single sequence.
So, once we know that any returned program will either be discarded or eventually executed
as is, then ∼= becomes a congruence, because when it comes to actually performing actions
we will be working solely with Curio’s primitives once again.



146 Chapter 7. Axiomatic semantics

To get, formally, from a congruence to substitutive equality traditionally requires some
extra work. Howe, in [51], describes the relationship between various forms of equality for
a general class of lazy computational systems (bisimulation, when it is a congruence, and
when it corresponds to contextual equivalence). Milner’s Context Lemma [72] has also been
used for similar purposes.

We should note that this informality is also present in other research in this area. In
[40, 39] Gordon uses Howe’s method [51] to prove formally that his equality via bisimulation
is substitutive. This, however, requires an entire operational semantics for a small, minimal
functional language. Peyton Jones [89, 88], on the other hand, uses the same denotational
approach, modelling I/O in a full-blown functional language, and is therefore forced to skim
over any formal details regarding notions of program equivalence since the metalanguage
syntax is no longer explicit.

It is also worth noting that none of the rules established earlier are either wrong or
lacking rigour. It is merely with the above side-conditions that we can see equivalence as
spreading to all aspects of the metalanguage, as well as the new language primitives in
Curio.

7.4 Equivalence proofs for I/O actions

Thus far in this chapter we have avoided any mention of I/O actions, instead proving more
sterile results relating to program flow-control constructs. There is nothing stopping us from
doing this. In this section we give a few examples.

7.4.1 Some small proofs

To start with, in model ivar, it may be shown that

action (WriteI i1) >> action (WriteI i2) ∼= action (WriteI i2)

action (WriteI i) >> action ReadI ∼= action (WriteI i) >> return i

action ReadI >> action ReadI ∼= action ReadI

These are not hard to prove. They hold because, for any of the three possible contexts
WriteC, ReadC and NoneC, if one side fails because the context is too weak to permit
a particular action then the other side fails simultaneously. Also, no actions stall in model
ivar, so we merely need to prove 'c for all world states and contexts c. But the following
equivalence must be annotated with context information, because in context NoneC the
left-hand side would fail.

action ReadI >>= λi. action (WriteI i) ∼=WriteC return 0
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7.4.2 A larger proof

Reasoning about programs which stall is of importance. We shall now prove that in model
bffr

rcveSum 0 ∼=cR rcveList >>= λl. return (sum l)

where cR = SubC False, the context which permits receiving. Here, rcveSum receives
integers from the buffer until a negative number is encountered, returning the sum of the
received integers, and rcveList returns a list of received integers, stopping when a neg-
ative integer is found. The left-hand program computes the sum of the received integers
incrementally, whereas the right-hand program performs the sum only at the very end.

rcveSum :: Int → Progbffr Int

rcveSum s = action Rcve >>= \i ->

if (i<0) then (return s) else (rcveSum (s+i))

rcveList :: Progbffr [Int]
rcveList = action Rcve >>= \i ->

if (i<0) then (return []) else (rcveList >>= \l -> return (i:l))

The world state in bffr is a list of integers. It may therefore, by case analysis, either be
⊥, [] or (i:is) for some i and is. If it is of the form (i:is) and i ≥ 0 then according to the
operational semantics, execution continues as normal:

(i:is) ° rcveSum s // // cR is ° rcveSum (s + i)
(i:is) ° rcveList // // cR is ° rcveList >>= λl. return (i:l)

}
i ≥ 0

If i < 0, however, then execution terminates with a return value.

(i:is) ° rcveSum s ⇓cR is ° return s

(i:is) ° rcveList ⇓cR is ° return []

}
i < 0

If world state is [] then both rcveSum and rcveList become stalled.

[] ° rcveSum s ⇓cR [] ° rcveSum s [] ° rcveList ⇓cR [] ° rcveList

If world state is ⊥ then both programs diverge:

⊥ ° rcveSum s ⇑cR ⊥ ° rcveList ⇑cR

Lemma 7.4.1. Regardless of m,

(m >>= λl1. return (i1:l1)) >>= λl2. return (i2:l2) ∼= m >>= λl. return (i2:(i1:l))

Proof. A direct application of the monad laws and the definition of sum.
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The following two lemmas may now be proved by inducting over the length of the world
state list and using Lemma 7.4.1.

Lemma 7.4.2. If list ‘is’ is a possibly empty list [i0, i1, · · · , ij ], and all i0, i1, · · · , ij are
non-negative then

is ° rcveSum s ⇓cR [] ° rcveSum (s + i0 + i1 + · · ·+ ij)

and
is ° rcveList ⇓cR [] ° rcveList >>= λl. return (is++l)

Lemma 7.4.3. If ‘is’ is a non-empty list [i0, i1, · · · , ij ], ik is negative, and i0, · · · , ik−1 are
all non-negative then

is ° rcveSum s ⇓cR [ik+1, · · · , ij ] ° return (s + i0 + i1 + · · ·+ ik−1)

and
is ° rcveList ⇓cR [ik+1, · · · , ij ] ° return [i0, i1, · · · , ik−1]

Theorem 7.4.1.

rcveSum s ∼=cR rcveList >>= λl. return (s + sum l)

Proof. Let is be the world state. If is = ⊥ then both programs diverge. Otherwise either
apply Lemma 7.4.2 or Lemma 7.4.3 depending on whether a negative integer is an element
of is.

If not, both programs become stalled:

is ° rcveSum s ⇓cR [] ° rcveSum (s + i0 + i1 + · · ·+ ij)

is ° rcveList ⇓cR [] ° rcveList >>= λl. return (is++l)

Using the monad laws and the big-step semantics the second fact may be arranged to prove
that:

is ° rcveList >>= λl. return (s + sum l) ⇓cR [] ° rcveList >>= λl. return (sum is) + (sum l)

Now since both programs result in the same final world state, co-induction may be used to
show that rcveSum (sum is) ∼=cR rcveList >>= λl. return ((sum is) + sum l)

If, on the other hand, there exists some negative integer ik, then

is ° rcveSum s ⇓cR [ik+1, · · · , ij ] ° return (s + i0 + i1 + · · ·+ ik−1)

is ° rcveList ⇓cR [ik+1, · · · , ij ] ° return [i0, i1, · · · , ik−1]
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The second fact may be arranged using the monad laws and the definition of sum to show
that:

is ° rcveList >>= λl. return (s + sum l) ⇓cR [ik+1, · · · , ij ] ° return (sum [i0, i1, · · · , ik−1])

Therefore for the given world state both programs are identical

This theorem above can be easily specialised to show that

rcveSum 0 ∼=cR rcveList >>= λl. return (sum l)

7.4.3 Non-termination

Before the introduction of equivalence relations non-termination was mostly simple. If
two programs did not terminate, either by never converging to normal form or through
non-termination in the meta-language, then they were considered equal. Our co-inductive
equivalence relation has muddied the water somewhat, however.

As an example, consider the programs sends and rcves which, respectively, perform
Send and Rcve indefinitely:

sends :: Progbffr ()
sends = action (Send 3) >> sends

rcves :: Progbffr ()
rcves = action Rcve >> rcves

Although sends ∼= ⊥, it is not true that rcves ∼= ⊥. In every world state w and
context c, w ° sends ⇑c. rcves, however, may stall. So given any infinite sequence of
world states, sends will always diverge on the very first one, but rcves will usually for each
consecutive world state consume every character from the buffer and then stall.

If we view correct termination as “converging to a value” then this is awkward, because
both sends and rcves are equally divergent. If, on the other hand, we view convergence to
some stalled program as a legitimate way for a program to terminate then it makes perfect
sense to distinguish them.

7.5 Large-scale I/O proofs

We have shown how simple programs may be proved equivalent for various example I/O
models but what about model io defined in Chapter 6? Formal reasoning about the effects of
I/O actions is not particularly common in the literature. Butterfield [14] performed a small
case-study comparing the ease of formal reasoning about I/O in C, Haskell and Clean. The
author followed this with a larger case-study [32] in which a simplified functional version
of the UNIX make tool was proved correct. The only other example we can find of I/O
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proofs is associated with the House [45] functional operating system, which lets one state
and verify simple properties of monadic programs which interact with program hardware.

At the moment there are various issues which may make “real world” equivalence proofs
in Curio, though possible, rather cumbersome. These are:

� World state, actions and contexts are domain-based.

� Full equality is perhaps too strong a condition.

� Contexts and the way in which they are split do not obey algebraic properties.

Some of these require slight extensions to pre-condition PREs, which guarantees con-
fluence of program execution but very little else. These possible extensions, defined in
Figure 7.7, will be explained in the following pages and tackled head-on in Chapter 8.

7.5.1 Domain-based I/O models

Our world state, actions and I/O contexts are all domains with a ⊥ element. This is not
a major difficulty but it is unnecessary and sometimes highly unintuitive. For example the
rule

test a m m ∼= m

does not hold, because for action a = ⊥, or for context ⊥, it is almost certain that the left-
hand side will fail. In many cases, also, an equivalence relation involving I/O actions will
not hold simply because of the possibility that the world state is undefined. For example, a
program which adds 1 to an integer, and then subtracts 1 from that integer should be the
same as a program which does nothing.

A domain-theoretic style of proof-assistant was required to reason about actual pro-
grams, but the models themselves would probably be more suited to a constructive, strongly-
normalising approach (that is, the sort of constructive type theory [19] used as the basis for
the Coq [114] theorem prover).

7.5.2 Hybrid program equivalence

We have defined two program equivalence relations, one which quantifies over all contexts
and one which only holds for a given, specific context. For real program fragments, neither
may be entirely satisfactory. Often in the presence of concurrency, one will want to prove
two programs equivalent with respect to a minimum set of permissions.

Define the relation ∼=cv, meaning “equal for all contexts with at least the permissions of
context c”:

m1
∼=cv m2

M= ∀c′∈ς .c vs c′ =⇒ m1
∼=c′ m2

This hybrid relation obeys all the rules common to ∼=c and ∼=, and the following extra
rules:
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mon
M= ∀p∈ρ.∀c∈ς .∀cl∈ς .∀cr∈ς .∀c′∈ς .∀c′l∈ς .∀c′r∈ς .

pf p c = (cl,cr) =⇒ pf p c′ = (c′l,c
′
r) =⇒ c vs c′ =⇒ cr vs c′r ∧ cl vs c′l

lft
M= ∃lft∈ρ.∀c∈ς .∃cr∈ς .pf lft c = (c,cr)

sym
M= ∃sym∈ρ→ρ.∀p∈ρ.∀c∈ς .∀cl∈ς .∀cr∈ς .pf p c = (cl,cr) =⇒ pf (sym p) c = (cr,cl)

asl
M= ∃asl∈(ρ,ρ)→(ρ,ρ).∀p∈ρ.∀c∈ς .∀c1∈ς .∀c2∈ς .∀c3∈ς .

(∃cT∈ς .pf p1 c = (cT,c3) ∧ pf p2 cT = (c1,c2)) =⇒ ∃p1∈ρ.∃p2∈ρ.

asl (p1,p2) = (p′1,p
′
2) ∧ (∃cT∈ς .pf p′1 c = (c1,cT) ∧ pf p′2 cT = (c2,c3))

Figure 7.7: Additional pre-conditions

� If ap c a = True then test a mt mf
∼=cv mt.

� If additional pre-condition mon holds, as defined in Figure 7.7, then

ml1
∼=clv ml2 mr1

∼=crv mr2

ml1 |||
p
∗ mr1

∼=cv ml2 |||
p
∗ mr2

pf p c = (cl,cr)

Once an equivalence result of this form is established then one can wrap both pro-
grams in a series of test commands to make them fully equivalent – if the program has
the requested permissions then it goes ahead, otherwise it performs some sort of common
exception handler.

With a stronger test command this could even be automated as a rule. Imagine a richer
command testC. testC c mt mf would check to see if all the actions permitted by context
c are allowed by the current context. If this existed then the following rule would hold,
linking ∼=cv to full equality, ∼=:

mt1
∼=cv mt2

testC c mt1 mf
∼= testC c mt2 mf

7.5.3 Manipulating concurrent programs

One awkward problem with Curio is that I/O contexts obey effectively no algebraic proper-
ties, and for this reason we don’t possess even the most basic laws for manipulating programs
in the presence of concurrency. Figure 7.7 contains three additional pre-conditions which
we might like pf to obey: sym, lft and asl.

