<table>
<thead>
<tr>
<th>Module Code</th>
<th>CS7DS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Name</td>
<td>Optimisation Algorithms for Data Analysis</td>
</tr>
<tr>
<td>ECTS weighting</td>
<td>5</td>
</tr>
<tr>
<td>Term</td>
<td>Hilary Term</td>
</tr>
<tr>
<td>Contact Hours</td>
<td>2 lecture hours per week</td>
</tr>
<tr>
<td>Module Personnel</td>
<td>Professor Douglas Leith</td>
</tr>
</tbody>
</table>

Learning Outcomes

Students who complete this module should be able to:
- DS2LO1 Describe the principle types of algorithm that form the basis of data science methods;
- DS2LO2 Explain the properties of these algorithms that will or will not permit scalability;
- DS2LO3 Choose the appropriate software and hardware tools to implement these algorithms in any specific case.

Module Learning Aims

The aims of this module are to give the student skills to address the principal computational challenges that are encountered when trying to scale statistical algorithms:
- Convex optimization: convexity, subgradient methods, duality.
- Co-ordinate descent methods, asynchronous updating.
- Introduction to non-convex optimisation: convex-concave approach
- Linear programming
- Matrix factorisation and decomposition,
- Large-dimension simulation: Gibbs sampling, annealing methods
- Overview of Programming: Python, R for big data, Map-reduce/Hadoop, Scala.

Assessment Details

- Coursework: 20%
- Exam: 80%

The coursework is a project.