Mr. DLib

Several new publications: Mr. DLib, Lessons Learned, Choice Overload, Bibliometrics (Mendeley Readership Statistics), Apache Lucene, CC-IDF, TF-IDuF

In the past few weeks, we published (or received acceptance notices for) a number of papers related to Mr. DLib, research-paper recommender systems, and recommendations-as-a-service. Many of them were written during our time at the NII or in collaboration with the NII. Here is the list of publications: Beel, Joeran, Bela Gipp, and Akiko Aizawa. “Mr. DLib: Recommendations-as-a-Service (RaaS) for Academia.” In Proceedings of the ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL), 2017. Beel, Joeran. “Real-World Recommender Systems for Academia: The Gain and Pain in Developing, Operating, and Researching them.” In 5th International Workshop on Bibliometric-enhanced Information Retrieval (BIR) at the 39th European Conference on Information Retrieval (ECIR), 2017. [short version, official], [long version, arxiv] Beierle, Felix, Akiko Aizawa, and Joeran Beel. Read more…

By Joeran Beel, ago
Recommendations as-a-Service (RaaS)

Enhanced re-ranking in our recommender system based on Mendeley’s readership statistics

Content-based filtering recommendations suffer from the problem that no human quality assessments are taken into account. This means a poorly written paper ppoor would be considered equally relevant for a given input paper pinput as high-quality paper pquality if pquality and ppoor contain the same words. We elevate for this problem by using Mendeley’s readership data for re-ranking Mr. DLib’s recommendations. This means, once we have a number of e.g. 20 documents that are related for a requested input paper, we re-rank the 20 documents based on the number of readers they have on Mendeley. The most read papers are then recommended. More details will follow.

By Joeran Beel, ago