If sym holds, then we can flip the syntactic left-to-right order of concurrency:

ml |||
p
∗ mr

∼= mr |||
sym p
flip (∗) ml

If lft holds, then one can give all permissions to the left-hand side when performing
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concurrency:
m ∼= m |||lftfst (return v)

Finally, if asl holds, and asl (p1,p2) = (p′1,p
′
2), then†

m1 |||
p1∗1 (m2 |||

p2∗2 m3) ∼= (m1 |||
p′2
higher ∗1 ∗2 m2) |||

p′1
$ m3

This is a kind of “associativity” condition for par. The original functions ∗1 and ∗2 are
replaced by higher ∗1 ∗2 and $. The higher-order function higher ∗1 ∗2, when applied to
the return values of m1 and m2, creates a function, and this function is then applied directly
to the result of m3 using the application operator, $.

higher :: (δ → γ → ε) → (α → β → γ) → δ → α → (β → ε)
higher f1 f2 d a = \b -> f1 d (f2 a b)

As an example, model term obeys all of these extra conditions. In the term model, one
may distribute permissions to stdin and stdout whichever way one wants just as long as
access to each individual resource is single threaded:

sym (TCxt bp bg) = TCxt bg bp

lft = TCxt True True

asl (TCxt bp1 bg1, TCxt bp2 bg2) =

(TCxt bp1 bg1, TCxt (bp1 || bp2) (bg1 || bg2))

The definition of asl above is not an obvious one, and in fact it can be far from obvious
whether it holds for any given I/O model. In general, these additional properties suggest
the need for a more appropriate mathematical structure for I/O contexts, and that is the
goal of the next chapter.

7.6 Chapter summary

In this chapter we first gave a big-step semantics for Curio, and then used this to give
a co-inductive definition of equivalence for Curio programs. This notion of equivalence
in effect stated that equivalent programs modify world state in identical ways, and also
respond to arbitrary changes in world state identically. This equivalence relation was shown
to obey the monad laws and be substitutive, and we gave a few sample proofs. The chapter
concluded with a discussion of some of the current limitations to formal reasoning caused
by the definition of our I/O model structure.

Some of these limitations were attributed to the weakness of our precondition PREs –
it guarantees confluence, but little else. In Chapter 8 we design a new structure which
describes I/O contexts more suitably, thereby resolving many of these difficulties.

†One could also imagine mirror-image versions of asl and lft. It is quite easy to show that if sym holds
these may be derived from asl and lft.
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A lattice-theoretic approach to I/O

contexts

The Curio language definition and the specification for I/O models, given in Chapters 2
and 3, were designed mainly with a view to giving a language implementation which permit-
ted a rigorous, machine-checkable confluence proof. However, although the pre-condition
guarantees confluence, the actual way in which contexts are split is left entirely unspecified.
This makes for a general confluence condition, applicable to many situations, but if the type
ρ, used to specify the splitting of contexts, does not obey any algebraic properties then it
will be impossible to prove many interesting program equivalences. This was hinted at in
Chapter 7, when we gave a program

m1 |||
p1∗1 (m2 |||

p2∗2 m3)

and asked how we would determine p′1, p′2, ∗′1 and ∗′2, if any existed, such that

m1 |||
p1∗1 (m2 |||

p2∗2 m3) ∼= (m1 |||
p′2
∗′1 m2) |||

p′1
∗′2 m3

We gave a solution to this for ∗′1 and ∗′2, but not for p′1 and p′2 on account of our lack of un-
derstanding of what p1 and p2 mean. We shall refer to this throughout as the “associativity
problem”.

We therefore need to find a worthy candidate for ρ and pf to replace the existing under-
specified ones. Ideally, this should

� Infer the most general sub-contexts in a given situation.

� Allow the user to specify clearly the permissions he/she would like to give to the
sub-programs and behave “reasonably” when those permissions cannot be granted.

� Obey algebraic properties.

153
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This is the overall goal of this chapter. To do it we must first re-examine I/O con-
texts themselves, so as to describe c1 ♦s c2 at a clearer level of abstraction. We start in
Section 8.1 by considering an API at a high-level, concentrating solely on whether two ac-
tions are order independent (commute with one another), ignoring everything to do with
the state-transformer and world model. Treating contexts as sets of actions, this gives rise
in Section 8.2 to what we call a “maximal lattice” whose elements are contexts. We call
it “maximal” since only the largest “useful” contexts are contained therein – as a quick
example, if an action a commutes with all actions then there is no reason for any context to
forbid a. Each context c has an associated unique inverse context ¬c which is the largest set
of actions which may be safely performed in parallel with c. This is used in Section 8.3 to
provide a direct translation of PREs and other additional axiomatic properties, and give two
possible candidates for the pf function which obey some of them. Unfortunately, we show
how we do not yet have a solution to the associativity problem, and that something more
elaborate will be necessary. Section 8.4 concludes, comparing maximal lattices to other
algebraic structures in the literature.

8.1 An axiomatisation of I/O contexts

We begin by stripping I/O models and I/O contexts down to their bare essentials. This
mostly means abstracting away from the behaviour of actions and treating whether two
actions can be performed concurrently (or commute with one another) at an axiomatic
level. Whether two actions commute with one another now becomes the starting point,
rather than a result proved from a state-transformer.

8.1.1 Definition

Let us assume the following:

a, a1, a2, · · · : A

c, c1, c2, · · · : PA

¯ : A → A → B

a1 ¯ a2 ⇔ a2 ¯ a1

¬ : PA → PA

¬c
M= {a ∈ A | ∀a1∈c.a¯ a1}

The set A represents a fixed, finite∗, global set of actions. Variables a, a1, a2 · · · are
individual actions in A, and c, c1, c2 · · · denote subsets of a A, which can be thought of

∗We could probably generalise this to infinite sets with a little effort, but the simpler, finite case suffices
for all examples in this chapter.



8.1. An axiomatisation of I/O contexts 155
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Figure 8.1: I/O model “RSS0”

as contexts. a1 ¯ a2 indicates whether a1 commutes with a2, and we assume that ¯ is a
symmetric relation.

The unary operator ¬ gives the inverse of a context. For a context c, ¬c denotes the
largest subset of A such that all actions a ∈ c commute with all actions a1 ∈ ¬c. So if a
program is running in context c and another program is running, concurrently, in context
¬c (or a subset of ¬c), then execution will still be deterministic.

We also assume the existence of the standard set operators ∪ (“union”) and ∩ (“inter-
section”), and a unary complement operator ∼ which obeys the property ∼c = A\c. It
is well-known [26] that 〈∩,∪,∼, A, ∅〉 forms a Boolean algebra, a special kind of lattice,
obeying the following properties:

� Associativity and commutativity of ∩ and ∪.

� Idempotence. a ∩ a = a = a ∪ a

� Distributivity. a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c) and a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c)

� Absorption. a ∩ (b ∪ a) = a = a ∪ (b ∩ a)

� de Morgan laws. ∼(c1 ∪ c2) = ∼c1 ∩ ∼c2 and ∼(c1 ∩ c2) = ∼c1 ∪ ∼c2

� Complements. ∼∼c = c, c ∪ ∼c = A, c ∩ ∼c = ∅, ∼∅ = A and ∼A = ∅

Figures 8.1 and 8.2 contain small examples which will be used throughout this chap-
ter. Although they are slightly contrived, they are non-trivial and have a good practical
interpretation.

In model RSS0, in Figure 8.1, the world state is a communication buffer and one can
read/write integers to and from it. However, as well as permitting concurrent “receive”s
and “send”s, we also want to allow multiple processes to concurrently send the value 0 –
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Figure 8.2: I/O model “RSF ST ”

something permitted only if 0s can be sent. This is to guarantee that the receiving process
cannot tell the difference. We identify three basic actions, or equivalence classes of actions:

� R: receive the next integer from the buffer.

� S: send any non-zero integer along the buffer. (i.e. the equivalence class of all “send”
actions which communicate non-zero integers).

� S0: send 0 along the buffer.

The relation ¯ for these actions can be seen in both table and graph form in Figure 8.1.
R commutes with both S and S0 but not with itself, and S0 commutes with itself – and
that is all. Also included is the Boolean Algebra of subsets of {R, S, S0}. The behaviour of
the function ¬ is indicated with a dotted arrow and, to save space, we shorten the element
names by removing braces and commas. For example, the sets {R, S0} and {R,S, S0} are
shortened to RS0 and RSS0, but ∅ remains unchanged.

Model RSF ST in Figure 8.2 is only slightly different. Once again the world state is a
communication buffer, but only Boolean values may be sent along it. The three actions are:

� R: receive the next Boolean value.

� SF : send “False” along the buffer.

� ST : send “True” along the buffer.

A receive commutes with any send, SF commutes with itself and ST also commutes with
itself.



8.1. An axiomatisation of I/O contexts 157

8.1.2 Relation to I/O models

All of this information may be extracted directly from a standard (confluent) I/O model:

� The set A can be taken to be the elements of the domain α, or a suitable finite
equivalence class of those elements. To make the presentation clearer we will usually
ignore uninteresting elements of α, such as ⊥.

� Then define the ¯ operator as either of the following: (it should be clear that both of
these are symmetric definitions)

a1 ¯ a2
M= a1 |||s a2 ∧ allys(a1, a2) ∧ allys(a2, a1)

a1 ¯ a2
M= ∃c1∈ς .∃c2∈ς .ap a1 c1 = True ∧ ap a2 c2 = True ∧

(∃p∈ρ.∃c∈ς .pf p c = (c1,c2) ∨ pf p c = (c2,c1))

The difference between the first and the second is slightly subtle. The first definition
defines two actions to commute if they really do commute in the model; the second is weaker
and only defines actions to commute if the I/O model allows them to be performed concur-
rently (and since the I/O model is confluent this will imply that they really do commute).

We can also prove a “completeness” result for this particular axiomatisation. It is
reasonable to ask whether all symmetric relations ¯ on a set A have some corresponding
state-transformer on a world state? Can we be certain if the relation ¯ is extracted from
an I/O model that it will just be symmetric and not constrained in any further way?

The following simple construction shows that this is the case. We show it to be true for
all finite sets A, but it should generalise easily to countably infinite sets.

Lemma 8.1.1. For any finite set A and symmetric relation ¯ : A → A → B there exists a
state-transformer af :: A → ω → (ω,ν) such that a1 ||| a2 (under af) if and only if a1¯a2.

Proof. Let n be the number of elements in A. We refer to these n actions as a1, a2, · · · , an.
Now, define the types ν and ω as follows:

ν
M= Int

ω
M= ( Int,Int, · · · ,Int︸ ︷︷ ︸

n times

)

The world state is n integer counters, and each action aj returns the value of the jth
counter and increments zero or more of the other counters. The state-transformer is defined
in terms of incr¯ : Int → ω → ω. The function incr¯ j defines the effect of action aj on
world state: for any counter ik, if aj ¯ ak does not hold, then ik is incremented. Action aj
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always returns the (initial) value ij of the jth counter.

wa a w
M= False

incr¯ : Int → ω → ω

incr¯ j (i1,i2, · · · ,in) M= (if aj ¯ a1 then i1 else i1 + 1,

if aj ¯ a2 then i2 else i2 + 1,
...

if aj ¯ an then in else in + 1)

af aj (i1,i2, · · · ,in) M= (incr¯ j (i1,i2, · · · ,in),ij)

It can be shown easily that incr¯ j ◦ incr¯ k = incr¯ k ◦ incr¯ j. This is because
adding either 0 or 1 to a counter is order independent, and because the effect of an action
on a particular counter (i.e. whether it increments it) is constant. So if we were to disregard
return values then all actions would commute with one another – it is the actions’ return
values alone which may be affected by ordering.

Assuming a family of projection functions π1, π2, · · ·πn which return the 1st, 2nd, · · ·
nth elements of an n-tuple, then the following fact is also easily shown:

πj(incr¯ k w) =

{
πj(w) , if aj ¯ ak

πj(w) + 1 , if aj /̄ ak

Say the world state is (i1,i2, · · · ,in) and we wish to perform both actions aj and ak.
If aj ¯ ak then neither actions will affect ij and ik, so regardless of the ordering, aj and ak

will return ij and ik respectively. If aj /̄ ak, then performing aj and then ak will give return
values ij and ik + 1 respectively, whereas performing ak and then aj will give return values
ik and ij + 1.

We want to prove that aj ||| ak ⇐⇒ aj ¯ ak. The left-hand side is:

∀w∈ω.∀w2∈ω.wa al w = False ∧ wa ar w = False =⇒ ∀vj∈ν .∀vk∈ν .

(∃w1∈ω.af aj w = (w1,vj) ∧ af ak w1 = (w2,vk))

⇐⇒
(∃w1∈ω.af ak w = (w1,vk) ∧ af aj w1 = (w2,vj))

No actions are stalled (wa a w = False for all a, w), and since the resultant world state is
always order independent, this becomes

∀w∈ω.∀vj∈ν .∀vk∈ν .

(vj = πj(w) ∧ vk = πk(incr¯ j w)) ⇐⇒ (vk = πk(w) ∧ vj = πj(incr¯ k w))
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If aj ¯ ak, then this is a proof that (vj = πj(w) ∧ vk = πk(w)) ⇐⇒ (vk = πk(w) ∧ vj =
πj(w))), which is always true, and therefore corresponds to the truth value of aj ¯ ak. If
aj /̄ ak then it is a proof of (vj = πj(w)∧vk = πk(w)+1) ⇐⇒ (vk = πk(w)∧vj = πj(w)+1)),
which is false, corresponding to the truth value of aj ¯ ak.

