Concurrent Programs

• reasoning about their execution

• proving correctness

• start by considering \textit{execution sequences}
Execution Sequences

- consider the following instruction sequences executed by threads T0 and T1

- n is a shared global variable with initial value 0

- assume that each statement \([n = n + 1]\) is executed atomically

- n can only be accessed by one thread at a time

- statement execution can be interleaved 20 different ways

- as each statement is atomic, n will always end up with the value 6, irrespective of how the execution of the statements are interleaved
Execution Sequences...

- one possible interleave

<table>
<thead>
<tr>
<th>T0</th>
<th>T1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = n + 1</td>
</tr>
<tr>
<td>n = n + 1</td>
<td>n = 1</td>
</tr>
<tr>
<td>n = n + 1</td>
<td>n = 2</td>
</tr>
<tr>
<td>n = n + 1</td>
<td>n = 3</td>
</tr>
<tr>
<td>n = n + 1</td>
<td>n = 4</td>
</tr>
<tr>
<td>n = n + 1</td>
<td>n = 5</td>
</tr>
<tr>
<td>n = n + 1</td>
<td>n = 6</td>
</tr>
</tbody>
</table>

- $n = n + 1$ is not normally executed atomically by a CPU
- CPU will read \([\text{load}]\) n from memory into a CPU register, increment the register and then write \([\text{store}]\) the register \([n + 1]\) back to memory \([\text{location } n]\)
- non atomic read-modify-write
Execution Sequences...

- \(n = n + 1 \) is split into two steps \([t = n \text{ and } n = t + 1]\)
- simulates a non atomic read-modify-write sequence
- each thread now has its own local variable \(t_0 \) and \(t_1 \)

<table>
<thead>
<tr>
<th>(T_0)</th>
<th>(T_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_0 = n)</td>
<td>(t_1 = n)</td>
</tr>
<tr>
<td>(n = t + 1)</td>
<td>(n = t_1 + 1)</td>
</tr>
<tr>
<td>(t_0 = n)</td>
<td>(t_1 = n)</td>
</tr>
<tr>
<td>(n = t_0 + 1)</td>
<td>(n = t_1 + 1)</td>
</tr>
<tr>
<td>(t_0 = n)</td>
<td>(t_1 = n)</td>
</tr>
<tr>
<td>(n = t_0 + 1)</td>
<td>(n = t_1 + 1)</td>
</tr>
</tbody>
</table>

- statements can be interleaved 924 ways
- what is the maximum and minimum resulting value for \(n \)?
- \(\text{max } n = ?? \text{ min } n = ?? \)
- \(\text{max } n = 6 \text{ min } n = 2 \)
Execution Sequences...

- execution sequence resulting in \(n = 6 \)

<table>
<thead>
<tr>
<th>T0</th>
<th>T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_0 = n)</td>
<td>(t_0 = 0)</td>
</tr>
<tr>
<td>(n = t_0 + 1)</td>
<td>(n = 1)</td>
</tr>
<tr>
<td>(t_0 = n)</td>
<td>(t_0 = 1)</td>
</tr>
<tr>
<td>(n = t_0 + 1)</td>
<td>(n = 2)</td>
</tr>
<tr>
<td>(t_0 = n)</td>
<td>(t_0 = 2)</td>
</tr>
<tr>
<td>(n = t_0 + 1)</td>
<td>(n = 3)</td>
</tr>
<tr>
<td></td>
<td>(t_1 = n)</td>
</tr>
<tr>
<td></td>
<td>(n = t_1 + 1)</td>
</tr>
<tr>
<td></td>
<td>(t_1 = n)</td>
</tr>
<tr>
<td></td>
<td>(n = t_1 + 1)</td>
</tr>
<tr>
<td></td>
<td>(t_1 = n)</td>
</tr>
<tr>
<td></td>
<td>(n = t_1 + 1)</td>
</tr>
</tbody>
</table>
Execution Sequences...

