

Abstract--
A cluster management framework is described that takes
advantage of SCI to transfer operating system images to and from
cluster nodes. Users may schedule access to compute nodes via a
management node, and denote the environment to be loaded.
They may also take a snapshot during a session. This mechanism
allows a cluster to be shared among what would otherwise be
incompatible research projects. SCI allows this to be done
without excessive overhead.

I. INTRODUCTION

This work is related to our MultiOS cluster management
framework for OS and systems research [1], which allows
ordinary users to download and upload their own operating
system images to and from individual cluster nodes.
Leaving aside the administrative issues, low network
bandwidth has previously conspired against such an
approach, and existing any packages [2] assume the
limitations of a LAN-type network and permit only a small
and fixed number of stable environments, updated only
infrequently and then with manual supervision by system
administrators. The MultiOS framework is intended to take
advantage of SCI and to provide both automatic scheduling
and interactive control for any number of environments, to
support environments of any degree of stability, and to do
this for clusters of any size.

II. OVERVIEW OF MULTIOS

The MultiOS framework provides two abilities: to reserve
cluster nodes for exclusive use and to transparently switch
over from one user’s configuration to that of the next
scheduled. It is not a single-system-image tool for a cluster
[3] in the sense that it does not care what it is transferring,
nor does it have any role once the transfers are complete.

Architecturally, the framework is a combination of a small
number of core services running on a dedicated
management node, a web-based interface and an image
server to provide storage for the environment images, and

these elements can be spread across a number of machines
if that suits a particular cluster.

We will provide a simple scheduler for handling
reservations for exclusive use of set of cluster nodes. We
propose to use a single web-based interface, which is
chosen for reasons of flexibility, platform independence,
and universal access, for both interactive control and the
reservation system.

The exact tools required to manage a particular cluster are
very likely to be specific to that cluster, and what we
propose is to provide explicit but filtered access to a
modular toolset that can be extended or modified by an
administrator. By filtering the commands, the MultiOS
server can enforce the schedule and prevent user
misbehaviour, such as triggering a command affecting a
node reserved by somebody else.

In keeping with a modular design philosophy, both the web
interface and the scheduler are essentially plug-ins to the
core services, particularly as we foresee that the basic
design goal of the MultiOS framework - the ability to
manage and transport environment images for a cluster -
could form a useful subsystem within a more elaborate
management scheme.

III. IMPLEMENTATION OF MULTIOS

In the following, we will describe the framework with
reference to our own cluster, but point out where it can be
generalised for other configurations.

Our cluster is made up of sixteen PC compute nodes and
two storage servers (not shown), linked by a switched fabric
of SCI links. Exactly how the storage servers will connect is

Exploiting SCI in the MultiOS
management system

Ronan Cunniffe, Brian A. Coghlan; Dept. Computer Science, Trinity College Dublin;
ronan.cunniffe@cs.tcd.ie, coghlan@cs.tcd.ie

not yet finalized, possibly on the ringlets of nodes 0, 4, 8,
and 12. Each compute node has 256MB of DRAM and a
2GB local hard-disk. The storage servers are connected to a
large RAID, and all machines are connected to the external
network through a firewall via 100Mb/s Ethernet. Also
within the firewall are two NIS servers and a http server.
All normal access to the cluster is through this network
connection and physical access to compute nodes and
servers is minimised. The MultiOS server will execute
either on an extra server node, or on one of the existing
servers. Over time, it is hoped to increase the number of
compute nodes by increasing the number of nodes in each
of the compute node ringlets.

The central idea behind the MultiOS framework is that
between two successive zero-management ‘research’
sessions, there is a ‘management’ session, where all access
is suspended, and the environment installed on the local
hard-disks can be changed by management software
according to the schedule or via user interaction with the
MultiOS server. Implementing this requires that the
MultiOS server be able to:

1. reset any compute node - independent of the running
environment (i.e. in hardware)

2. gain control of a given compute node at boot-time.
3. optionally install and run management software on the

compute node that does not use the local disk.