As an example, if the above construction was used with the RSS0 model, it would result
in the following state-transformer:

af R (iR,iS,iS0) = ((iR + 1,iS,iS0),iR)

af S (iR,iS,iS0) = ((iR,iS + 1,iS0 + 1),iS)

af S0 (iR,iS,iS0) = ((iR,iS + 1,iS0),iS0)

8.1.3 Properties of inversion

The remainder of this section is spent proving a collection of properties about ¬.

Proposition 8.1.1. ¬∅ = A

Proof. ¬∅ = {a ∈ A | ∀a1∈∅.a¯ a1} = {a ∈ A | True} = A.

(It should be noted that ¬A is the set of actions which commute with all other actions,
and therefore is not necessarily equal to ∅).

Proposition 8.1.2. c ⊆ ¬¬c

Proof. Expanding the definition, ¬¬c = {a ∈ A | ∀a1∈A.(∀a2∈c.a1 ¯ a2) =⇒ a ¯ a1}. We
must therefore prove that if a ∈ c, then for all a1 such that a1 commutes with all elements
of c, a ¯ a1. This holds, because since every a1 commutes with all elements of c, a1 also
commutes with a, being an element of c.

Proposition 8.1.3. ¬(c1 ∪ c2) = ¬c1 ∩ ¬c2

Proof.

¬(c1 ∪ c2) = {a ∈ A | ∀a1∈c1∪c2 .a¯ a1}
= {a ∈ A | (∀a1∈c1 .a¯ a1) ∧ (∀a1∈c2 .a¯ a1)}
= {a ∈ A | (∀a1∈c1 .a¯ a1)} ∩ {a ∈ A | (∀a1∈c2 .a¯ a1)}
= ¬c1 ∩ ¬c2

Proposition 8.1.4. If c1 ⊆ c2 then ¬c2 ⊆ ¬c1



160 Chapter 8. A lattice-theoretic approach to I/O contexts

Proof. If c1 ⊆ c2 then c1 ∪ c2 = c2, which implies ¬(c1 ∪ c2) = ¬c2. Using Proposition 8.1.3,
prove ¬c1 ∩ ¬c2 = ¬c2, which means that ¬c2 ⊆ ¬c1.

Lemma 8.1.2. If c1 ⊆ c2 then ¬¬c1 ⊆ ¬¬c2

Proof. Apply Proposition 8.1.4 twice successively: c1 ⊆ c2 implies ¬c2 ⊆ ¬c1, which implies
¬¬c1 ⊆ ¬¬c2.

Lemma 8.1.3. ¬c = ¬¬¬c

Proof. Prove two separate inequalities:

� ¬c ⊆ ¬¬¬c: A direct consequence of Proposition 8.1.2 ((¬c) ⊆ ¬¬(¬c))

� ¬¬¬c ⊆ ¬c: From Proposition 8.1.2 we know that c ⊆ ¬¬c, so apply Proposition 8.1.4
to prove that ¬¬¬c ⊆ ¬c.

8.2 Defining a maximal lattice

In this section we define a sub-lattice of the existing Boolean algebra of I/O contexts. The
elements of this sub-lattice are those contexts c such that c = ¬c1, for some c1.

The basic insight behind this manoeuvre is that we want to identify those “core” contexts
c for which ¬¬c = c, and if c = ¬c1 for some c1 then this is true. To elaborate, given a
context c, ¬c denotes the actions that may be run in parallel with the actions in c. However,
¬c also denotes the actions which may be run in parallel with ¬¬c since, from Lemma 8.1.3,
¬(¬¬c) = ¬c. Therefore if c ⊂ ¬¬c then context c has no real purpose on its own, unless
one wants to deliberately constrain the actions one performs, because by replacing it with
¬¬c one then expands the set of actions it is capable of performing without restricting the
set of actions that may be executed concurrently with it.

As an example, in the model RSS0 there are two contexts such that c ⊂ ¬¬c: S and
RS. The double inversion of these are SS0 and RSS0 respectively. In both cases there is
nothing to be gained by forbidding S0, since if one can send any non-zero integer then it
will always be safe to send 0 also, so contexts S or RS should be excluded.

To be absolutely clear about whether we are talking about a context c in PA or one in
the sub-lattice we annotate context variables with + to indicated that the context is the
inversion of some other context. Contexts in the sub-lattice are of the form c+, c+

1 , c+
2 , · · · .

In fact, c+ is really just shorthand for ¬c, and the two will be used interchangeably.
That the set of contexts {c ∈ PA | c = ¬¬c} forms a sub-lattice is an easy consequence

of Tarski’s Fixpoint Theorem [110]. From Lemma 8.1.2, applied twice, we know that c1 ⊆ c2

implies ¬¬c1 ⊆ ¬¬c2, which means that the function λc.¬¬c is monotonic. Therefore, the
set of c such that c = ¬¬c (the set of fixpoints of λc.¬¬c) forms a sub-lattice of the existing
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lattice/Boolean algebra. Tarski’s original proof was not constructive, merely stating that
a sub-lattice exists, so we prove the details in full giving a precise definition of t and u.
A constructive proof of Tarksi’s theorem was given by Cousot and Cousot in [21], but it is
considerably more complex, so we just prove the result directly.

Theorem 8.2.1. Given a set A and a symmetric relation ¯ : A → A → B, then u and t
form a lattice over the set A, with zero O and unit 1, where

A M= {c ∈ PA|∃c1∈PA.c = ¬c1} (⊆ PA)

c+
1 t c+

2
M= ¬¬(c+

1 ∪ c+
2 )

c+
1 u c+

2
M= c+

1 ∩ c+
2

1
M= ¬∅

O
M= ¬¬∅

¬ : PA → PA

¬c
M= {a ∈ A | ∀a1∈c.a¯ a1}

and ¬ is a de Morgan involution on the lattice (namely, ¬¬c+ = c+, ¬(c+
1 tc+

2 ) = ¬c+
1 u¬c+

2 ,
¬(c+

1 u c+
2 ) = ¬c+

1 t ¬c+
2 and ¬O = 1).

Proof. Firstly, are the types of t,u,¬,O,1 correct? That is, when given some ¬c1, ¬c2 as
parameters do they then return ¬c3, for some c3? This is clearly true for ¬, and t, O and
1 are type-correct by definition. u can be shown to be type-correct using Proposition 8.1.3:
c+
1 u c+

2 = ¬c1 ∩ ¬c2 = ¬(c1 ∪ c2).

We prove now that ¬ is a de Morgan involution.

� Inversion: ¬¬c+
1 = ¬¬¬c1 = (Lemma 8.1.3) = ¬c1 = c+

1 .

� de Morgan 1: ¬(c+
1 t c+

2 ) = ¬¬¬(c+
1 ∪ c+

2 ) = (Lemma 8.1.3) = ¬(c+
1 ∪ c+

2 ) = (Propo-
sition 8.1.3) = ¬c+

1 ∩ ¬c+
2 = ¬c+

1 u ¬c+
2 .

� de Morgan 2: ¬(c+
1 u c+

2 ) = (Inversion) = ¬(¬¬c+
1 u ¬¬c+

2 ) = (de Morgan 1) =
¬¬(¬c+

1 t ¬c+
2 ) = (Inversion) = ¬c+

1 t ¬c+
2 .

� Zero Inversion: ¬O = ¬¬¬∅ = ¬∅ = 1

Since u = ∩, it is immediate that u is commutative, associative and idempotent, and
because u is the de Morgan dual of t under ¬, the commutativity, associativity and idem-
potence of t follows directly from that of u:

� Commutativity of t: c+
1 tc+

2 = (Inversion) = ¬¬(c+
1 tc+

2 ) = (de Morgan 1) = ¬(¬c+
1 u

¬c+
2 ) = (Commutativity of u) = ¬(¬c+

2 u ¬c+
1 ) = (de Morgan 1) = ¬¬(c+

2 t c+
1 ) =

(Inversion) = c+
2 t c+

1
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� Associativity of t: (c+
1 t c+

2 ) t c+
3 = (Inversion) ¬¬((c+

1 t c+
2 ) t c+

3 ) = (de Morgan 1)
= ¬((¬c+

1 u¬c+
2 )u¬c+

3 ) = (Associativity of u) = ¬(¬c+
1 u (¬c+

2 u¬c+
3 )) = (de Morgan

2) = ¬¬c+
1 t (¬¬c+

2 t ¬¬c+
3 ) = (Inversion) = c+

1 t (c+
2 t c+

3 )

� Idempotence of t: c+ t c+ = (Inversion) = ¬¬(c+ t c+) = (de Morgan 1) = ¬(¬c+ u
¬c+) = (Idempotence of u) = ¬(¬c+) = (Inversion) = c+.

Next the absorption rules need to be proved:

� Absorption 1: c+
1 t (c+

1 u c+
2 ) = ¬¬(c+

1 ∪ (c+
1 ∩ c+

2 )) = ¬¬c+
1 = c+

1

� Absorption 2: c+
1 u (c+

1 t c+
2 ) = ¬¬(c+

1 u (c+
1 t c+

2 )) = (de Morgan 1 & 2) = ¬(¬c+
1 t

(¬c+
1 u ¬c+

2 )) = (Absorption 1) = ¬(¬c+
1 ) = c+

1

Finally:

� 1 t c+ = ¬¬(¬∅ ∪ c+) = ¬¬(A ∪ c+) = ¬¬A = A = ¬∅ = 1

� 1 u c+ = ¬∅ ∩ c+ = A ∩ c+ = c+

� O t c+ = ¬¬(O t c+) = ¬(1 u ¬c+) = ¬(¬c+) = c+

� O u c+ = ¬¬(O u c+) = ¬(1 t ¬c+) = ¬1 = O

Such a structure extracted from a set A and relation ¯ is called the maximal lattice

of ¯, or just, in short, a maximal lattice. A maximal lattice is said to be of order n if its
underlying set A has n elements.

Maximal lattices are not necessarily distributive. Instead, the following weaker rules
hold:

Proposition 8.2.1.

(i) (c+
1 u c+

2 ) t (c+
1 u c+

3 ) ⊆ c+
1 u (c+

2 t c+
3 )

(ii) c+
1 t (c+

2 u c+
3 ) ⊆ (c+

1 t c+
2 ) u (c+

1 t c+
3 )

Proof. To prove (i), first rewrite the left-hand side, making use of the distributive law for ∪
and ∩:

(c+
1 u c+

2 ) t (c+
1 u c+

3 ) = ¬¬((¬c1 ∩ c+
2 ) ∪ (¬c1 ∩ c+

3 ))

= ¬(¬(¬c1 ∩ c+
2 ) ∩ ¬(¬c1 ∩ c+

3 ))

= ¬((¬¬c1 ∪ ¬c+
2 ) ∩ (¬¬c1 ∪ ¬c+

3 ))

= ¬(¬¬c1 ∪ (¬c+
2 ∩ ¬c+

3 ))
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The right-hand side also rewrites as follows:

c+
1 u (c+

2 t c+
3 ) = ¬c1 ∩ ¬¬(c+

2 ∪ c+
3 )

= ¬(c1 ∪ ¬(c+
2 ∪ c+

3 ))

= ¬(c1 ∪ (¬c+
2 ∩ ¬c+

3 ))

Now make the simple observation that c1 ⊆ ¬¬c1. Therefore, for any c4, c1∪c4 ⊆ ¬¬c1∪c4,
which implies that ¬(¬¬c1∪c4) ⊆ ¬(c1∪c4). So to prove inequality (i), substitute ¬c+

2 ∩¬c+
3

for c4. Its dual (ii) follows without difficulty.

8.2.1 Examples

The maximal lattice for the RSS0 model is as below. The elements RS and S have been
removed, leaving the six useful contexts. As with the previous diagram a dotted line indicates
the inversion ¬c+ of a context c+, but since ¬¬c+ = c+ in maximal lattices there is no longer
any need to show a direction using an arrowhead.

RSS0

SS0 RS0

S0 R

∅
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44
4

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

44
44

44
4







(The maximal lattice for the RSF ST model is identical to the original Boolean algebra
– each context is the inversion of some other context).

Figure 8.3 contains the six different maximal lattices (up to isomorphism) which are
order 2. In the figure, each lattice is accompanied on its left-hand side by the undirected
graph of its ¯ relation.

These six lattices are

� XY 1: no concurrency is permitted whatsoever, so the only contexts are XY (every-
thing) and ∅ (nothing).

� XY 2: X commutes with itself, but Y doesn’t commute with anything. A context X is
necessary because without it one could not exploit this concurrency – ∅ allows nothing
and XY allows too many actions to permit (useful) concurrency. But context Y is
not necessary, because if a context allows action Y then it might as well allow X too.
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Figure 8.3: The six maximal lattices of order 2

� XY 3, XY 4: we need to include contexts which represent all four subsets of {X, Y }.

