Module Code	CS7DS2
Module Name | Optimisation Algorithms for Data Analysis
ECTS Weighting1 | 5 ECTS
Semester taught | Semester 2
Module Coordinator/s | Georgios Iosifidis

Module Learning Outcomes

On successful completion of this module, students will be able to:

LO1. Understand the principles of convex and non-convex optimization;
LO2. Model and analyse problems that arise in data analytics
LO3. Design algorithms for optimizing data analytic applications.

Module Content

The aims of this module are to give the student skills to model, analyse and solve optimisation problems that arise in data analytics and modern computing and communication systems.

Teaching and Learning Methods

Lectures and tutorials

Assessment Details2

<table>
<thead>
<tr>
<th>Assessment Component</th>
<th>Brief Description</th>
<th>Learning Outcomes Addressed</th>
<th>% of total</th>
<th>Week set</th>
<th>Week due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Examination</td>
<td>2 hour written examination</td>
<td>LO1-LO3</td>
<td>70%</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Mid-term Exams</td>
<td>Mid-Term Assignment</td>
<td>LO1-LO3</td>
<td>30%</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Reassessment Details

Examination (2 hours, 100%)

1 [TEP Glossary](#)

2 [TEP Guidelines on Workload and Assessment](#)
Contact Hours and Indicative Student Workload

<table>
<thead>
<tr>
<th>Contact Hours (scheduled hours per student over full module), broken down by:</th>
<th>22 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecture</td>
<td>22 hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Independent study (outside scheduled contact hours), broken down by:</th>
<th>72 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>preparation for classes and review of material (including preparation for examination, if applicable)</td>
<td>36 hours</td>
</tr>
<tr>
<td>completion of assessments (including examination, if applicable)</td>
<td>36 hours</td>
</tr>
</tbody>
</table>

Total Hours 94 hours

Recommended Reading List

Module Pre-requisites

Prerequisite modules: None

Other/alternative non-module prerequisites: It is recommended that students have familiarity with basic concepts in linear algebra, probability, and multivariate calculus.

Module Co-requisites

Module Website

Blackboard

Last Update

11/07/2019 by Georgios Iosifidis