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Abstract—We investigate what data iOS on an iPhone shares
with Apple and what data Google Android on a Pixel phone
shares with Google. We find that even when minimally configured
and the handset is idle both iOS and Google Android share
data with Apple/Google on average every 4.5 mins. The phone
IMEI, hardware serial number, SIM serial number and IMSI,
handset phone number etc are shared with Apple and Google.
Both iOS and Google Android transmit telemetry, despite the
user explicitly opting out of this. When a SIM is inserted both
iOS and Google Android send details to Apple/Google. iOS sends
the MAC addresses of nearby devices, e.g. other handsets and
the home gateway, to Apple together with their GPS location.
Users have no opt out from this and currently there are few, if
any, realistic options for preventing this data sharing.

I. INTRODUCTION

In this paper we investigate the data that mobile handset oper-
ating systems share with the mobile OS developer in particular
what data iOS on an iPhone shares with Apple and what
data Google Android on a Pixel phone shares with Google.
While the privacy of mobile handsets has been much studied,
most of this work has focussed on measurement of the app
tracking/advertising ecosystem and much less attention has
been paid to the data sharing by the handset operating system
with the mobile OS developer. Handset operating systems
do not operate in a standalone fashion but rather operate in
conjunction with backend infrastucture. For example, handset
operating systems check for updates to protect users from
exploits and malware, to faciltate running of field trials (e.g.
to test new features before full rollout), to provide telemetry
and so on. Hence, while people are using an iPhone the iOS
operating system shares data with Apple and when using a
Pixel the operating system shares data with Google, and this
is part of normal operation.

We define experiments that can be applied uniformly to
the handsets studied (so allowing direct comparisons) and
that generate repoducible behaviour. Both Apple and Google
provide services that can be, and almost always are, used in
conjunction with their handsets, e.g. search (Siri, OkGoogle),
cloud storage (iCloud, Google Drive), maps/location services
(Apple Maps, Google Maps), photo storage/analytics (Apple
Photo, Google Photos). Here we try to keep these two aspects
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1Updated text is highlighted in blue and mainly includes additional infor-

mation provided by Apple and Google.

separate and to focus on the handset operating system in itself,
separate from optional services such as these. We assume
a privacy-conscious but busy/non-technical user, who when
asked does not select options that share data with Apple and
Google but otherwise leaves handset settings at their default
value.

In these tests we evaluate the data shared: (i) on first startup
following a factory reset, (ii) when a SIM is inserted/removed,
(iii) when a handset lies idle, (iv) when the settings screen is
viewed, (v) when location is enabled/disabled, (vi) when the
user logs in to the pre-installed app store. We note that these
tests can be partly automated and used for handset operating
system privacy benchmarking that tracks changes in behaviour
over time as new software versions are released.

Table I summarises the main data that the handsets send to
Apple and Google. This data is sent even when a user is
not logged in (indeed even if they have never logged in). In
addition to the data listed in this table, iOS shares with Apple
the handset Bluetooth UniqueChipID, the Secure Element ID
(associated with the Secure Element used for Apple Pay and
contactless payment) and the Wifi MAC addresses of nearby
devices e.g. of other devices in a household of the home
gateway. When the handset location setting is enabled these
MAC addresses are also tagged with the GPS location.

Both iOS and Google Android transmit telemetry, despite the
user explicitly opting out of this1. However, Google collects
a notably larger volume of handset data than Apple. During
the first 10 minutes of startup the Pixel handset sends around
1MB of data is sent to Google compared with the iPhone
sending around 42KB of data to Apple. When the handsets
are sitting idle the Pixel sends roughly 1MB of data to Google
every 12 hours compared with the iPhone sending 52KB to
Apple i.e., Google collects around 20 times more handset data

1On iOS the Settings-Privacy-Analytics&Improvements option is set to off
and on Google Android the Settings-Google-Usage&Diagnostics option is
also set to off. We note that at the bottom of the Google text beside the
“Usage&Diagnostics” option it says “Turning off this feature doesn’t affect
your device’s ability to send the information needed for essential services
such as system updates and security”. Our data shows that the “essential” data
collection is extensive, and likely at odds with reasonable user expectations.
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IMEI Hardware
serial

number

SIM
serial

number

Phone
number

Device IDs Location Tele-
metry

Cookies Local IP
Address

Device Wifi
MAC

address

Nearby
Wifi MAC
addresses

Apple iOS ! ! ! ! UDID, Ad ID ! ! ! ! % !