A hardware reset mechanism is required in order to enforce
the schedule, since there is no guarantee that a running
environment will shut down gracefully on request, and
indeed highly experimental work is quite likely to crash or
lock up the hardware it is running on. This mechanism is
the key that allows the illusion of ‘bare-machinery’ for
development environments and total transparency to the
running software. It also provides a useful mechanism for
allowing a researcher to recover a crashed node or nodes
from their desktop. In our case, this mechanism will either
be implemented using a LonWorks network [4] with the
module in each compute node wired to the reset pin, or a
parallel switched 100Mbps Ethernet fabric with modified
wake-on-LAN [5]. Obviously, there are many alternative
solutions, but the ability to reset a named node on request is
one of the crucial elements that the MultiOS server relies
on.

Ensuring that the MultiOS server gains control during boot
can be done with a slightly non-standard use of standard
mechanisms [6, 7] invented for booting diskless
workstations, and several implementations are available [2,
8, 9]. Each compute node is set up to use its Ethernet card
as a boot device. The network card queries the network for
its own identity and for the name and location of a file to
download and execute. The non-standard element is that
the MultiOS server is allowed to switch the nominated file,
which gives it de facto control over what is first executed on
the requesting node. In the MultiOS framework, there are

two executables. The first is the management environment.
The other is a tiny executable which simply hands control to
the boot block of the local hard disk, causing the installed
OS to boot as though the network interrogation phase had
not occurred.

It is difficult to write a single management environment
with enough flexibility to handle any network topology, any
network technology, or indeed combination of technologies.
There are also variations on transport methods. The
MultiOS approach is to use a fully featured operating
system - Linux. The downloaded executable is a Linux
kernel configured to run with filesystems only in memory
and on remote disk. A Linux installation offers SCI drivers,
raw disk I/O and UNIX commandline tools, such as dd,
gzip, diff, rcp, etc., to which can easily be added new
transport primitives. Almost any transport mechanism can
be constructed with relative ease on these foundations.

IV. MOVING OS IMAGES USING SCI

The main feature of OS images is that they are large. In our
case, in the absolute worst case, if all 16 compute nodes
require loading/saving of raw disk images simultaneously,
32GB needs to be moved and then stored. Obviously, any
steps available for reducing this quantity should be taken,
particularly if the MultiOS framework is to scale with an
increased cluster size. However, any comprehensive
solution must allow for the worst case, and this is where the
performance of SCI makes the MultiOS scheme workable
even for larger clusters.

We assume the following performance figures with regard
to our cluster:

• Disk read and write performance are identical.
• Best case transfer rate of the image storage server is

50MB/s.
• The observed sustained transfer rate of the compute

node hard-disks is 9MB/s.
• SCI transfers at up to 75MB/s have been observed,

(limited by the PCI bus).
• 100Mbps Ethernet has a best case limit of 8MB/s.

The term ‘sustained transfer rate’ has been used for hard
disks both because the manufacturers usually specify burst
bandwidth, and because hard disks frequently achieve real
performance very close to their nominal maximum sustained
transfer rate when executing large contiguous reads or
writes, as will happen here.

2GB Raw using SCI
 Nodes Network traffic Time
4 8GB@ 36MB/s 3.8 mins
8 16GB@ 50MB/s 5.5 mins
16 32GB@ 50MB/s 10.7 mins
32 64GB@ 50MB/s 21.3 mins

2GB Raw using 100Mbps Ethernet
 Nodes Network traffic Time
4 8GB@ 8MB/s 17.1 mins
8 16GB@ 8MB/s 34.1 mins
16 32GB@ 8MB/s 68.3 mins
32 64GB@ 8MB/s 136.5 mins

The effect of the SCI bandwidth is clear in these two tables.
Note that the bottleneck in the SCI table is a hard disk in
each case, in the first row it is the combined writing speed
of 4 node hard disks, and the other rows it is the server
RAID performance limit.