- execution sequence resulting in $n = 2$

<table>
<thead>
<tr>
<th></th>
<th>T0</th>
<th>T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>t0 = n</td>
<td>$t0 = 0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$t1 = n$</td>
<td>$t1 = 0$</td>
</tr>
<tr>
<td></td>
<td>$n = t1 + 1$</td>
<td>$n = 1$</td>
</tr>
<tr>
<td></td>
<td>$t1 = n$</td>
<td>$t1 = 1$</td>
</tr>
<tr>
<td></td>
<td>$n = t1 + 1$</td>
<td>$n = 2$</td>
</tr>
<tr>
<td>$n = t0 + 1$</td>
<td>$n = 1$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$t1 = n$</td>
<td>$t1 = 1$</td>
</tr>
<tr>
<td>t0 = n</td>
<td>$t0 = 1$</td>
<td></td>
</tr>
<tr>
<td>$n = t0 + 1$</td>
<td>$n = 2$</td>
<td></td>
</tr>
<tr>
<td>t0 = n</td>
<td>$t0 = 2$</td>
<td></td>
</tr>
<tr>
<td>$n = t0 + 1$</td>
<td>$n = 3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$n = t1 + 1$</td>
<td>$n = 2$</td>
</tr>
</tbody>
</table>
Execution Sequences...

- use Promela/Spin to check results

- \(_{nr_pr} == 1\) waits until the two instances of p0 are terminated and then checks \texttt{assert}(n > 2)

- in verification mode, Spin will execute all possible interleaves and stop if \texttt{assert}(n > 2) is false

- this sequence can then be replayed for analysis

- change to \texttt{assert}(n > 1) and use verification mode to confirm that the resulting value of n is always greater than 1

- \texttt{ispin.tcl} demo [relatively easy to install on Windows and Ubuntu]

Promela source code

\begin{verbatim}
int n = 0;

proctype p0() {
 int t;
 t = n;
 n = t + 1; // n = n + 1
 t = n;
 n = t + 1; // n = n + 1
 t = n;
 n = t + 1; // n = n + 1
}

init {
 run p0();
 run p0();
 (_nr_pr == 1);
 assert(n > 2)
}
\end{verbatim}
Execution Sequences...

- modify to use a *for* loop [*constructed from a do statement*] to increment \(n \) from 0 to \(N \)

- each *process* executes the read-modify-sequence \(N \) times

- confirm \((n \geq 2) \land (n \leq 2 \times N)\)

- if \(N \) large, verification may not complete [*typically runs out of memory*]

- need to increase memory allocated to Spin or use an alternative mode which uses less memory [*eg. compresses state data*], but is more compute intensive

- NB: minimum result value for \(n \) is the number of processes

```cpp
#define N 10

Int n = 0;

proctype p() {
    int t;
    int i = 0;
    do
        :: (i >=N) ->
            break;
        :: else ->
            t = n;
            n = t + 1;
            i++
        od
    }

init {
    run p();
    run p();
    (_nr_pr == 1);
    assert (n > 1)
}
```

Promela source code
Spin states stored and states matched

• consider a simple example with two processes each with two statements

• number of interleaves 6

• state transition diagram where each state represented by a triple \((PC_0, PC_1, n)\)

• arcs represent executed statements

 eg. \((n = n + 1)_p\) step executed by process \(p\)

```c
int n = 0;

active[2] proctype p0()
{
    n = n + 1;  // pc = 0
    n = n + 1;  // pc = 1
}
```
Spin states stored and states matched...

- assume a depth first search
- new states coloured green
- matched states coloured red [have already visited state]
- remaining states coloured grey
- 9 states stored [green], 4 states matched [red]
- NOT the same as Spin counts which are
 - 13, 4 with partial order reduction
 - 13, 6 without partial order reduction

state transition diagram
Spin states stored and states matched...

- Spin uses an extra state/step to terminate a process [after last statement has been executed]

- Why?