Google
Android

! ! ! ! Android ID,
RDID/Ad ID,
Droidguard

key

% ! ! % ! %

TABLE I
SUMMARY OF HANDSET DATA SHARED WITH APPLE AND GOOGLE WHEN USER IS NOT LOGGED IN.

than Apple2. In 2020 it is estimated that in the US there are
113M iPhone users3 and 129M Android users4. Assuming all
of the Android users have Google Play Services enabled then
scaling up our measurements suggests that in the US alone
Apple collects around 5.8GB of handset data every 12 hours
while Google collects around 1.3TB of handset data. When
the handset is idle the average time between iOS connections
to Apple is 264 seconds, while Google Android connects
to Google on average every 255 seconds i.e. both operating
systems connect to their back-end servers on average every
4.5 minutes even when the handset is not being used.

With both iOS and Google Android inserting a SIM into the
handset generates connections that share the SIM details with
Apple/Google. Simply browsing the handset settings screen
generates multiple network connections to Apple/Google.

A number of the pre-installed apps/services are also observed
to make network connections, despite never having been
opened or used. In particular, on iOS these include Siri, Safari
and iCloud and on Google Android these include the Youtube
app, Chrome, Google Docs, Safetyhub, Google Messaging, the
Clock and the Google Searchbar.

The collection of so much data by Apple and Google raises at
least two major concerns. Firstly, this device data can be fairly
readily linked to other data sources, e.g. once a user logs in (as
they must to use the pre-installed app store) then this device
data gets linked to their personal details (name, email, credit
card etc) and so potentially to other devices owned the user,
shopping purchases, web browsing history and so on. This
is not a hypothetical concern since both Apple and Google
operate payment services, supply popular web browsers and
benefit commercially from advertising. Secondly, every time a
handset connects with a back-end server it necessarily reveals
the handset IP address, which is a rough proxy for location.
The high frequency of network connections made by both iOS

2In response to initial publication of the measurements reported here
Google’s press response was “”We identified flaws in the researcher’s method-
ology for measuring data volume and disagree with the paper’s claims that
an Android device shares 20 times more data than an iPhone”. We have since
followed up with Google to clarify. In summary, the results presented here
are correct and the methodology sound. In Google’s own (unpublished) data
volume measurements they include the bytes from TCP/IP headers and TCP
ACKs, whereas the measurements reported here are of the data payload bytes
sent, excluding these headers. While including such headers may make sense
when the interest is in, for example, the impact of handset network traffic on
a user’s data plan usage they are largely irrelevant from a privacy perspective
and in any case do not amount to a flaw in the methodology.

3https://www.statista.com/statistics/236550/
percentage-of-us-population-that-own-a-iphone-smartphone/

4https://www.statista.com/statistics/232786/
forecast-of-andrioid-users-in-the-us/

and Google Android (on average every 4.5 minutes) therefore
potentially allow tracking by Apple and Google of device
location over time.

With regard to mitigations, of course users also have the option
of choosing to use handsets running mobile OSs other than
iOS and Google Android, e.g. /e/OS Android5. But if they
choose to use an iPhone then they appear to have no options
to prevent the data sharing that we observe, i.e. they are not
able to opt out. If they choose to use a Pixel phone then it is
possible to startup the handset with the network connection
disabled (so preventing data sharing), then to disable the
various Google components (especially Google Play Services,
Google Play store and the Youtube app) before enabling
a network connection. In our tests this prevented the vast
majority of the data sharing with Google, although of course it
means that apps must be installed via an alternative store and
cannot depend upon Google Play Services (we note that many
popular apps are observed to complain if Google Play Services
is disabled). However, further testing across a wider range of
handsets and configurations is needed to confirm the viabillity
of this potential mitigation. When Google Play Services and/or
the Google Play store are used then this mitigation is not
feasible and the data sharing with Google that we observe
then appears to be unavoidable.

A. Ethical Disclosure

The mobile OS’s studied here are deployed and in active
use. Measurements of Google Play Services backend traffic
were previously disclosed in [5], but the present study is
broader in scope. We informed Apple and Google of our
findings and delayed publication to allow them to respond.
To date Apple have responded only with silence (we sent
three emails to Apple’s Director of User Privacy, who declined
even to acknowlege receipt of an email, and also posted an
information request at the Apple Privacy Enquiries contact
page at apple.com/privacy/contact but have had no response).
Google responded with a number of comments and clarifica-
tions, which we have incorporated into this report. They also
say that they intend to publish public documentation on the
telemetry data that they collect. A key consideration is what
mitigations are possible, and on what time scale can they be
deployed. It seems likely that any changes to Apple iOS or
Google Android, even if they were agreed upon, will take a
considerable time to deploy and keeping handset users in the
dark for a long open-ended period seems incorrect.