� XY 5: action X commutes with all actions (including itself), so there is no reason to
forbid it, but action Y must be run in a single threaded fashion. XY forms the top
element of the lattice, and X the bottom element.

� XY 6: all actions commute with all actions, so concurrency is not constrained in any
way. Only one context is needed, XY , and this permits all actions.

Figure 8.4 contains two examples of non-distributive maximal lattices. It is a well-known
theoretical result (referred to as the M3 − N5 Theorem in [26]) that all non-distributive
lattices contain a sub-lattice whose diagram is like either the upper or lower lattice in
Figure 8.4. Taking the upper lattice: Y t (X u Z) = Y t ∅ = Y , but (Y tX) u (Y t Z) =
XY Z uXY Z = XY Z. Therefore Y t (X u Z) 6= (Y tX) u (Y t Z).

These examples also show why we cannot define t to be ∪. In both lattices, X t Y =
XY Z but X ∪ Y = XY , and XY is not an element of the maximal lattice. It is for this
reason that, c+

1 t c+
2 is defined to be ¬¬(c+

1 ∪ c+
2 ). Clearly, if t is indistinguishable from

∪ for a maximal lattice then that lattice is distributive, since ∪ and ∩ distribute over each
other in a Boolean Algebra.

Figure 8.5 contains the maximal lattices of four of the five small examples given in
Chapter 2, namely lock, ivar, istr and term. The model for bffr was omitted since it is
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Figure 8.4: Two non-distributive maximal lattices

R ≡ ReadI
W ≡ WriteI i

P ≡ PutC c
G ≡ GetC

L ≡ Lock
U ≡ UnLock
Z ≡ Wait

ςIStr = RW

ςLock =

LUZ

UZ

ςTerm =

PG

P G

∅
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ςIVar =

RW

R

∅

Figure 8.5: Maximal lattices for example I/O models
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Figure 8.6: Maximal lattice for model “ERSWZ”

isomorphic to that of term.

The final and largest maximal lattice example which we shall give can be found in
Figure 8.6. This is a send/receive buffer model with three additional actions, E, W and Z.

� R: receive an item from the buffer.

� S: send an item along the buffer.

� E: return whether the buffer is empty.

� W : wait until the buffer is non-empty.

� Z: wait until the buffer is empty.

R and S commute with one another, as do R and Z, and S and W . Additionally,
E, W and Z all commute with one another. The resultant maximal lattice is far from
obvious yet it may be computed directly from the table of ¯. The contexts SZ and RW

are the traditional “sender” and “receiver” contexts, yet the lattice also exposes further
opportunities for concurrency.

8.3 Mechanisms for splitting contexts

We are now able to rewrite PREs and all the other axiomatic properties of I/O models solely
using operations on a maximal lattice. By abstracting I/O models in this way we can give
some candidates for a general-purpose algorithm for the splitting of contexts.

The original definition of PREs from Chapter 2 is as follows:

PREs
M= ∀p∈ρ.∀c∈ς .∀cl∈ς .∀cr∈ς .pf p c = (cl,cr) =⇒ cl vs c ∧ cr vs c ∧ cl ♦s cr
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We now replace the type ς with A, the elements of a maximal lattice, and give a new
definition for ♦:

cl ♦s cr
M= cl ⊆ ¬cr ∧ cr ⊆ ¬cl

This is the most obvious choice: two processes may be run concurrently in contexts cl

and cr respectively if the actions in cl are a subset of those allowed in parallel with cr, and
vice-versa.

The pre-condition now becomes:

∀p∈ρ.∀c∈A.∀cl∈A.∀cr∈A.pf p c = (cl,cr) =⇒ cl ⊆ c ∧ cr ⊆ c ∧ cl ⊆ ¬cr ∧ cr ⊆ ¬cl

The other pre-conditions also translate easily as follows, by replacing ς with A:

mon
M= ∀p∈ρ.∀c∈A.∀cl∈A.∀cr∈A.∀c′∈A.∀c′l∈A.∀c′r∈A.

pf p c = (cl,cr) =⇒ pf p c′ = (c′l,c
′
r) =⇒ c ⊆ c′ =⇒ cr ⊆ c′r ∧ cl ⊆ c′l

lft
M= ∃lft∈ρ.∀c∈A.∃cr∈A.pf lft c = (c,cr)

sym
M= ∃sym∈ρ→ρ.∀p∈ρ.∀c∈A.∀cl∈A.∀cr∈A.pf p c = (cl,cr) =⇒ pf (sym p) c = (cr,cl)

asl
M= ∃asl∈(ρ,ρ)→(ρ,ρ).∀p∈ρ.∀c∈A.∀c1∈A.∀c2∈A.∀c3∈A.

(∃cT∈A.pf p1 c = (cT,c3) ∧ pf p2 cT = (c1,c2)) =⇒ ∃p1∈ρ.∃p2∈ρ.

asl (p1,p2) = (p′1,p
′
2) ∧ (∃cT∈A.pf p′1 c = (c1,cT) ∧ pf p′2 cT = (c2,c3))

The central question now concerns what the type ρ should be and what mathematical
expression pf should encode.

8.3.1 Context Splitter A

As the simplest useful context-splitter, consider the following:

ρ = A
pfA c+

p c+ = (c+ u c+
p ,c

+ u ¬c+
p )

One specifies how a context c is to be split by supplying a second context, c+
p . The

left-hand context becomes c+ u c+
p and the right-hand context becomes c+ u ¬c+

p . This
immediately guarantees that no child context will permit actions forbidden by the parent
(both are ⊆ c+) and that both left and right child context will commute with each other.

Theorem 8.3.1. The function pfA, when used to split contexts, obeys PREs, mon, lft and
sym, where lft

M= 1 and sym c
M= ¬c.

Proof. Treat each individual pre-condition in turn:

� PREs: It is trivially true that c+ u c+
p ⊆ c+ and c+ u ¬c+

p ⊆ c+. To prove that
the left-hand child context only allows actions which may be run in parallel with the
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right-hand child context, we must show that c+ u c+
p ⊆ ¬(c+ u¬c+

p ), which, using the
de Morgan involution, is equivalent to c+ u c+

p ⊆ ¬c+ t c+
p . This is true since the

left-hand side is no larger than c+
p and the right-hand side is no smaller than c+

p .

The proof that c+ u ¬c+
p ⊆ ¬(c+ u c+

p ) is similar.

� mon: if c+ ⊆ c′+ then it is clear that both c+uc+
p ⊆ c′+uc+

p and c+u¬c+
p ⊆ c′+u¬c+

p .

� lft: for any context c+, pfA 1 c+ = (c+,O), since c+ u ¬1 = c+ u O = O and
c+ u 1 = c+.

� sym: for any context c+, if pfA c+
p c+ = (c+

l ,c
+
r ) then pfA ¬c+

p c+ = (c+
r ,c

+
l ) because

¬¬c+
p = c+

p .

This context splitter does not obey asl. Consider the RSF ST model. Say a program
splits the 1 context RSF ST into ∅, ∅ and RST in the following manner:

RSF ST

cp
+ = ST

RSF ST u ST

=ST

cp
+ = SF

ST u SF

= ∅
ST u ¬SF

= ∅

RSF ST u ¬ST

= RST

There is no way that these three contexts can be obtained from RSF ST as a right-leaning
tree. In order to guarantee that the left-most context is ∅ we must give all permissions to
the right-hand side at the top level. But having done this there is no means of making
one sub-context equal RST without making the other equal ST , as the following diagram
demonstrates:

RSF ST

cp
+ = ∅

RSF ST u ∅
= ∅

RSF ST u ¬∅
= RSF ST

cp
+ = ST

RSF ST u ST

= ST 6= ∅
RSF ST u ¬ST

= RST
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8.3.2 Context Splitter B

In the previous example it could be noted that when attempting to split context ST by
supplying a parameter SF it yielded two ∅ contexts even though ST would have been possible
in both. That is, the most powerful sub-context was not being inferred.

The idea behind the modified context splitter in this section is that a program running
in c+, or any sub-context of c+, can always safely perform an action in context c+ u ¬c+.
So Splitter A is changed to take this into account:

ρ = A
pfB c+

p c+ = ((c+ u ¬c+) t (c+ u c+
p ),(c+ u ¬c+) t (c+ u ¬c+

p ))

Theorem 8.3.2. The function pfB obeys PREs, lft and sym, where lft M= 1 and sym c
M= ¬c.

Proof.

� PREs: it is trivially true that (c+u¬c+)t(c+uc+
p ) ⊆ c+ and (c+u¬c+)t(c+u¬c+

p ) ⊆ c+

since both left-hand sides can be no greater than c+.

To prove that the left-hand child context only allows actions which may be run in
parallel with the right-hand child context, we must show that

(c+ u ¬c+) t (c+ u c+
p ) ⊆ ¬((c+ u ¬c+) t (c+ u ¬c+

p ))

Using the de Morgan laws, rewrite the right-hand side as follows:

(c+ u ¬c+) t (c+ u c+
p ) ⊆ (¬c+ t c+) u (c+ t c+

p )

From Proposition 8.2.1, the weakened distributive law, we know that ¬c+t(¬c+uc+
p ) ⊆

(¬c+ t c+) u (¬c+ t c+
p ), so we need only prove that

(c+ u ¬c+) t (c+ u c+
p ) ⊆ ¬c+ t (c+ u c+

p )

This is straightforward, and is effectively a proof that (a u b) t c ⊆ b t c. The proof
for the other side is similar.

� lft: for any context c+, pfB 1 c+ = (c+,c+ t ¬c+). The right-hand side is not given
the minimum number of permissions. Instead it permits only those actions in c+ that
also commute with all actions in c+.

� sym: for any context c+, if pfB c+
p c+ = (c+

l ,c
+
r ) then pfB ¬c+

p c+ = (c+
r ,c

+
l ) once

again because ¬¬c+
p = c+

p .
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This context splitter does not obey asl either, however. Once again consider the RSF ST

model. Say a program splits the 1 context RSF ST into RSF , SF and ∅ in the following
manner:

RSF ST

cp
+ = RSF ST

(RSF ST uRSF ST ) t ∅
= RSF ST

cp
+ = RSF

(RSF ST uRSF ) t ∅
= RSF

(RSF ST u ¬RSF ) t ∅
= SF

(RSF ST u ¬RSF ST ) t ∅
= ∅

When one tries to transform this into a right-leaning tree problems are encountered.
We must make the immediate left-hand context RSF so therefore the right-hand side must
become SF . At this point, since SF u¬SF = SF , we are unable to restrict a sub-context to
be ∅:

RSF ST

cp
+ = RSF

(RSF ST uRSF ) t ∅
= RSF

(RSF ST u ¬RSF ) t ∅
= SF

cp
+ = ∅

(SF u ∅) t (SF u ¬SF )
= SF

(SF u ¬∅) t (SF u ¬SF )
= SF 6= ∅

This second context splitter does not obey mon either. A quick counter-example is that
although both

pfB (RSF ST ) (RSF ST ) = (RSF ST,∅)
pfB (RSF ST ) (RSF ) = (RSF,SF)

and RSF ⊆ RSF ST it is not true that SF ⊆ ∅.
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8.3.3 Discussion

We have demonstrated two high-level mechanisms for splitting I/O contexts but neither
solve the associativity problem. The example from Splitter B indicates more clearly what
the fundamental difficulty is. If we split the context RSF ST into (RSF ST,∅) then the ∅ is
necessary. But if RSF ST is further split into (RSF,SF) then immediately the original ∅
becomes too weak since it could be replaced with SF . Therefore it seems that the notion
of “most general sub-context” is an inherently global one and not suited to this sort of
partitioning.

It should be noted that this problem cannot be solved by somehow building a larger
structure which contains the contexts missing from the maximal lattice. This is because, in
the example, RSF ST ’s maximal lattice isn’t missing any contexts – the fact that a maximal
lattice is a sub-lattice of the original Boolean algebra has nothing whatsoever to do with
this. In the same way, the non-distributivity of maximal lattices is a separate, unrelated
problem because model RSF ST is distributive.

It is hard to see how this associativity problem could be solved without significant
modifications (perhaps there is a simple, elegant solution but I cannot guess what it might
be). There are three possible directions:

� Develop a higher-order notion of a context. This would mirror the approach taken in
Chapter 7. A context would then become one of two things – either a “real” context
or a function which computes a real context given some other information.

� Tighten the properties which maximal lattices obey, thereby excluding certain I/O
models which cause the above problem. It is not obvious how much this would restrict
the flexibility our our models, however.

� Use an n-way par operation and an n-way context splitter, instead of binary ones.

8.4 Future directions and related work

This chapter describes a mathematical structure which we believe is sufficiently general
to allow one to model the essence of any system of I/O contexts, including those shown
previously in this dissertation. Through this generality one can describe the aspects of
I/O contexts which are most critical while ignoring implementation details that are of little
importance.