While the above tables describe the worst case scenario,
there are a number of ways of reducing the quantity of data
transferred. If we still insist that the OS image on each
compute node is unique, and must be handled separately,
then there are two obvious ways of reducing the size of
each: shrink the image using compression - trading
computation against bandwidth - or reduce the
uncompressed size of the installation to well below the full
2GB. Both compression and smaller-than-available-space
approaches are already used by LAN-based OS managers
[BPB] for reasons of bandwidth. The former is unlikely to
be helpful with SCI since the computation time will
dominate. The latter is generally unappealing as a
restriction but may still be useful for an SCI cluster if the
researchers are forced to pay for their image storage.

However, two installations of a given OS are likely to be
very nearly identical, assuming the same configuration and
that user data is not included. To exploit this, the MultiOS
server retains a reference copy, downloads this to all
compute nodes requesting their personal copy, then
downloads a patch to each. In the reverse direction, the
server downloads the reference copy again to each node,
which generates a new patch by looking at the differences
between the copy it is receiving, and what is on the local
disk.

The most efficient way of transmitting the reference image
is a multicast protocol. Although SCI does not implement
multicast, similar behaviour and performance can be gained
by sending data to one compute node, which then
propagates it to another node, and so on in daisy-chain
fashion. If the block size is kept small, the end-to-end
propagation latency can be made very small compared to
the time taken by the node’s hard disk to read/write the data.
The primary drawback is the huge amount of redundant
network traffic, but if bandwidth and topology do not
become a bottleneck, this process will be able to keep all

hard-disk queues saturated, and therefore approach ideal
multicast performance.

If we assume 100MB of differential information for each
compute node:

100MB patches on 2GB multicast
Nodes Network traffic Storage Time
4 2GB@9MB/s *+

0.4GB@36MB/s
2.4GB 3.9

mins
8 2GB@9MB/s +

0.8GB@50MB/s
2.8GB 4.0

mins
16 2GB@9MB/s +

1.6GB@50MB/s
3.6GB 4.2

mins
32 2GB@9MB/s +

3.2GB@50MB/s
5.2GB 4.8

mins

This assumes that the patches are downloaded after the
entire image has been written, although it is possible to
download the patches in parallel with the image, since the
image storage server has bandwidth to spare during this
task. Either way, the 2GB download time dominates, even
for 100MB patches for each of 32 compute nodes.

We note that since the sustained transfer rate for current
disk drives is not far above the bandwidth of 100Mbps
Ethernet, SCI may not perform dramatically better than
Ethernet using IP multicast. The drawback to IP multicast
is that it is essentially a broadcast protocol with local
filtering, which will saturate the entire cluster. By contrast,
SCI propagation multicast generates no extraneous traffic,
making it far more suitable for use in a cluster whose
structure allows for logical division into semi-independent
subclusters.

However, the image server network connection is saturated,
even if only modifying a fraction of the cluster. If this disk
or its host server is used for other purposes, performance (as
viewed by other cluster users) will deteriorate considerably.
If this is not acceptable, then a separate dedicated image
storage server may be required, together with enough
independent bandwidth in an appropriate topology to
support it.

V. PROPAGATION OVER A PARTITIONED CLUSTER

Although the drivers don’t support doing this yet, a
switched SCI fabric can be partitioned such that no traffic
can cross boundaries established in the switches. The
simplest way to do this is to modify the routing tables to
fence requests at the second stage of SCI switches (fencing
responses would also be needed for a complete solution).
This yields a partitioning quantum of one first-stage switch
(4 nodes in our case).

Partitioning allows systems research to co-exist with normal
use. Rules can be imposed on the scheduler that ensure that
some partition of the cluster is always running a default
multi-user execution environment. In our case we intend to
support a single default environment (Linux), which runs on
all nodes at all times except when those nodes are explicitly
scheduled to be running something else.