5https://e.foundation.
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II. RELATED WORK

The privacy and security of mobile handsets has been the
subject of a substantial literature, e.g. see [8], [9] and ref-
erences therein. However, there has been little work reporting
on the traffic between handset operating systems and their
associated backend servers. Probably closest to the present
work is the recent analysis of the data that web browsers
share with their backend servers [4] and of the data shared
by Google Play Services [5]. The latter is motivated by Covid
contact tracing apps based on the Google-Apple Exposure
Notification (GAEN) system, which on Android require that
Google Play Services be enabled. The present work is broader
in scope, but also motivated in part by this since the data
shared by Apple iPhones running Covid contact tracing apps
remains largely unknown. The measurements that we report
here indicate that on an iPhone running a covid contact tracing
app the data collection by Apple iOS is remarkably similar to
that by Google Play Services on Android phones and users
appear to have no option to disable this data collection by
iOS.

To the best of our knowledge there has been no previous
systematic work reporting measurements of the content of
messages sent between iOS and its associated backend servers.

III. THREAT MODEL: WHAT DO WE MEAN BY PRIVACY?

It is important to note that transmission of user data to backend
servers is not intrinsically a privacy intrusion. For example, it
can be useful to share details of the user device model/version
and the locale/country of the device and this carries few
privacy risks if this data is common to many users since
the data itself cannot then be easily linked back to a specific
user [11], [6].

Issues arise, however, when data can be tied to a specific
user, especially over extended durations and old/new device
pairs. There are at least two main ways that this can occur.
Firstly, when a user logs in, as they must to use the pre-
installed app store, then this device data gets linked to their
personal details (name, email, credit card etc). Secondly, every
time a handset connects with a back-end server it necessarily
reveals the handset IP address which acts as a rough proxy
for user location via existing geoIP services. Many studies
have shown that location data linked over time can be used
to de-anonymise, e.g. see [7], [10] and later studies. This is
unsurprising since, for example, knowledge of the work and
home locations of a user can be inferred from such location
data (based on where the user mostly spends time during
the day and evening), and when combined with other data
this information can quickly become quite revealing [10].
Pertinent factors here are (i) the presence of identifiers within
transmitted messages that allow them to be linked together
and (ii) the frequency with which messages are sent e.g.
observing an IP address/proxy location once a day has much
less potential to be revealing than observing one every few
minutes.

Once device data is associated to a specific user it can then
potentially be linked to other data held by Apple and Google,

Fig. 1. Measurement setup. The mobile handset is configured to access the
internet using a WiFi access point hosted on a laptop, use of cellular/mobile
data is disabled. The laptop also has a wired internet connection. When an app
on the handset starts a new network connection the laptop pretends to be the
destination server so that it can decrypt the traffic. It then creates an onward
connection to the actual target server and acts as an intermediary relaying
requests and their replies between the handset app and the target server while
logging the traffic.

or by third parties. This might include other devices owned the
user, shopping purchases, web browsing history and so on, and
such data linkage can quickly lead to privacy breaches. This
is not a hypothetical concern since both Apple and Google
operate payment services and supply popular web browsers.

With these concerns in mind, two of the main questions that
we try to answer in the present study are (i) What explicit
identifying data does each operating system directly send to
its backend servers and (ii) Does the data that each operating
system transmits to backend servers potentially allow tracking
of the IP address of the app instance over time.

IV. MEASUREMENT SETUP

A. Viewing Content Of Encrypted Network Connections

All of the network connections we are interested in are
encrypted. To inspect the content of a connection we route
handset traffic via a WiFi access point (AP) that we control.
We configure this AP to use mitmdump [3] as a proxy and
adjust the firewall settings to redirect all WiFi HTTP/HTTPS
traffic to mitmdump so that the proxying is transparent to the
handset. In brief, when a process running on the handset starts
a new network connection the mitmdump proxy pretends to
be the destination server and presents a fake certificate for the
target server. This allows mitmdump to decrypt the traffic. It
then creates an onward connection to the actual target server
and acts as an intermediary relaying requests and their replies
between the app and the target server while logging the traffic.
The setup is illustrated schematically in Figure 1.