- processes are created in source code order [apart from init, if present, which is always process 0]

- terminated in reverse order [process 1 must be terminated before process 0]

- use T for the PC of instruction used to terminate process

- processes numbered 0 and 1 in example

- modified state transition diagram
Spin states stored and states matched

- 13 stored states
- 6 matched states without partial order reduction
- 4 matched states with partial order reduction
- red dotted states can be skipped [partial order reduction]
- \((n = n + 1)_0 T_1\) results in the same state change as \(T_1 (n = n + 1)_0\) as statements are independent of each other
Synchronisation

- **spin lock**: ensures that only one thread can access a particular shared data structure at a time [**serialise access**]

- **barrier**: ensures that no thread advances beyond a particular point in a computation until ALL have arrived at the barrier - used typically to separate program phases

- synchronization constructs divided into two classes
 - **blocking**: de-schedule waiting thread and schedule another thread to run
 - **busy-wait**: threads repeatedly test a shared variable to determine when they can proceed

- busy-wait preferred when scheduling overhead exceeds expected wait time
Spin Lock Implementations without Atomic Instructions

- Peterson algorithm for **TWO** threads [also google Dekker’s algorithm]

```c
int flag[2]; // initially 0
int last;

void acquire(int id) { // id is the thread ID [0 or 1]
    int j = 1 - id; // 0 -> 1 and 1 ->0
    flag[id] = 1; // want lock
    last = id; // other thread has priority
    while (flag[j] && last == id); // NB last == id
}

void release(int id) {
    flag[id] = 0; // release lock
}
```

what happens if the variable last removed?

what happens if the statement flag[id] = 1 removed?

check using Spin

- thread sets its **flag** indicating it wants lock and then sets **last** to indicate other thread can have lock if there is a conflict

- wait while other thread has lock **and** other thread has priority
Peterson Lock

- Promela code for Peterson lock
- Two active processes
- _pid is the process number [0 or 1 in this case]
- Although processes never end, state will eventually be repeated

```promela
// Peterson lock

bool flag[2]; // 0 initially
byte last; // 0 initially

active[2] proctype P() {
    byte i = _pid; // process #
    byte j = 1 - i; // other pid

    again:
        flag[i] = 1;
        last = i;

        (flag[j] == 0 || last == j); // wait until true

        flag[i] = 0; // release lock

        goto again
}
```

Promela code
Peterson Lock...

• desirable properties

 ▪ safety "nothing bad ever happens"
 eg. mutual exclusion not violated

 ▪ deadlock free "in every state of every computation, if processes are trying to enter the critical section one will eventually succeed"

 ▪ liveness "something good eventually happens"
 eg. processes continually enter critical section

 ▪ starvation free "if in every state of every computation, if a process tries to enter its critical section it will eventually succeed"

• will use Spin to test for these properties
Peterson Lock...

- base line
- verify using safety mode
- NO errors found
- max depth reached 13
Peterson Lock...

- max depth = 13
- in this case, Spin finds ALL infinite runs (depth first search)
- think of an infinite run as a sequence of states that eventually repeat
- a possible infinite run with depth 13 [there are many others]
- with this example, Spin will eventually reaches a previously visited state
Peterson Lock...

• safety check for mutual exclusion

• first approach

• declare global variable ncs and add following code to critical section

```c
ncs++;  
assert(ncs == 1);  
ncs--;  
```

• run model and verify assertion NOT violated

• comment out line containing "flag[i] = 1;" to force a mutual exclusion error

• verify assert(ncs == 1) violated

• replay trail to find cause of error
Peterson Lock...

- extra code
- NO errors
Peterson Lock...

- // flag[i] = 1;
- assertion violated
Peterson Lock...

- replay trail to find error
- both processes can pass through statement 20 simultaneously
- critical section entered by process 0 in step 20 and ALSO by process 1 in step 24
- error results from ncs++ in step 20 and 24
Peterson Lock...

- second approach for mutual exclusion checking
- check against an LTL claim [linear temporal logic]
 \[\text{ltl claim} \{ \text{always (ncs} \leq 1)\}\]
- think of LTL checking as a game played between the model and Spin
- Promela claim \textit{process} generated from the inverse of the LTL claim
- claim \textit{process} executed before each step of model to check claim is true in every model state
- Spin wins if assertion error in claim OR acceptance cycle in claim OR claim \textit{process} terminates [meaning claim is FALSE]
Peterson Lock...