There is quite a lot of evidence to suggest that maximal lattices are the correct abstrac-
tion for this task. That we can give entirely general algorithms for splitting any context,
allowing us to unify notions such as “all permissions” and “minimum permissions”, is rea-
son enough to believe that maximal lattices have some merit. And, importantly, as argued
above, the associativity problem is not really related to this choice of structure.
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Ideally, maximal lattices should be embedded directly within the language semantics
as a replacement for the functions ap and pf. So this chapter really just constitutes an
extended future-work section. The current language semantics does have its benefits. Most
notably, the confluence proof was machine-verified and it is unclear how maximal lattices
could be embedded into a domain theoretic LCF-style theorem prover.

8.4.1 Similarities to other algebras

The author was unable to find a previously studied lattice or algebra that obeys the exact
properties of maximal lattices as outlined in this chapter. One reason for this may be that
effectively all mathematically interesting lattices are distributive.

If a maximal lattice is distributive then it forms a quasi-Boolean algebra (or de Morgan
algebra). In a quasi-Boolean algebra t, u and ¬ obey all the properties of a Boolean algebra
with the exception of the laws of the excluded middle (so it is not true that c+ t ¬c+ = 1

or c+ u ¬c+ = O). Quasi-Boolean algebras were fully classified in [11], and a description of
their properties may be found in [100]. These algebras have been used to model many-valued
extensions to classical logic.

Our original Boolean Algebra contained the complement operator ∼. This operator
itself cannot be used directly since it may not preserve membership of the sub-lattice. Some
structures, however, such as ÃLukasiewicz n-valued algebras [13], solve this by instead using
a finite family of related complement operators which are slightly weaker.

The author investigated this, defining two unary operators M and O as follows:

Oc
M= ¬¬∼c Mc

M= ¬∼¬c

These gave rise to some intriguing results:

Theorem 8.4.1. The operators M and O obey the following properties:

(i) O¬c+ = ¬Mc+

(ii) O(c+
1 u c+

2 ) = Oc+
1 t Oc+

2

(iii) M(c+
1 t c+

2 ) = Mc+
1 u Mc+

2

(iv) c+ t Oc+ = 1

(v) c+ u Mc+ = O

(vi) Mc+ ⊆ Oc+

(vii) MMMc+ = Mc+

(viii) OOOc+ = Oc+

(ix) OOc+ ⊆ c+ ⊆ MMc+

(x) M1 = O = O1
(xi) MO = 1 = OO
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Proof. See Appendix B.1.

These extra operators of maximal lattices sadly have little in common with ÃLukasiewicz
algebras. One main problem is that M and O do not both distribute over t and u. The
proofs of the above properties are included in this dissertation mainly for curiosity value.

Another well-known weakening of a Boolean algebra is a Heyting algebra [69], primarily
famous as an algebraic model of intuitionistic logic. In a Heyting algebra it is not true that
xt¬x = 1 but, unlike with a de Morgan algebra, xu¬x = O holds, and this is usually not
true of maximal lattices. Heyting algebras are also always distributive.

Despite being fundamentally different to maximal lattices, Heyting algebras have a sur-
prising similarity in a smaller way. In Heyting algebras, ∼∼∼x = ∼x, x ⊆ ∼∼x and
x ⊆ y =⇒ ∼y ⊆ ∼x. The ¬ operator obeys these very properties on our original Boolean
algebra before we remove elements to form a maximal lattice, and M obeys these properties
for a maximal lattice.





Chapter 9

Conclusions and future work

9.1 Conclusions

We have presented a detailed description of the Curio language. This language handles
the semantics of I/O and concurrency by modelling the API explicitly. It was shown how
one can model the Haskell 98 I/O interface using this approach and how Curio preserves
many of the existing semantic properties which functional languages enjoy.

It is unusual for a language’s semantics for I/O to include an entirely general-purpose
model of the API. Since the over-sequencing problem with monadic I/O is so dependent on
the specifics of the actual API this seems to be a legitimate and logical starting point – yet
it is a solution which we have not seen. This dissertation sketches how this may be achieved
in a rudimentary yet powerful fashion.

Another quite unusual feature is how we use state-transformers to model concurrency and
communication. These state-transformers are somewhat unusual since it is still really just
individual actions that are modelled with actual state-transformers, not whole programs.
But it does give rise to interesting notions of program equivalence in Chapter 7.

We advocate the use of proof tools, where possible, to verify theoretical results. The
Sparkle proof-assistant was particularly suited to proving properties about Curio because
almost all of the features of Curio are inherited directly from the metalanguage.

9.2 Future work

Curio is still largely at the proof-of-concept stage. It does not yet have an implementation
which lets the user write real programs and, for this reason, we do not have any significant
user experience at writing such programs. The metalanguage encoding exists, of course, but
the types are restricted and any actual I/O will only modify the semantic model. Similarly,
we have not used it to do large, I/O-intensive proofs.

There are some specific areas of future research which present themselves to us.

175
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9.2.1 More exotic types

The most immediate limitation to Curio in its current state is its mundane type system.
We made no attempt in this dissertation to modify the traditional Hindley-Milner system
in any sense. This affects how we specify I/O models and also how we write programs.

Firstly, the five types which parameterise an I/O model are monomorphic. One example
of how this leads to limitations it that although communication channels may be allocated
dynamically, we cannot create one that can send values of an arbitrary type. In the real
world API in Chapter 6, channels only allow characters to be sent and received. This does
not sound particularly problematic but it is not immediately clear how it could be solved.
Other aspects of the I/O models are also a little clumsy, such as our rigidly defined types ν

and α for return values and actions respectively. These are inconvenient to use and quickly
become cluttered in the presence of combinators.

Secondly, it would be interesting to see if some or all of the runtime checks required
by Curio could be performed statically. I/O contexts are quite similar to types, since a
program’s outermost I/O context does not change as the program reduces over time. Ideally
this would lead to the complete removal of the test command – any attempt to perform
an action not permitted by a program’s context would be detected at compile time. In
reality, this would not be easy. Types would most likely become heavily annotated, and
type inference would almost certainly be undecidable for anything but the simplest of cases.
It is, nonetheless, a compelling end goal.

Existing approaches do also require some runtime checks. In Clean, the type *World

denotes the rest of the world, in which some (unspecified) files are accessible – one must
test at runtime to see if a particular file can be accessed. Something similar occurs also in
Brisk.

9.2.2 GUI systems

We did not make any attempt to model graphical user interfaces in Curio. This is almost
certainly the most important aspect of real I/O which we ignored.

GUI applications present ample opportunities for concurrency. Often one thinks of an
individual on-screen window as a separate process which waits for input such as mouse
clicks, modifies its own piece of screen real estate and perhaps its own state, and then
communicates with other processes. It would be very interesting to see if the low-level GUI
API could be encoded elegantly, and if existing GUI libraries such as Fudgets, Yampa and
Object I/O could be expressed better in such a system.

9.2.3 A simpler, core calculus

The design of Curio has been influenced greatly by our desire to verify properties using a
proof-assistant, an LCF style one in particular. The I/O models presented in Chapter 2 are
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unnecessarily infected by this, and this leads to a messier confluence proof (when wa a w = ⊥,
for example) and the unintuitive failure of certain equivalence results (as mentioned at the
end of Chapter 7).

We pride ourselves in being able to machine-verify our results, but perhaps a simpler
calculus would be in order to explore the more formal capabilities of Curio. Other logical
frameworks could be used instead to machine-verify results, and these would probably force
us to explicitly give the semantics of a small PCF-like language. In doing so we would
then be able to give a more complete axiomatic semantics, and formally prove contextual
equivalence results. This would, however, be at the expense of only having a tiny language
to work with.

As well as a minimal language, a minimal notation for defining new I/O models would
also be desirable. It is a shame that so much boilerplate is needed to define even tiny I/O
models such as istr. For a start, the maximal lattice structure shown in Chapter 8 appears
to be general enough for it to be used almost immediately. This would automatically give
programs better equational properties and make the development of combinators much more
straightforward (recall how we needed the types Cxt and Splitter in Chapter 5).

9.2.4 Exceptions

Other possible future work would be the inclusion of exceptions in Curio. Concurrent
Haskell has exceptions [88, 91], but these are non-deterministic within the IO monad. It
would be interesting to see if exceptions could be added to Curio in a way that did not
introduce non-determinism, even in the presence of concurrency.

Exceptions could also be used as a substitute for the runtime failure required to guarantee
confluence in Curio. One example of this is the way an action fails outright if it is not
permitted by its context. Another example is the I/O model istr, which obeys PREs only
because writing to an already full I-structure causes failure. In practice, it would be more
satisfactory if instead an exception was thrown. The most immediate difficulty this raises,
however, is what the contents of the world state should be once the exception is caught.

9.2.5 Other ideas

Our I/O models are designed to be intuitive in the sense that the world state looks something
like we expect it to be – a file is a list of characters and some associated information about
its current readers and writers. But this requires a precondition to guarantee confluence.
I/O models which are entirely deterministic by construction could be an interesting future
direction. The combinators of Chapter 5 effectively took the first step.

It is possible that the co-inductive semantics for program equality has useful parallels
in the theory of process calculi such as CCS. As well as theoretical relationships, we could
also model terminal I/O in the same “observable” style as that used by Haskell. Terminal
I/O in model term is described using a datatype which gives the semantics of the user. We
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could equally well assume the existence of an entirely unspecified “terminal user process”
which communicates with the user via communication buffers. One could then reason about
programs co-inductively by showing that they can be observed to react identically to user
responses.

The I/O interface used by Clean and Haskell is different on account of Clean’s unique
types. Curio could be used as a basis for unifying the interface, and give a common
semantics to I/O for both languages. Curio could also inspire other approaches to I/O
in existing languages – possibly even as the basis for formal correctness proofs. Clean,
for example, allows the order in which actions are performed to be loosened but it does
not permit communication. Perhaps some primitives which behave in a similar way to
newChannel, putChar and getChar used in Chapter 6 could alleviate this if implemented
correctly.

Curio was intended to help to give a semantics to deterministic concurrency. It is
possible that it could also be useful in attempting to understand and prove properties about
traditional, non-deterministic concurrency.

Another future direction could be an attempt to give a more abstract semantics to
Curio. Denotational semantics and domain theory sometimes take place within the more
general framework of category theory. When this occurs, as described, for example, by
Gibbons in [35], a category is a language, an object of that category is a type/domain, an
arrow in that category is a program, and a functor is a type constructor. We have not
touched upon this at all in this dissertation, but category theory could possibly provide
elegant generalisations for our work.



Appendix A

Implementation details

Sections A.1, A.2 and A.3 correspond to the implementation details for Chapters 3 & 4,
Chapter 5 and Chapter 6 respectively. This appendix only contains the “left-overs” omitted
from preceding chapters – we do not repeat any definitions given in the main document.

A.1 Curio implementation

The implementations are slightly tidied versions of the actual ones. Apart from naming
conventions, and some omitted strictness annotation, the most substantial change is how
values of type Guess/Route are used. In the real implementation these are both identical
and implemented as a strict list of Bool. If the list is being used as a Guess then we have a
mechanism which pads this list so that it behaves as if it were infinite.

A.1.1 Reduction in Curio

Figure A.1 contains the functions next and rdce which along with some helper functions is
the complete encoding for single-step reduction in Curio.

