Keyphrase counts and their effect on clickthrough rates (CTR)

Document Embeddings vs. Keyphrases vs. Terms: An Online Evaluation in Digital Library Recommender Systems

Our paper “Document Embeddings vs. Keyphrases vs. Terms: An Online Evaluation in Digital Library Recommender Systems” was accepted for publication at the ACM/IEEE Joint Conference on Digital Libraries. 1 Introduction Many recommendation algorithms are available to operators of recommender systems in digital libraries. The effectiveness of algorithms in real-world systems is Read more…

Click-through rate (CTR) and # of delivered recommendation in JabRef for Mr. DLib’s (MDL) and CORE’s recommendation engine and in total

Mr. DLib’s Living Lab for Scholarly Recommendations (preprint)

We published a manuscript on arXiv about the first living lab for scholarly recommender systems. This lab allows recommender-system researchers to conduct online evaluations of their novel algorithms for scholarly recommendations, i.e., research papers, citations, conferences, research grants etc. Recommendations are delivered through the living lab´s API in platforms such Read more…

The results of the comparison of 10 open-source bibliographic reference parsers

Machine Learning vs. Rules and Out-of-the-Box vs. Retrained: An Evaluation of Open-Source Bibliographic Reference and Citation Parsers

Our paper “Machine Learning vs. Rules and Out-of-the-Box vs. Retrained: An Evaluation of Open-Source Bibliographic Reference and Citation Parsers” got recently accepted and will be presented at Joint Conference on Digital Libraries 2018. Abstract: Bibliographic reference parsing refers to extracting machine-readable metadata, such as the names of the authors, the Read more…

The workflow of author contributions extraction

Who Did What? Identifying Author Contributions in Biomedical Publications using Naïve Bayes

Our paper “Who Did What? Identifying Author Contributions in Biomedical Publications using Naïve Bayes” got recently accepted and will be presented at Joint Conference on Digital Libraries 2018. Abstract: Creating scientific publications is a complex process. It is composed of a number of different activities, such as designing the experiments, Read more…

RARD I: The Related-Article Recommender-System Dataset

RARD: The Related-Article Recommendation Dataset

We are proud to announce the release of ‘RARD’, the related-article recommendation dataset from the digital library Sowiport and the recommendation-as-a-service provider Mr. DLib. The dataset contains information about 57.4 million recommendations that were displayed to the users of Sowiport. Information includes details on which recommendation approaches were used (e.g. content-based Read more…