- claim
- NO errors
- NB: acceptance cycles and use claim buttons selected
Peterson Lock...

- \(\text{flag[i]} = 1; \)
- claim
- claim assertion violated
- replay trail to find error
Peterson Lock...

- steps 34 and 42 show how \text{ncs} gets a value of 2
Peterson Lock...

- click on a never claim (43) step to view Promela code for claim
Peterson Lock...

- third approach for mutual exclusion checking
- LTL claim using statement labels
- separate into two processes P and Q
- add labels \(csp\) and \(cpq\) to mark critical section in P and Q respectively

\[
\text{ltl claim } \{ \text{always } !(P@csp \&\& Q@csq) \}
\]

- \(P@csp\) means statement labeled \(csp\) in P
Peterson Lock...

- two separate processes
- labels
- \(/\text{flag}[i] = 1;\)
- claim
- NB: acceptance cycles and use claim buttons selected
- claim assertion violated
Peterson Lock...

- check for deadlock

- Spin selects an executable statement on each step (depth first search) – if there is no executable statement we have deadlock

- force deadlock by removing variable last

- verify in safety mode

- reports pan:1: invalid end state (at depth 8)

- replay trail to find error
Peterson Lock...

- variable last removed
- safety mode
- invalid end state [at depth 4]
Peterson Lock...

- replay trail to find error
- confirms both processes deadlocked at flag[j] == 0 (18)
Peterson Lock...

- check for liveness
- separate processes with csp and csq incremented and decremented in respective critical sections (eg csp++; csp--)
- show that csp is true infinitely often

\[\text{ltl claim \{} \text{always eventually csp} \}\]

- claim also true with following infinite run

\[\text{ltl claim \{} \text{always (eventually csp && eventually !csp)} \}\]

OK as csp++ is always followed by csp-- ??
Peterson Lock...

- claim
- fails due to an acceptance cycle being found
Peterson Lock...

- replay trail to find error
- verifier is ONLY selecting statements from process 1
- strong fairness
Peterson Lock...

- need to verify with the “enforce weak fairness constraint”

- a computation is weakly fair if and only if the following conditions holds:

 if a statement is always executable, then it is eventually executed as part of the computation

- alternatively could try following claim for liveness (but not strong fair)

 \[\text{ltl claim \{always (eventually csp && eventually !csp) || (eventually csq && eventually !csq) \}} \]

- check for starvation freedom

 \[\text{ltl claim \{always (eventually csp && eventually !csp) \&\& (eventually csq && eventually !csq) \}} \]

[need to select “enforce weak fairness constraint”]
Peterson Lock

- claim
- **enforce weak fairness constraint** SELECTED
- NO errors
Peterson Lock...

- an interesting property of the Peterson lock is that if a *process* sets its flag, it will *eventually* obtain the lock

- LTL claim

\[
\text{ltl claim \{} \text{always ((flag[0] \rightarrow eventually P@csp) \&\& (flag[1] \rightarrow eventually Q@csq)) } \text{\}}
\]

\rightarrow \text{implication}

- need to add labels csp and csq to mark start of respective critical sectiona

- **NO** need to *enforce weak fairness constraint*
Peterson Lock...

- labels
- claim
- NO need to enforce weak fairness constraint
- NO errors
Peterson Lock...

- replace labels csp and csq with variables csp and csq
- increment and decrement csp and csq in their corresponding critical sections
- Puzzle: why is there a need for the "enforce weak fairness constraint" with the following seemingly equivalent LTL claim?

\[
\text{ltl claim } \{ \text{always } ((\text{flag}[0] \rightarrow \text{eventually csp}) \&\& (\text{flag}[1] \rightarrow \text{eventually csq})) \}
\]
Peterson Lock...