A.1.2 Re-implementing nexts

advS :: IOModel ν α ρ ω ς → ς → Route → Prog ν α ρ → Prog ν α ρ

advS s c [] (Bind (Ret v) f) = f v

advS s c r (Bind m f) = Bind (advS s c r m) f

advS (_,_,ap,_) c [] (Test a mt mf) =

if (ap c a) then mt else mf

advS (_,_,_,pf) c [] (Par p (Ret vl) (Ret vr) vf) = Ret (vf vl vr)

advS s@(_,_,_,pf) c (L:r) (Par p ml mr vf) =

Par p (advS s (fst (pf p c)) r ml) mr vf

advS s@(_,_,_,pf) c (R:r) (Par p ml mr vf) =

Par p ml (advS s (snd (pf p c)) r mr) vf
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next :: IOModel ν α ρ ω ς → Guess → ς → (ω,Prog ν α ρ)→ Reduction (ω,Prog ν α ρ)
next s g c (w, Ret v) = Converged
next s g c (w, Bind (Ret v) f) = Reduct (w, f v)
next s g c (w, Bind m f) = case (next s g c (w,m)) of
Converged -> Converged
Reduct (w1,m1) -> Reduct (w1, Bind m1 f)

next (af,wa,ap,_) g c (w, Action a) | ap c a =
if (wa a w) then Converged

else (case (af a w) of
(w1,v1) -> Reduct (w1, Ret v1))

next (_,_,ap,_) g c (w, Test a mt mf) =
Reduct (w, if (ap c a) then mt else mf)

next s@(_,_,_,pf) g c (w, Par p ml mr vf) = case (pf p c) of
(cl,cr) -> nextPar s cl cr ml mr p vf w g

nextPar :: IOModel ν α ρ ω ς → ς → ς → Prog ν α ρ → Prog ν α ρ → ρ →
(ν → ν → ν) → ω → Guess → Reduction (ω,Prog ν α ρ)

nextPar s cl cr ml mr p vf w (d:g) = case ml of
Ret vl -> case mr of
Ret vr -> Reduct (w, Ret (vf vl vr))
_ -> doR

_ -> case mr of
Ret vr -> doL
_ -> if (d==R) then (fstReduction doR doL)

else (fstReduction doL doR)
where doL = case (next s g cl (w,ml)) of

Reduct (w1,ml1) -> Reduct (w1, Par p ml1 mr vf)
Converged -> Converged

doR = case (next s g cr (w,mr)) of
Reduct (w1,mr1) -> Reduct (w1, Par p ml mr1 vf)
Converged -> Converged

fstReduction :: Reduction β → Reduction β → Reduction β
fstReduction (Reduct x) _ = (Reduct x)
fstReduction Converged r = r

nextWrap :: IOModel ν α ρ ω ς → ς → (ω,Prog ν α ρ,[Guess],Bool)→
(ω,Prog ν α ρ,[Guess],Bool)

nextWrap s c (w,m,(g:gs),False) = case (next s c g (w,m)) of
Converged -> (w,m,gs,True)
Reduct (w1,m1) -> (w1,m1,gs,False)

rdce :: IOModel ν α ρ ω ς → Int → [Guess] → ς → (ω,Prog ν α ρ)→ (ω,Prog ν α ρ)
rdce s i gs c (w,m) | i>=0 =
case (iterate (nextWrap s c) (w,m,gs,False) !! i) of
(w1,m1,_,False) -> (w1,m1)

Figure A.1: Implementation of nexts and rdces
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advA :: ς → Route → Prog ν α ρ → Prog ν α ρ

advA v r (Bind m f) = Bind (advA v r m) f

advA v [] (Action a) = Ret v

advA v (L:r) (Par p ml mr vf) = Par p (advA v r ml) mr vf

advA v (R:r) (Par p ml mr vf) = Par p ml (advA v r mr) vf

nextR :: IOModel ν α ρ ω ς → Guess → ς → (ω,Prog ν α ρ)→ Redex (Route,RxType α)

nextR s g c (Ret v) = NoRedex

nextR s g c (Bind (Ret v) f) = Redex ([], Silent)

nextR s g c (Bind m f) = nextR s c g m

nextR (_,wa,ap,_) g c (Action a) | ap c a =

if (wa a w) then NoRedex else (Redex ([],Action a))

nextR s g c (Test a mt mf) = Redex ([], Silent)

nextR (_,_,_,pf) g c (Par p ml mr vf) = case (pf p c) of

(cl,cr) -> nextRPar s cl cr g w ml mr

nextRPar s cl cr (d:g) w ml mr = case ml of

Ret vl -> case mr of

Ret vr -> Redex ([],Silent)

_ -> doR

_ -> case mr of

Ret vr -> doL

_ -> if (d==R) then (fstRedex doR doL)

else (fstRedex doL doR)

where

doL = case (nextR s g cl w ml) of

NoRedex -> NoRedex

Redex (r,x) -> Redex ((L:r), x)

doR = case (nextR s g cr w mr) of

NoRedex -> NoRedex

Redex (r,x) -> Redex ((R:r), x)

A.1.3 Re-implementing nextRs

preorder :: Tree β → [β]
preorder (Leaf x) = [x]

preorder (Branch t1 t2) = preorder t1 ++ preorder t2
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shuffle :: Guess → Tree β → Tree β

shuffle g (Leaf x) = Leaf x

shuffle (L:g) (Branch t1 t2) = Branch (shuffle g t1) (shuffle g t2)

shuffle (R:g) (Branch t1 t2) = Branch (shuffle g t2) (shuffle g t1)

firstRx :: Redex β → Redex β → Redex β

firstRx (Redex x) _ = Redex x

firstRx NoRedex r = r

check :: IOModel ν α ρ ω ς → ω → Redex (Route,(ς,RxType α))→
Redex (Route,RxType α)

check s w NoRedex = NoRedex

check s w (Redex (r, (c,Silent))) = Redex (r,Silent)

check s w (Redex (r, (c,Action a))) | ap c a =

if (wa a w) (Redex (r,Silent)) (Redex (r,Action a))

addDir :: Dir → Redex (Route,β)→ Redex (Route,β)

addDir d NoRedex = NoRedex

addDir d (Redex (r,x)) = Redex ((d:r),x)

redexTree :: IOModel ν α ρ ω ς → ς → Prog ν α ρ →
Tree (Redex (Route,(ς,RxType α)))

redexTree s c (Ret v) = Leaf NoRedex

redexTree s c (Bind (Ret v) f) = Leaf (Redex ([],(c,Silent)))

redexTree s c (Bind m f) = redexTree s c m

redexTree s c (Action a) = Leaf (Redex ([],(c,Action a)))

redexTree s c (Test a mt mf) = Leaf (Redex ([],(c,Silent)))

redexTree s c (Par p (Ret vl) (Ret vr) vf) = Leaf (Redex ([],(c,Silent)))

redexTree s@(_,_,_,pf) c (Par p ml mr vf) = case (pf p c) of

(cl,cr) -> Branch (mapTree (addDir L) (redexTree s cl ml))

(mapTree (addDir R) (redexTree s cr mr))

mapTree :: (β → γ) → Tree β → Tree γ

mapTree f (Leaf x) = Leaf (f x)

mapTree f (Branch t1 t2) = Branch (mapTree f t1) (mapTree f t2)

A.2 Combinators

A.2.1 Map functions
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lkpM :: ∀β. ∀γ. Eq γ ⇒ γ → (γ → β) → β

lkpM s m | s==s = m s

ovwM :: ∀β. ∀γ. Eq γ ⇒ γ → β → (γ → β) → (γ → β)
ovwM s v m = \s1 -> if (s==s1) then v else (lkpM s1 m)

maskM :: ∀β. ∀γ. Eq γ ⇒ (γ → Bool) → β → (γ → β) → (γ → β)
maskM f v m = \s -> if (f s) then v else (lkpM s m)

stM :: ∀β. ∀γ. ∀δ. Eq γ ⇒ (β → (β,δ)) → γ → (γ → β) → (γ → β,δ)

stM f s = \m -> case (f $! lkpM s m) of (v,x) -> (ovwM s v1 m, x)

ovwL :: ∀β. Int → β → [β] → [β]
ovwL 0 b (b1:bs) = (b:bs)

ovwL 0 b [] = undef

ovwL i b (b1:bs) | i>0 = b1 : (ovwL (i-1) b bs)

newL :: ∀β. Int → β → [β] → [β]
newL i b bs | i==length bs = bs ++ [b]

stL :: ∀β. ∀δ. (β → (β,δ)) → Int → [β] → ([β],δ)
stL f i bs = case (f $! (bs!!i)) of (b1,x) -> (ovwL i b1 bs, x)

A.2.2 Pool functions

nextP :: ∀β. Loc → Pool β → Int

nextP _ PoolLeaf = 0

nextP [] (PoolNode p1 xs p2) = length xs

nextP (L:l) (PoolNode p1 xs p2) = nextP l p1

nextP (R:l) (PoolNode p1 xs p2) = nextP l p2

lkpP :: ∀β. HndP → Pool β → β

lkpP ([] ,i) (PoolNode p1 xs p2) = xs !! i

lkpP ((L:l),i) (PoolNode p1 xs p2) = lkpP (l,i) p1

lkpP ((R:l),i) (PoolNode p1 xs p2) = lkpP (l,i) p2

ovwP :: ∀β. HndP → β → Pool β → Pool β

ovwP ([] ,i) x (PoolNode p1 xs p2) = PoolNode p1 (ovwL i x xs) p2

ovwP ((L:l),i) x (PoolNode p1 xs p2) = PoolNode (ovwP (l,i) x p1) xs p2

ovwP ((R:l),i) x (PoolNode p1 xs p2) = PoolNode p1 xs (ovwP (l,i) x p2)
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newP :: ∀β. HndP → β → Pool β → Pool β

newP h@(l,i) x p = newP’ h x (padP l p)

newP’ :: ∀β. HndP → β → Pool β → Pool β

newP’ ([] ,i) x (PoolNode p1 xs p2) = PoolNode p1 (newL i x xs) p2

newP’ ((L:l),i) x (PoolNode p1 xs p2) = PoolNode (newP’ (l,i) x p1) xs p2

newP’ ((R:l),i) x (PoolNode p1 xs p2) = PoolNode p1 xs (newP’ (l,i) x p2)

padP :: ∀β. Loc → Pool β → Pool β

padP l PoolLeaf = padP l (PoolNode PoolLeaf [] PoolLeaf)

padP [] (PoolNode p1 xs p2) = PoolNode p1 xs p2

padP (L:l) (PoolNode p1 xs p2) = PoolNode (padP l p1) xs p2

padP (R:l) (PoolNode p1 xs p2) = PoolNode p1 xs (padP l p2)

A.2.3 Helper functions for Cxt ς

apCxt :: ∀ς. ∀α. (ς → α → Bool) → Cxt ς → α → Bool

apCxt ap CxtB a = False

apCxt ap (Cxt c False) a = ap c a

apCxt ap (Cxt c True) a = True

pfCxt :: ∀ς. ∀ρ. (ρ → ς → (ς,ς)) → Splitter ρ → Cxt ς → (Cxt ς,Cxt ς)

pfCxt pf p CxtB = (CxtB , CxtB)

pfCxt pf AllLeft c = (c , CxtB)

pfCxt pf AllRight c = (CxtB , c )

pfCxt pf (Split p) (Cxt c b) = case (pf p c) of

(cl,cr) -> (Cxt cl False, Cxt cr False)

splitM :: ∀ρ. ∀ς. ∀γ. Eq γ ⇒ (ρ → ς → (ς,ς)) → (γ → Bool) → [(γ,Splitter ρ)] →
(γ → Cxt ς) → (γ → Cxt ς,γ → Cxt ς)

splitM pf im [] cm = (maskM (not . im) CxtB cm, maskM im CxtB cm)

splitM pf im ((s,p):ps) cm = case (splitM pf im ps cm) of

(cml,cmr) -> case (pfCxt pf p (lkpM s cm)) of

(cl,cr) -> (ovwM s cl cml, ovwM s cr cmr)

A.2.4 Determining a process’ location

The following program computes its current location by continually using test in conjunc-
tion with Probe. locList is an infinite list of locations.
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probeLoc :: ProgLMtoM s Loc

probeLoc = probeFromList locList

where

probeFromList (l:ls) = test (l,Probe) (return l) (probeFromList ls)

locList :: [Loc]
locList = concat $ map locListInt [0..]

where locListInt 0 = [[]]

locListInt i =

let list1 = locListInt (i-1)

in map (L :) list1 ++ map (R :) list1

A.3 Real world I/O semantics

A.3.1 File action semantics

allStale :: Pool FPtr → Bool

allStale p = foldlP (\c ptr -> case ptr of

FPtr i -> c+1

Stale -> c) 0 p

foldlP :: ∀β. ∀γ. (β → γ → β) → β → Pool γ → β

foldlP f x PoolLeaf = x

foldlP f x (PoolNode pl ys pr) = foldlP f (foldl f (foldlP f x pl) ys) pr

doWFA :: WholeFileAction → ωFile → (ωFile,νFile)

doWFA FRemove _ = (NoFile, RNull)

doWFA (FPutChar c) (File cs (WrPtr i m))

| i>=0 && i<=length cs && (m/=AppendMode || i<length cs)

= (File (ovwL i c cs) (wrPtr (i+1) m), RNull)

doWFA (HWrOpen m) (File cs (RdPtrs p)) | allStale p = case m of

AppendMode -> (File cs (WrPtr (length cs) m), RNull)

WriteMode -> (File [] (WrPtr 0 m), RNull)

_ -> (File cs (WrPtr 0 m), RNull)

doWFA FWrIsOpen (File cs ptr) = (File cs ptr, RBool (case ptr of

RdPtrs p -> False

WrPtr i m -> True))

doWFA FIsOpen (File cs ptr) = (File cs ptr, RBool (case ptr of

RdPtrs p -> not (allStale p)

WrPtr i m -> True))
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doFPA :: FilePtrAction → [Char] → Int → (FPtr,νFile)

doFPA FGetChar cs i | i>=0 && i<length cs

= (FPtr (i+1), RChar (cs !! i))

doFPA FIsEOF cs i

= (FPtr i , RBool (i==length cs))

doFPA (FSeek smode j) cs i = (FPtr i1, RNull)

where i1 = case smode of

AbsoluteSeek -> j

RelativeSeek -> i+j

SeekFromEnd -> length cs - 1 - j

doFPA FLookAhead cs i | i>=0 && i<length cs

= (FPtr i, RChar (cs !! i))

doFPA FClosePtr cs i = (Stale, RNull)

doFPA FileSize cs i = (FPtr i, RInt (length cs))

doFPA FGetPosn cs i = (FPtr i, RInt i)