All the same, if a cluster has been divided into two or more
logically separate subclusters, it may not always be possible
to isolate propagation traffic completely. Any network
whose OS images are only available from one point in the
fabric, or which is broken into more partitions than there are
OS image sources, is likely to have this problem, and all
propagation traffic must travel through the subcluster in
which the image server is located. The only alternative is to
provide dedicated bandwidth that is reserved for exclusive
use by the OS image server.

Our cluster is a good example of the problem. We intend to
allow the cluster to be treated as four 4-node subclusters,
partitioned per first-stage switch. If the image servers are
only connected into switches 0 and 2, they cannot reach 1 or
3 without trespassing on local bandwidth. However, there is
a compromise solution, where the full bandwidth of the
server’s SCI connection would not be exploited by the
MultiOS framework. In this scheme, the OS image only
propagates to a single node that is a member of the
subcluster being considered, and more aggressive
propagation strategies can be employed within the
subcluster itself, on its internal SCI connections.

VI. DYNAMIC PROPAGATION ROUTING OVER AN SCI
NETWORK

It emerges from this that careful consideration of
propagation routes is valuable for the MultiOS framework.
But routes change depending on a large number of factors,
including the number of image servers, their location, the
number of compute nodes, the allowed subclustering, the
bandwidth of the links, and any change in distribution of
addresses.

Obviously, these routes could be encoded in a central
configuration file, since the changes mentioned above all
represent planned physical upheavals. However, if some
node or set of nodes goes out of service, it would be
immensely valuable if these nodes could be ignored and the
routing so adapted that the system would cope with the
failure to the extent that it does not affect other nodes.

Our proposed solution is to include dynamic routing as one
of the core services of the MultiOS framework, via a
propagation routing server that maintains a configuration
database detailing the topology of the network. All the
compute nodes query this server for information about
which other nodes they must connect to under the

propagation topology, and which other nodes they expect to
connect to them. Failure to either query the server or make
the expected contact implies a failed node, and this can be
used to exclude the node. The setup algorithm is as follows:

query route server for upstream and
downstream nodes
REPEAT

WHILE (all downstream nodes have not
made contact) AND
 (not timed out)
BEGIN

wait for contact from
downstream nodes

END
IF (timed out) THEN
BEGIN

report failures to server
wait for new instructions

END
UNTIL (not timed out)
contact upstream node.

Since contacting the upstream node is outside the loop, a
failure anywhere causes a flurry of failure reports from all
nodes upstream of the failure. This identifies the point of
failure to the routing server, and also ensures that all
affected nodes re-contact it for a new route. If there are no
errors, then the propagation tree is built from the leaves
towards the trunk, and the OS image server, which is at the
root, is contacted only when the cluster is completely ready
to transfer data.
Once the propagation tree is set up, the transfer can begin.
The size of the transfer, transfer block size, where the data
is to be written, whether there is a subsequent patch, etc. is
assumed to be known. This information comes from the
MultiOS server. The propagation algorithm is:

WHILE (data_blocks remaining)
BEGIN

IF (this node is the ‘root’ or
‘source’ node)

THEN
 load buffer from some local source

ELSE
send ‘Clear-To-Send’ to upstream

node
 wait for ‘Done’ from upstream node
ENDIF

IF (this node is not a leaf)
THEN
wait on ‘CTS’ from downstream node
transfer buffer contents
send ‘Done’ when transfer complete.