- labels
- claim
- NO need to enforce weak fairness constraint
- NO errors
Bakery Lock

- Leslie Lamport CACM Aug 1974 [2013 A. M. Turing Award Winner]

- algorithm works with N threads

- think of a baker’s shop

- customers enter door and obtain a unique ticket number from a ticket dispenser [tickets issued in ascending order]

- customers then served in ticket order

- the problem is how to obtain a unique ticket without using any atomic instructions [straightforward with a modern CPU if the right atomic instruction is available]

- often called a ticket lock

- let’s examine a C/C++ version of the code from the original paper
Bakery Lock

```c
int number[MAXTHREAD]; // thread IDs 0 to MAXTHREAD-1
int choosing[MAXTHREAD];

void acquire(int pid) { // pid is thread ID
    choosing[pid] = 1;
    int max = 0;
    for (int i = 0; i < MAXTHREAD; i++) { // find maximum ticket
        if (number[i] > max)
            max = number[i];
    }
    number[pid] = max + 1; // our ticket number is maximum ticket found + 1
    choosing[pid] = 0;
    for (int j = 0; j < MAXTHREAD; j++) { // wait until our turn i.e. have lowest ticket
        while (choosing[j]);
        while (number[j] && ((number[j] < number[pid]) || ((number[j] == number[pid]) && (j < pid))));
    }
}

void release(int pid) {
    number[pid] = 0; // release lock
}
```
Bakery Lock

• how does the algorithm work?

• consider 3 threads numbered 0, 1 and 2
• imagine thread2 holds lock and number[] = [0, 0, 2]

• if thread0 and thread1 concurrently execute the code to get a ticket what, ticket values can be returned?
• NB: number[] can be changed by other threads while a thread is obtaining its ticket

• 3, 4 or 4, 3 or 3, 3 or 1, 2 or 2, 1 or 1, 1 ??

• since threads can be issued with the same ticket number, threadID is used as a differentiator [thread with lower threadID given priority]

• when thread releases lock it sets number[threadID] = 0

• what is the maximum ticket value? can algorithm handle ticket value wrap around?
• why is the while (choosing[jj]) loop needed?
• what happens if a thread goes to sleep holding lock?
Bakery Lock...

• the necessity for variable *choosing* may not be obvious

• there is no 'lock' around lines 5 to 10 where the maximum ticket is calculated

• suppose choosing was removed and two processes computed the same maximum ticket

• if the higher-priority process was pre-empted before setting its number[i], the low-priority process will see that the other process has a number of zero, and enter the critical section; later, the high-priority process may also enter the critical section resulting in two processes entering the critical section at the same time

• the Bakery Algorithm uses the *choosing* variable to make the assignment on line 10 appear atomic

• process *pid* will never see a number equal to zero for a process *j* that is going to pick the same number as *pid*
Using Spin to check the Bakery Lock algorithm

- following statement forms a key part of the Bakery Lock algorithm

  ```plaintext
  while (number[j] && ((number[j] < number[pid]) || ((number[j] == number[pid]) && (j < pid))));
  ```

- at first sight, this statement accesses number[j] three times, number[pid] twice, j four times and pid twice

- must make sure that possible interleaved accesses to these variables by the multiple processes at runtime are correctly modelled [think individual memory accesses]

 _pid, j and number[pid] are essentially local to the process, NO problem
 number[j] can be changed asynchronously by other processes
 assume that compiler would generate code that only makes one access to number[j]
 by transforming statement into

  ```plaintext
  while ((v = number[j]) && ((v < number[pid]) || ((v == number[pid]) && (j < pid))));
  ```
 where v is a local variable

- hence statement can be used AS IS by Spin
Learning Outcomes

• you are now able to:

 ▪ show how the different execution interleaves of a concurrent algorithm can lead to different results

 ▪ explain the desirable properties of a concurrent algorithms (safety, deadlock free, liveness and starvation free)

 ▪ write simple Spin programs to test the properties of concurrent algorithms

 ▪ use LTL expressions to test for properties of concurrent algorithms

 ▪ analyse the operation and properties of the Peterson lock

 ▪ analyse the operation and properties of the Bakery lock

 ▪ use Spin to test the properties of the Black-White Bakery Algorithm