<table>
<thead>
<tr>
<th>Module Code</th>
<th>CS7GV3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Name</td>
<td>Real-time Rendering</td>
</tr>
<tr>
<td>ECTS weighting</td>
<td>5</td>
</tr>
<tr>
<td>Term</td>
<td>HT</td>
</tr>
<tr>
<td>Contact Hours</td>
<td>2 lecture hours per week</td>
</tr>
<tr>
<td>Module Personnel</td>
<td>Assistant Professor John Dingliana</td>
</tr>
</tbody>
</table>

Learning Outcomes

On successful completion of this module, students will be able to:
- GV3LO1 explain the differences between fixed function graphics pipelines and shader architectures, including pixel, vertex and geometry shaders.
- GV3LO2 architect a shader pipeline in a game context.
- GV3LO3 develop specific shaders to implement lighting models, shadowing, geometry processing and post-processing effects.
- GV3LO4 analyse and compare different approaches to real-time rendering
- GV3LO5 discuss state-of-the-art issues in real-time rendering

Module Learning Aims

This module deals with programming for GPU pipeline architectures e.g. geometry, rasterisation, texturing, fragment / pixel and vertex shaders. Students will be introduced to shader systems and shader coding and will learn about modern game graphics engine architectures and developing real-time graphics applications, both for desktop PC and Xbox360. The module will explore advanced rendering concepts presented at leading international conferences such as SIGGRAPH and GDC.

Module Content

1. Overview of graphics pipeline
2. Introduction to GPUs
3. Introduction to shader / stream programming using GLSL
4. Illumination/ Surface models (Phong, Blinn, normal maps etc.)
5. Shadowing Techniques (shadow maps, volumes etc.)
6. Global Illumination (reflection, refraction etc.)
7. Stylised and Non-photorealistic Rendering
8. Voxel rendering

Recommended Reading List

Various research papers from SIGGRAPH
Excerpts from GPU PRO, GPU Gems, Graphics Gems series of books

Assessment Details

Coursework: 100%

Coursework will consist of labs 50% and a project 50%.