A.3.2 I/O library semantics

hFileSize :: Handle → Progio Int

hFileSize (FileHnd n p) = do

Left (Right (RInt i)) <-

actionL (Left (Right (n, FilePtrAct p FileSize)))

return i

hFileSize _ = return 0

HandlePosn = (Int,Handle)

hGetPosn :: Handle → Progio HandlePosn

hGetPosn (FileHnd n p) = do

Left (Right (RInt i))

<- actionL (Left (Right (n,FilePtrAct p FGetPosn)))

return (i, FileHnd n p)

hSetPosn :: HandlePosn → Progio ()

hSetPosn (i, h) = hSeek h AbsoluteSeek i

hSeek :: Handle → SeekMode → Int → Progio ()

hSeek (FileHnd n p) m i = do

actionL (Left (Right (fn, FilePtrAct p (FSeek m i))))

return ()
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hWaitForInput :: Handle → Progio ()

hWaitForInput h = hLookAhead h >>= return ()

hLookAhead :: Handle → Progio Char

hLookAhead StdInHnd = do

Left (Left c) <- actionL (Left (Left GetC))

return c

hLookAhead (FileHnd n p) =

actionL (Left (Right (n,FilePtrAct p FLookAhead))) >>=

\(Left (Right (RChar c))) -> return c

hLookAhead (ChanRdHnd h) =

actionL (Right (Left (DynAct h ChLook))) >>=

\(Right (Left (Left (Just c)))) -> return c

hLookAhead (QSemRdHnd h) = do

actionL (Right (Right (DynAct h SWait)))

actionL (Right (Right (DynAct h SSignal)))

return ’X’

hIsClosed :: Handle → Progio Bool

hIsClosed h = hIsOpen h >>= \b -> return (not b)

newQSem :: Progio (Handle,Handle)

newQSem = do

Right (Right (Right h)) <- actionL (Right (Right Next))

actionL (Right (Right (Alloc h)))

return (QSemRdHnd h, QSemWrHnd h)

hIsReadable :: Handle → Progio Bool

hIsReadable h = case h of

StdOutHnd -> return False

ChanWrHnd h -> return False

QSemWrHnd h -> return False

_ -> return True

doesFileExist :: FilePath → Progio Bool

doesFileExist n = do

Left (Right (RBool b)) <- actionL (Left (Right (n,FDoesExist)))

return b
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fIsOpen :: FilePath → Progio Bool

fIsOpen n = do

Right (Left (RBool b)) <-

actionL (Right (Left (n,WholeFileAction FIsOpen)))

return b

hIsSeekable :: Handle → Progio Bool

hIsSeekable (FileHnd n p) = return True

hIsSeekable _ = return False

fAllowedW :: FilePath → Progio Bool

fAllowedW n = hAllowed (FileHnd n WPtr)

fAllowedR :: FilePath → Progio Bool

fAllowedR n = testL (Left (Right (n,FDoesExist)))

A.3.3 Implementation details for parIO

lkpLM :: Eq γ ⇒ γ → [(γ,β)] → Maybe β

lkpLM c [] = Nothing

lkpLM c ((c1,b):xs) | c==c1 = Just b

| otherwise = lkpLM c xs

ovwLM :: Eq γ ⇒ γ → β → [(γ,β)] → [(γ,β)]
ovwLM c b [] = [(c,b)]

ovwLM c b ((c1,b1):xs) | c==c1 = (c,b):xs

| otherwise = (c1,b1):(ovwLM c b xs)

splitHndsTerm :: [Handle] → [Handle] → ρTerm

splitHndsTerm hsl hsr =

foldr splitHndTermL (foldr splitHndTermR (TCxt False False) hsr) hsl

splitHndsTermL, splitHndsTermR :: Handle → ρTerm → ρTerm

splitHndTermL StdInHnd (TCxt bp bg) = (TCxt bp True)

splitHndTermL StdOutHnd (TCxt bp bg) = (TCxt True bg)

splitHndTermL _ p = p

splitHndTermR StdInHnd (TCxt bp bg) = (TCxt bp False)

splitHndTermR StdOutHnd (TCxt bp bg) = (TCxt False bg)

splitHndTermR _ p = p
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splitHndsFiles :: [Handle] → [Handle] → [(String,Splitter ρFile)]
splitHndsFiles hsl hsr =

foldr splitHndFileL (foldr splitHndFileR [] hsr) hsl

splitHndFileL :: [Handle] → [(String,Splitter ρFile)] → [(String,Splitter ρFile)]
splitHndFileL (FileHnd n WPtr) nmap = ovwLM n AllLeft nmap

splitHndFileL (FileHnd n (RPtr h)) nmap = case (lkpLM n nmap) of

Just (Split hs) -> ovwLM n (Split ((h,L):hs)) nmap

_ -> ovwLM n (Split [(h,L)]) nmap

splitHndFileL _ nmap = nmap

splitHndFileR :: [Handle] → [(String,Splitter ρFile)] → [(String,Splitter ρFile)]
splitHndFileR (FileHnd n WPtr) nmap = ovwLM n AllRight nmap

splitHndFileR (FileHnd n (RPtr h)) nmap = case (lkpLM n nmap) of

Just (Split hs) -> ovwLM n (Split ((h,R):hs)) nmap

_ -> ovwLM n (Split [(h,R)]) nmap

splitHndFileR _ nmap = nmap

splitHndsChans :: [Handle] → [Handle] → [(HndP,Splitter ρChan)]
splitHndsChans hsl hsr = map

(\(h,(mbs,mbr)) -> (h, Split (ChCxt (fromJustB mbs) (fromJustB mbr))))

(foldr splitHndChanL (foldr splitHndChanR [] hsr) hsl)

fromJustB :: Maybe Bool → Bool

fromJustB (Just b) = b

fromJustB Nothing = True

splitHndChanL :: Handle →
[(HndP,(Maybe Bool,Maybe Bool))] → [(HndP,(Maybe Bool,Maybe Bool))]

splitHndChanL (ChanRdHnd h) hmap = case (lkpLM h hmap) of

Just (mbs, mbr) -> ovwLM h (mbs, Just False) hmap

_ -> ovwLM h (Nothing, Just False) hmap

splitHndChanL (ChanWrHnd h) hmap = case (lkpLM h hmap) of

Just (mbs, mbr) -> ovwLM h (Just False, mbr) hmap

_ -> ovwLM h (Just False, Nothing) hmap

splitHndChanL _ hmap = hmap
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splitHndChanR :: Handle →
[(HndP,(Maybe Bool,Maybe Bool))] → [(HndP,(Maybe Bool,Maybe Bool))]

splitHndChanR (ChanRdHnd h) hmap = case (lkpLM h hmap) of

Just (mbs, mbr) -> ovwLM h (mbs, Just True) hmap

_ -> ovwLM h (Nothing, Just True) hmap

splitHndChanR (ChanWrHnd h) hmap = case (lkpLM h hmap) of

Just (mbs, mbr) -> ovwLM h (Just True, mbr) hmap

_ -> ovwLM h (Just True, Nothing) hmap

splitHndChanR _ hmap = hmap

splitHndsQSems :: [Handle] → [Handle] → [(HndP,Splitter ρQSem)]
splitHndsQSems hsl hsr =

foldr splitHndQSemL (foldr splitHndQSemR [] hsr) hsl

splitHndsQSemL :: Handle → [(HndP,Splitter ρQSem)] → [(HndP,Splitter ρQSem)]
splitHndQSemL (QSemRdHnd h) hmap = ovwLM h (Split L) hmap

splitHndQSemL _ hmap = case (lkpLM h hmap) of

Just x -> hmap

Nothing -> ovwLM h (Split L) hmap

splitHndsQSemR :: Handle → [(HndP,Splitter ρQSem)] → [(HndP,Splitter ρQSem)]
splitHndQSemR (QSemRdHnd h) hmap = ovwLM h (Split R) hmap

splitHndQSemR _ hmap = case (lkpLM h hmap) of

Just x -> hmap

Nothing -> ovwLM h (Split R) hmap



Appendix B

Additional proofs and

machine-verification

B.1 Additional maximal lattice results

Define two unary operators M and O as follows:

Oc
M= ¬¬∼c

Mc
M= ¬∼¬c

The operators M and O have been shown to obey the following properties. As well as
being proved, the vast majority of these have also been experimentally verified to hold for
over 10,000 test I/O models using a small Haskell program.

(i) O¬c+ = ¬Mc+

(ii) O(c+
1 u c+

2 ) = Oc+
1 t Oc+

2

(iii) M(c+
1 t c+

2 ) = Mc+
1 u Mc+

2

(iv) c+ t Oc+ = 1

(v) c+ u Mc+ = O

(vi) Mc+ ⊆ Oc+

(vii) MMMc+ = Mc+

(viii) OOOc+ = Oc+

(ix) OOc+ ⊆ c+ ⊆ MMc+

(x) M1 = O = O1
(xi) MO = 1 = OO

Most of these results require separate lemmas, and these are proved over the following
pages.

� (i): A direct result of the definition. O¬c+ = ¬¬∼¬c+ = ¬Mc+

191
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� (ii): Use the de Morgan rules for ¬ and ∼. O(c+
1 u c+

2 ) = ¬¬∼(c+
1 ∩ c+

2 ) = ¬¬(∼c+
1 ∪

c+
2 ) = ¬¬¬(¬∼c+

1 ∩ ¬∼c+
2 ) = ¬¬(¬¬∼c+

1 ∪ ¬¬∼c+
2 ) = Oc+

1 t Oc+
2

� (iii): Similar to the proof of (ii).

� (iv): Use Lemma B.1.5. This states that ¬c∪¬¬∼¬c = A, which equals c+∪Oc+ = 1

which implies ¬¬c+ ∪ Oc+ = ¬¬1. Therefore c+ t Oc+ = 1.

� (v): Once again use Lemma B.1.5. Since ¬c ∪ ¬¬∼¬c = A, substituting ¬c for c and
negating the entire equation gives ¬(¬¬c ∪ ¬¬∼¬¬c) = ¬A which rewrites (using de
Morgan laws and removing excess ¬s), to ¬c ∩ ¬∼¬¬c = ¬A. This is the same as
c+ u Mc+ = O.

� (vi): Lemma B.1.1.

� (vii): Lemma B.1.7.

� (viii): From Lemma B.1.7 (vii) it is true that MMMc = Mc. Therefore, replacing c with
¬c+ and negating both sides, this gives ¬MMM¬c+ = ¬M¬c+. Rewriting (i) multiple
times, this gives OOO¬¬c+ = O¬¬c+, which is equivalent to OOOc+ = Oc+.

� (ix): Lemma B.1.6 states that c+ ⊆ MMc+. The result for OOc+ follows directly in
the same style as the proof for (v).

� (x): From Lemma B.1.3 ¬∼¬A = ¬A. Therefore M1 = O. To prove O1 = O just
expand the definition: O1 = ¬¬∼1 = ¬¬∅ = O.

� (xi): Similar to proof of (x).

Lemma B.1.1. Mc ⊆ Oc

Proof. First, expand the definitions of Mc and Oc.

Mc = ¬∼¬c

= {a ∈ A | ∀a1∈∼¬c.a¯ a1}
= {a ∈ A | ∀a1∈A.(a1 /∈ ¬c) =⇒ a¯ a1}

Oc = ¬¬∼c

= {a ∈ A | ∀a1∈¬∼c.a¯ a1}
= {a ∈ A | ∀a1∈A.(∀a2∈∼c.a2 ¯ a1) =⇒ a¯ a1}
= {a ∈ A | ∀a1∈A.(∀a2∈A.a2 /∈ c =⇒ a2 ¯ a1) =⇒ a¯ a1}

Quantifying over all a ∈ A at the outermost level this gives the following proof goal

(∀a1∈A.(a1 /∈ ¬c) =⇒ a¯ a1) =⇒ (∀a1∈A.(∀a2∈A.a2 /∈ c =⇒ a2 ¯ a1) =⇒ a¯ a1)
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Moving the quantification of the right-hand a1 ∈ A to the outermost level, and changing
some bound names, this becomes

(∀a3∈A.(a3 /∈ ¬c) =⇒ a¯ a3) =⇒ (∀a2∈A.a2 /∈ c =⇒ a2 ¯ a1) =⇒ a¯ a1

It is straightforward that the consequent a¯a1 can be proved if either a1 /∈ ¬c (instantiating
a3 with a) or a /∈ c (instantiating a2 with a1). Now, suppose that this is not the case, namely
that both a1 ∈ ¬c and a ∈ c. Then a¯a1 still holds, since a1 ∈ ¬c means, from the definition
of ¬c, that (∀a4∈c.a4 ¯ a1), and a4 can be instantiated with a because a ∈ c.

Lemma B.1.2. If c1 ⊆ c2 then Mc2 ⊆ Mc1.

