Keyphrase counts and their effect on clickthrough rates (CTR)

Document Embeddings vs. Keyphrases vs. Terms: An Online Evaluation in Digital Library Recommender Systems

Our paper “Document Embeddings vs. Keyphrases vs. Terms: An Online Evaluation in Digital Library Recommender Systems” was accepted for publication at the ACM/IEEE Joint Conference on Digital Libraries. 1 Introduction Many recommendation algorithms are available to operators of recommender systems in digital libraries. The effectiveness of algorithms in real-world systems is Read more…

Two of our papers about citation and term-weighting schemes got accepted at iConference 2017

Two of our papers about weighting citations and terms in the context of user modeling and recommender systems got accepted at the iConference 2017. Here are the abstracts, and links to the pre-print versions: Evaluating the CC-IDF citation-weighting scheme: How effectively can ‘Inverse Document Frequency’ (IDF) be applied to references? In Read more…