Click-through rate (CTR) and # of delivered recommendation in JabRef for Mr. DLib’s (MDL) and CORE’s recommendation engine and in total

Mr. DLib’s Living Lab for Scholarly Recommendations (preprint)

We published a manuscript on arXiv about the first living lab for scholarly recommender systems. This lab allows recommender-system researchers to conduct online evaluations of their novel algorithms for scholarly recommendations, i.e., research papers, citations, conferences, research grants etc. Recommendations are delivered through the living lab´s API in platforms such Read more…

Prof Henri Angelino (NII) and Prof Joeran Beel (TCD Dublin, Ireland) MoU Visit (Joint Recommender Systems Project)

MoU between the National Institute of Informatics (NII) and Trinity College Dublin (TCD) / SCSS / ADAPT

After being appointed as a visiting professor at the National Institute of Informatics (NII) a few weeks ago, there is more good news. The NII has signed a memorandum of understanding (MoU) with the School of Computer Science and Statistics (SCSS) of Trinity College Dublin (TCD) and the ADAPT Research Centre. The MoU originates Read more…

Mr. DLib: Recommender-System As-a-Service (Recommender Systems Dublin)

Mr. DLib v1.2.1: Improved keyphrase recommendations and Apache Lucene query handling

The new version of our recommender system completes 104 issues and significantly improves the recommendations. The most notable improvements are: We improved the keyphrase extraction process in the recommender system, i.e. keyphrases are not stored differently in Lucene. We expect better recommendation effectiveness and are currently running an A/B test. More Read more…

RARD I: The Related-Article Recommender-System Dataset

RARD: The Related-Article Recommendation Dataset

We are proud to announce the release of ‘RARD’, the related-article recommendation dataset from the digital library Sowiport and the recommendation-as-a-service provider Mr. DLib. The dataset contains information about 57.4 million recommendations that were displayed to the users of Sowiport. Information includes details on which recommendation approaches were used (e.g. content-based Read more…

Several new publications: Mr. DLib, Lessons Learned, Choice Overload, Bibliometrics (Mendeley Readership Statistics), Apache Lucene, CC-IDF, TF-IDuF

In the past few weeks, we published (or received acceptance notices for) a number of papers related to Mr. DLib, research-paper recommender systems, and recommendations-as-a-service. Many of them were written during our time at the NII or in collaboration with the NII. Here is the list of publications: Beel, Joeran, Bela Gipp, Read more…

Mr. DLib v1.1 released: JavaScript Client, 15 million CORE documents, new URL for recommendations-as-a-service via title search

We are proud to announce version 1.1 of Mr. DLib’s Recommender-System as-a-Service. The major new features are: A JavaScript Client to request recommendations from Mr. DLib. The JavaScript offers many advantages compared to a server-side processing of our recommendations. Among others, the main page will load faster while recommendations are requested in the Read more…