Proof. The definition of Mc is

Mc = ¬∼¬c

= {a ∈ A | ∀a1∈∼¬c.a¯ a1}
= {a ∈ A | ∀a1∈A.¬(∀a2∈c.a2 ¯ a1) =⇒ a¯ a1}
= {a ∈ A | ∀a1∈A.∀a2∈c.a2 /̄ a1 =⇒ a¯ a1}

Therefore,

Mc2 ⊆ Mc1 = ∀a∈A.(∀a1∈A.∀a2∈c2 .a2 /̄ a1 =⇒ a¯ a1) =⇒ (∀a3∈A.∀a4∈c1 .a4 /̄ a3 =⇒ a¯ a3)

Moving quantifiers, this is equivalent to stating that for all a, a3 ∈ A and for all a4 ∈ c1

(∀a1∈A.∀a2∈c2 .a2 /̄ a1 =⇒ a¯ a1) =⇒ a4 /̄ a3 =⇒ a¯ a3

Since it as assumed that c1 ⊆ c2, we know that a4 ∈ c2. So instantiating a2 with a4 and a1

with a3 this gives
(a4 /̄ a3 =⇒ a¯ a3) =⇒ a4 /̄ a3 =⇒ a¯ a3

which is obviously true.

Lemma B.1.3. ¬∼¬A = ¬A

Proof. Prove ⊆ and ⊇ separately.

� ¬∼¬A ⊆ ¬A: from Lemma B.1.1 it is true that ¬∼¬c ⊆ ¬¬∼c, so we need only prove
¬¬∼A ⊆ ¬A, which holds since ¬¬∼A = ¬¬∅ = ¬A.

� ¬A ⊆ ¬∼¬A: because for all c, c ⊆ A, it is true that ∼¬A ⊆ A. Apply Proposi-
tion 8.1.4 to prove that ¬A ⊆ ¬∼¬A.
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Lemma B.1.4. If a1 ∈ c and a2 ∈ ¬∼¬c then for all actions a ∈ A, either a¯a1 or a¯a2.

Proof. Action a is either an element of ¬c or it is not.

� a ∈ ¬c: this means a commutes with all actions in c, so since a1 ∈ c, a¯ a1 holds.

� a /∈ ¬c: this is the same as saying a ∈ ∼¬c, and the definition of a2 ∈ ¬∼¬c is that
a2 commutes with all actions permitted by ∼¬c. Therefore, a¯ a2.

Lemma B.1.5. ¬c ∪ ¬¬∼¬c = A

Proof. This is a direct consequence of Lemma B.1.4 and we begin from that result.

∀a∈A.∀a1∈c.∀a2∈¬∼¬c.a¯ a1 ∨ a¯ a2

By moving universal quantifiers, this gives

∀a∈A.(∀a1∈c.a¯ a1) ∨ (∀a2∈¬∼¬c.a¯ a2)

which is equivalent, from the definition of ¬, to ∀a∈A.a ∈ ¬c ∨ a ∈ ¬¬∼¬c. This means that
every a is either an element of ¬c or an element of ¬¬∼¬c. Therefore, ¬c ∪ ¬¬∼¬c = A,
the set of all actions.

Lemma B.1.6. c ⊆ MMc

Proof. Expand the definition of MMc:

MMc = ¬∼¬¬∼¬c

= {a ∈ A | ∀a1∈∼¬¬∼¬c.a1 ¯ a}
= {a ∈ A | ∀a1∈A.¬(∀a2∈¬∼¬c.a1 ¯ a2) =⇒ a1 ¯ a}
= {a ∈ A | ∀a1∈A.∀a2∈¬∼¬c.a1 /̄ a2 =⇒ a1 ¯ a}
= {a ∈ A | ∀a1∈A.∀a2∈A.(∀a3∈∼¬c.a3 ¯ a2) ∧ a1 /̄ a2 =⇒ a1 ¯ a}

Therefore

c ⊆ MMc = c ⊆ {a ∈ A | ∀a1∈A.∀a2∈A.(∀a3∈∼¬c.a3 ¯ a2) ∧ a1 /̄ a2 =⇒ a1 ¯ a}
= ∀a∈A.a ∈ c =⇒ (∀a1∈A.∀a2∈A.(∀a3∈∼¬c.a3 ¯ a2) ∧ a1 /̄ a2 =⇒ a1 ¯ a)

= ∀a∈c.∀a1∈A.∀a2∈A.(∀a3∈∼¬c.a3 ¯ a2) ∧ a1 /̄ a2 =⇒ a1 ¯ a

The proof of the lemma becomes a proof that for all a1, a2 ∈ A and for all a ∈ c, if
∀a3∈∼¬c.a3 ¯ a2 and a1 /̄ a2 then a1 ¯ a. This can be shown by contradiction. If a1 /̄ a,
then since a ∈ c, a1 /∈ ¬c (a1 is not an action which commutes with all actions in c) which
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is equivalent to a ∈ ∼¬c. Instantiating a3 with a1, this lets us prove a1 ¯ a2, but since it is
already known that a1 /̄ a2, this is contradictory.

Lemma B.1.7. MMMc = Mc

Proof. Prove two separate inequalities:

� Mc ⊆ MMMc: a direct consequence of Lemma B.1.6, which shows that (Mc) ⊆ MM(Mc).

� MMMc ⊆ Mc: from Lemma B.1.6 we know that c ⊆ MMc, so apply Lemma B.1.2 to
prove that M(MMc) ⊆ M(c).

B.2 Full Abstraction and Admissibility

B.2.1 Full abstraction

The question of how the full abstraction problem for PCF affects formal reasoning is a valid
one. Plotkin’s original paper [98] showed how there exists a monotonic “parallel-or” function
por in the domain Bool → Bool → Bool which is defined as follows:

por True False ⊥
True True True True

False True False ⊥
⊥ True ⊥ ⊥

This function cannot be defined in PCF (or Core-Clean) since one must force the evalua-
tion of each argument in some fixed sequential order. This restriction is immediately present
in the proof assistant. Due to the fact that the denotational semantics does not quite fit
the operational semantics, in Sparkle the following operationally true theorem cannot be
proved (or disproved):

¬∃por∈Bool→Bool→Bool.

por True ⊥ = True ∧ por False False = False ∧ por ⊥ True = True

Can the full-abstraction problem lead to inconsistent proofs in our proof assistant? Not
as far as we know. When we prove a property ∀x∈τ .P (x) we quantify over all elements
of domain τ , possibly including those which have no operational equivalent, such as por.
But when one proves a property ∃x∈τ .P (x), one is not able to witness these non-existent
elements such as por – one must specify an actual Core-Clean term. This does mean that
Sparkle’s logic is a little unusual. In any logic of this form universal quantification will not
be the dual of existential quantification [2]. But despite the lack of formal documentation
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on the proof-assistant, the author has used it extensively for a period of over two years and
has never, to his knowledge, encountered a logical bug.

B.2.2 Admissibility

Admissibility, described briefly in [86] and in detail in [56], is a constraint on a proposition
concerning a lazy structure which must hold before induction on that structure is sound.
There are some simple checks which provide a basic but incomplete test. These are:

� t1 = t2 is admissible.

� ∀x∈α.P1 is admissible if P1 is admissible.

� ∀x∈α.P1 is admissible if α is a flat domain.

� P1 ∧ P2 is admissible if P1 and P2 are both admissible.

� P1 ∨ P2 is admissible if P1 and P2 are both admissible.

� ¬P1 =⇒ P2 is admissible if P1 and P2 are both admissible.

� t1 6= ⊥ is admissible.

The first two in effect state that all standard equality proofs à la Bird [12] are admissible.
Existential predicates and implication cause problems. Consider the programs ones, an
infinite list of 1s, and finite, which returns True if its argument list is finite, otherwise
failing.

ones :: [Int] finite :: [a] -> Bool

ones = (1:ones) finite [] = True

finite (x:xs) = finite xs

Without admissibility checks the following two false theorems would be easily provable
by inducting over list xs.

� ∀xs∈[α].∃i∈N.xs !! i = ⊥. This is false because for all non-negative i, ones !! i = 1.

� ∀xs∈[α].xs = ones =⇒ finite xs = True. This is false because finite ones = ⊥.

Both of the above propositions are only true for all finite, partial lists. Admissibility in
effect states that a result which holds for all finite, partial structures will also hold when
those structures can be infinite.
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B.3 Sparkle proof sections

The machine-readable form of the proofs may be obtained from the following URL:

http://www.cs.tcd.ie/research groups/fmg/archive/Dowse PhD/

It isn’t always easy to simply list the Sparkle theorem which corresponds to each individ-
ual lemma. Almost all proofs which required induction over program structure (i.e. those
in Chapter 4) needed to be proved in such a way that Sparkle could show it was admissible.
These results contain the guts of the proof, and usually a theorem was then proved which
expressed the result in a more natural style. Also, many definedness results were omitted
entirely in this document. These are uninteresting but still affect what was actually proved
and our ability to form a direct link between presented lemmas and the Sparkle theorems.

The implementation presented in this document is slightly different to that which can be
downloaded. Many changes are very simple, such as those relating to strictness annotation
or changes in function names made to aid presentation. Others are are a little more complex.
The implementations presented here are idealised ones – if we could start from scratch again
we would choose these. The actual implementations can be messier, but changing them at
a later stage would have been impossible without redoing all the Sparkle proofs.

A total of 497 machine-verified results were performed by the author. Not all results
which could have been machine-checked were. In particular, due to a lack of time, the
confluence proofs for the I/O models defined in Chapter 6 were just performed “by hand”.
theorems in that section. Figure B.1 contains a list of some of the more important results
in this document for which there are equivalent Sparkle theorems.
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Result Sparkle Section Theorem Name
Lemma 2.2.1 curio_examples PRE_Buffer
Lemma 2.2.2 curio_examples PRE_Lock
Lemma 2.2.3 curio_examples PRE_IVar
Lemma 2.2.4 curio_examples PRE_IStr
Figure 3.1 curio_single_step_rules whole section
Lemma 3.3.1 dountil_SList dountil_main_theorem
R.E. Proof curio_rdce rdce_run
Lemma 4.2.1 curio_prelude next_separated
Lemma 4.2.8 curio_prelude nextRedex_Par_False
Lemma 4.2.9 curio_prelude nextRedex_Par_True
Lemma 4.3.1 curio_reduction nextRedex_stalled_any_guess
Lemma 4.3.3 curio_reduction nextRedex_wa
Lemma 4.3.5 curio_reduction nextRedex_ap
Lemma 4.3.7 curio_reduction nextRedex_interfere_Silent
Lemma 4.3.9 curio_reduction nextRedex_interfere_Action
Theorem 4.3.1 curio_reduction next_disjoint_with_nextRedex
Lemma 4.4.1 (i) curio_failure_internals length_preorder_shuffle
Lemma 4.4.1 (v) curio_failure_internals shuffle_mapTree
Lemma 4.4.1 (vi) curio_failure_internals preorder_mapTree
Lemma 4.4.1 (viii) curio_failure_internals firstRedex_++
Lemma 4.4.8 curio_failure nextRedex_separated
Theorem 4.5.1 curio_failure next_failure_divergence
Lemma 4.5.2 curio_failure next_badlyformed_failure
Lemma 4.5.3 curio_failure next_badlyformed_divergence
Lemma 4.6.1 curio_confluence next_final_step
Lemma 4.6.2 curio_confluence tidy_diamond
Theorem 4.6.1 curio_confluence rdce_CONFLUENCE
Theorem 5.1.1 curio_combinators IOModel_product
Theorem 5.1.2 curio_combinators IOModel_StrMap
Theorem 5.2.1 curio_combinators IOModel_DynMap
Theorem 5.3.1 curio_IOLocModel PRE_MtoLM
Theorem 5.3.2 curio_IOLocModel PRE_LMtoM
Theorem 5.3.3 curio_Loc_combinators PRE_IOLocTimes
Theorem 5.4.1 curio_Loc_combinators PRE_IOLocDynM
Lemma 5.3.2 curio_Loc_combinators IOSMapN_IOLocMapN
Lemma 7.1.1 curio_equivalence rdce_Par_left
Lemma 7.1.2 curio_equivalence rdce_Par_left_backwards
Lemma 7.1.3 curio_equivalence rdce_Par_right
Lemma 7.1.4 curio_equivalence rdce_Par_right_backwards
Lemma 7.1.5 curio_equivalence rdce_Bind_split
Lemma 7.1.6 curio_equivalence rdce_Bind_build_left
Lemma 7.1.8 curio_equivalence rdce_Bind_build_right
Lemma 7.1.9 curio_equivalence Bind_wmcequiv
Lemma 7.1.11 curio_equivalence Par_left_wmcequiv
Lemma 7.1.10 curio_equivalence_conf Par_right_wmcequiv
Figures 7.3, 7.4 curio_big_step_rules whole section

Figure B.1: Sparkle theorem names
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