<table>
<thead>
<tr>
<th>Module Code</th>
<th>STU22006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Name</td>
<td>Management Science Methods</td>
</tr>
<tr>
<td>ECTS Weighting<sup>1</sup></td>
<td>10 ECTS</td>
</tr>
<tr>
<td>Semester taught</td>
<td>Semester 1 & 2</td>
</tr>
<tr>
<td>Module Coordinator/s</td>
<td>Paula Roberts</td>
</tr>
</tbody>
</table>

Module Learning Outcomes

On successful completion of this module, students will be able to:

- LO1. Identify an infeasible problem, a problem with multiple solutions or the presence of degeneracy
- LO2. Describe how to find an initial basic feasible solution to a linear program
- LO3. Conduct a parametric analysis on a coefficient in the objective function
- LO4. Define and formulate a balanced transportation problem
- LO5. Describe how to solve integer programs with a branch and bound algorithm
- LO6. Formulate a 0–1 integer program, put into standard form and solve with a branch and bound algorithm
- LO7. Identify the concepts and terminology involved in Simulation
- LO8. Describe different kinds of simulation techniques and be familiar with a range of application examples
- LO9. Apply a simulation using appropriate software
- LO10. Describe the limitations of Simulation

Module Content

Semester 1

- Formulate and solve Linear and Goal Programming problems using the Simplex Method
- Perform Sensitivity Analysis on the output from a Linear and Goal Programming problem
- Formulate and solve Transportation, Transhipment and Assignment problems
- Formulate a 0 – 1 Linear Programming problem and solve using the Cutting Plane and Branch and Bound Methods
- Analyse networks for the Chinese Postman and Travelling Salesman Problems
- Other relevant mathematical models

Semester 2

- Entities, attributes and variables
- Events
- Resources
- Queues
- Steady-state models and transients
- Software for simulation
- Statistical analysis of output

¹ TEP Glossary
Teaching and Learning Methods

- 2 hours lectures in both Semester 1 and 2
- Weekly assignments in Semester 1
- 1 hour lab per week for Semester 2

Assessment Details

<table>
<thead>
<tr>
<th>Assessment Component</th>
<th>Brief Description</th>
<th>Learning Outcomes Addressed</th>
<th>% of total</th>
<th>Week set</th>
<th>Week due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>3 hour written examination</td>
<td>All</td>
<td>80%</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Test</td>
<td>In-Class Test</td>
<td>LO1,2,3</td>
<td>5%</td>
<td>6</td>
<td>n/a</td>
</tr>
<tr>
<td>Test</td>
<td>In-Class Test</td>
<td>LO4,5,6</td>
<td>5%</td>
<td>12</td>
<td>n/a</td>
</tr>
<tr>
<td>Assignment</td>
<td>Statistical Software (R) Assignment</td>
<td>LO7,8,9,10</td>
<td>10%</td>
<td>18</td>
<td>22</td>
</tr>
</tbody>
</table>

Reassessment Details

- Examination (3 hours, 100%)

Contact Hours and Indicative Student Workload

<table>
<thead>
<tr>
<th>Contact Hours (scheduled hours per student over full module), broken down by:</th>
<th>60 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecture</td>
<td>44 hours</td>
</tr>
<tr>
<td>laboratory</td>
<td>11 hours</td>
</tr>
<tr>
<td>tutorial or seminar</td>
<td>5 hours</td>
</tr>
<tr>
<td>other</td>
<td>0 hours</td>
</tr>
</tbody>
</table>

Independent study (outside scheduled contact hours), broken down by:

preparation for classes and review of material (including preparation for examination, if applicable)	36 hours
completion of assessments (including examination, if applicable)	36 hours
Total Hours	132 hours

Recommended Reading List

Module Pre-requisites

- Prerequisite modules: ST1004

Module Co-requisites

Module Website

http://mymodule.tcd.ie

Last Update

08/07/2019 by Paula Roberts

2 TEP Guidelines on Workload and Assessment