ENDIF

do_local_processing
END

For linear propagation, the SISCI implementation of the
algorithm (with error handling removed) for a transfer is as
follows:

/*preamble*/
if (DnStreamNodeId)
{
 SCICreateDMAQueue(sd, &DmaQueue, adapter,
 1,NO_FLAGS, &err);
}

/*propagate*/
do
{
 if (!UpStreamNodeId)
 {
 load_buffer(LocalSegment,SegmentSize);
 } else
 {
 SCISetSegmentAvailable(LocalSegment,
 adapter
 NO_FLAGS
 &err);

 SendInterrupt(sd,adapter,LocalNodeID,
 UpStreamNodeId, DMA_CTS);

 ReceiveInterrupt(sd, adapter,
 LocalNodeID, DMA_ACK);
 }

 if (DnStreamNodeId)
 {
 ReceiveInterrupt(sd, adapter,
 LocalNodeID, DMA_CTS);

 do
 {
 SCIConnectSegment(sd,
 &DnStreamSegment,
 DnStreamNodeID,
 DnStreamSegID,
 adapter,
 NO_CALLBACK,
 NULL,
 SCI_INFINITE_TIMEOUT,
 NO_FLAGS, &err);
 SleepMilliseconds(1);
 } while (err != SCI_ERR_OK);

 SCIEnqueueDMATransfer(DmaQueue,
 LocalSegment,
 DnStreamSegment,
 LocalOfs,
 DnStreamOfs,
 SegmentSize,
 NO_FLAGS,&err);

 SCIPostDMAQueue(DmaQueue,NO_CALLBACK,
 NULL, NO_FLAGS,&err);

 SCIWaitForDMAQueue(DmaQueue,
 SCI_INFINITE_TIMEOUT,
 NO_FLAGS,&err);

 SCIDisconnectSegment(DnStrmSegment,
 NO_FLAGS,&err);

 SendInterrupt(sd, adapter, LocalNodeID,
 DnStreamNodeID, DMA_ACK);

 }
 do_local_processing(LocalSegment)
} while (more_data_to_come)

/*postamble*/
{
 SCIRemoveDMAQueue(DmaQueue,NO_FLAGS,
 &err);
}

In these code fragments, local processing might involve
writing the data to disk, writing it to a RAMdisk and
patching against it, or some other function. This can be
done in parallel with transferring the same data downstream.

VII. SUMMARY

We have discussed the exploitation of SCI within a
framework for cluster management that is specifically
tailored to OS and systems software research. Users may
reserve one or more compute nodes via a web-console,
denoting the environment image to be run. During their
session they have the ability to take snapshots with highly
customisable tools. The framework supports multiple users
in parallel if the cluster topology permits, provides dynamic
routing where appropriate to minimise the disturbance to
other users. Hence a large range of researchers and
research projects can be accomodated, enabling the capital
investment of the cluster to be amortized over a greater
number of funding sources.

Work on the framework, called MultiOS, began in October,
1999, and is still in progress.

VIII. ACKNOWLEDGEMENTS

Thanks to Prof.J.G.Byrne for support for the work
described.

IX. REFERENCES

[1] Cunniffe, R., Coghlan, B. A., "Encouraging the Unexpected:
Cluster Management for OS and Systems Research", submitted for
publication. Contact authors.

[2] Rembo Technology, http://www.bpbatch.org
[3] Pfister, Greg; “in Search of Clusters”; Prentice Hall, 1998
[4] Foster, G.T., Glover, J.P.N., Warwick, K., "Flexible Distributed

Control of Manufacturing Systems Using Local Operating
Networks", Proc. LonUsers Internation Fall Conference, 1995

[5] Magic Packet Technology White Paper, AMD Publication
no.20213, Advanced Micro Devices Inc., November 1995

[6] Wimer, W., "Clarifications and Extensions for the Bootstrap
Protocol", IETF Request For Comments Document no.1542, October
1993.

[7] Sollins, K., "The TFTP Protocol (Revision 2)", IETF Request For
Comments Document no.1350, July 1992.

[8] Free Software Foundation, "Grand Unified Bootloader"
http://www.gnu.org/software/grub.en.html

[9] Yap, K; Savoye, R; "Network Interface Loader"
http://nilo.sourcefourge.net/

