Module Code	CS7GV3
Module Name | Real-time Rendering
ECTS Weighting | 5 ECTS
Semester taught | Semester 2
Module Coordinator/s | Assistant Professor Michael Manzke

Module Learning Outcomes

On successful completion of this module, students will be able to:

- **LO1.** explain the differences between fixed function graphics pipelines and shader architectures, including pixel, vertex and geometry shaders.
- **LO2.** architect a shader pipeline.
- **LO3.** develop specific shaders to implement lighting models, shadowing, geometry processing and post-processing effects.
- **LO4.** analyse and compare different approaches to real-time rendering.
- **LO5.** discuss state-of-the-art issues in real-time rendering.

Module Content

1. Overview of graphics pipeline
2. Introduction to GPUs
3. Introduction to shader / stream programming using GLSL
4. Illumination/ Surface models (Phong, Blinn, normal maps etc.)
5. Shadowing Techniques (shadow maps, volumes etc.)
6. Global Illumination (reflection, refraction etc.)
7. Stylised and Non-photorealistic Rendering
8. Voxel rendering

Teaching and Learning Methods

This module deals with programming for GPU pipeline architectures e.g. geometry, rasterisation, texturing, fragment / pixel and vertex shaders. Students will be introduced to shader systems and shader coding and will learn about modern architectures and developing real-time graphics applications for desktop PC. The module will explore advanced rendering concepts presented at leading international conferences such as SIGGRAPH and GDC.

Assessment Details

<table>
<thead>
<tr>
<th>Assessment Component</th>
<th>Brief Description</th>
<th>Learning Outcomes Addressed</th>
<th>% of total</th>
<th>Week set</th>
<th>Week due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coursework Labs</td>
<td></td>
<td>LO1, LO2, LO3, LO4, LO5</td>
<td>50%</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Coursework Project</td>
<td></td>
<td>LO1, LO2, LO3, LO4, LO5</td>
<td>50%</td>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>
Reassessment Details

Coursework (100%)

Contact Hours and Indicative Student Workload

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Hours (scheduled hours per student over full module), broken down by:</td>
<td></td>
</tr>
<tr>
<td>lecture</td>
<td>11</td>
</tr>
<tr>
<td>laboratory</td>
<td>11</td>
</tr>
<tr>
<td>tutorial or seminar</td>
<td>0</td>
</tr>
<tr>
<td>other</td>
<td>0</td>
</tr>
<tr>
<td>Independent study (outside scheduled contact hours), broken down by:</td>
<td></td>
</tr>
<tr>
<td>preparation for classes and review of material (including preparation for examination, if applicable)</td>
<td>40</td>
</tr>
<tr>
<td>completion of assessments (including examination, if applicable)</td>
<td>63</td>
</tr>
<tr>
<td>Total Hours</td>
<td>125</td>
</tr>
</tbody>
</table>

Recommended Reading List

- Various research papers from SIGGRAPH
- Excerpts from GPU PRO, GPU Gems, Graphics Gems series of books

Module Pre-requisites

- C++ and OpenGL

Module Co-requisites

Module Website

- Blackboard

Last Update

26/09/2019 by Prof. M. Manzke