The immediate difficulty encountered when using this setup is
that handset system processes typically carry out checks on the
authenticity of server certificates received when starting a new
connection and abort the connection when these checks fail.
To circumvent these checks we root/jailbreak each handset and
configure it as follows:
1) Apple iOS: Cydia substrate is installed on a jailbroken
iPhone and a custom substrate script is used to carry out bypass
SSL certificate pinning within handset processes. On launch of
a process this script is run and modifies the implementations
of the SSL se custom verify and SSL get psk identity
methods within the /usr/liblibboringssl.dylib library to bypass
SSL certificate checks. This script is invoked on launch
of all processes that make use of the com.apple.AuthKit,
com.apple.UIKit and com.apple.aps.framework frameworks
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and also the following processes: com.apple.
softwareupdated, com.apple.AssetCacheLocatorService,
com.apple.imfoundation.IMRemoteURLConnectionAgent,
com.apple.mobileactivationd, com.apple.itunescloudd,
com.apple.identityservicesd, com.apple.akd, com.apple.
itunesstored. The mitmproxy CA cert is also installed on the
handset as a trusted certificate.
2) Google Android: On Android it is sufficient to install the
mitmproxy CA cert as a trusted certificate in order to pass the
SSL certificate checks carried out by Google Play Services
and other system apps. However, unlike with iOS installing
a trusted CA cert on Android requires rooting the phone. In
Android 10 the system disk partition on which trusted certs
are stored is read-only and security measures prevent it being
mounted as read-write. Fortunately, folders within the system
disk partition can be overriden by creating a new mount point
corresponding to the folder, and in this way the mitmdump CA
cert can be added to the /system/etc/security/cacerts folder.

B. Additional Material: Connection Data

The content of connections is summarised and annotated
in the additional material available anonymously at
https://www.dropbox.com/s/qaazwyaj2ihj4qa/apple google
additional material.pdf.

C. Hardware and Software Used

Mobile handsets: Google Pixel 2 running Android 10 (build
QP1A.190711.019 with Google Play Services ver. 20.45.16
and Google Play ver. 23.0.11-21) rooted using Magisk v20.4
and Magisk Manager v7.5.1 and running Frida Server v12.5.2,
Apple iPhone 86 running iOS 13.6.1 (17G80) and jailbroken
using Checkra1n 0.10.2 and running Cydia 0.9. Laptop: Apple
Macbook running Mojav 10.14.6 running Frida 12.8.20 and
mitmproxy v5.0.1. Using a USB ethernet adapter the laptop is
connected to a cable modem and so to the internet. The laptop
is configured using its built in Internet Sharing function to
operate as a WiFi AP that routes wireless traffic over the wired
connection. The laptop firewall is then configured to redirect
received WiFi traffic to mitmproxy listening on port 8080
by adding the rule rdr pass on bridge100 inet
proto tcp to any port 80, 443 -> 127.0.0.1
port 8080. Note that (i) at the firewall we blocked UDP
traffic on port 443 so as to force any QUIC traffic to fall back
to using TCP since we have no tools for decrypting QUIC, (ii)
iOS uses port 5223 for Apple Push Notifications but we did
not inspect this traffic, (iii) similarly Google Cloud Messaging
uses port 5228 and (iv) both handsets use NTP and DNS.
The handset is also connected to the laptop over USB and
this is used as a control channel (no data traffic is routed
over this connection). On iOS this is used to install the Cydia
substrate script for bypassing SSL pinning within the system

6We were constrained to use a pre-A12 iPhone as in later models a
soft bootloader is used which Apple have patched to prevent jailbreaking.
Similarly, we were prevented from using iOS 14 on the handset since no iOS
14 jailbreaks were available when we carried out our measurements. Recently,
it has become possible to jailbreak iOS 14 on rather old hardware (iPhone
6’s and earlier) but we leave collecting iOS14 to future work.

(a) (b) (c)

Fig. 2. Selected startup screens observed following iPhone factory reset.

(a) (b) (c)

Fig. 3. Selected startup screens observed following Google Pixel 2 factory
reset.

processes and on Android a root adb shell is used to install
the mitmproxy CA cert on the handset as a trusted cert.

D. Device Settings

1) Apple iOS: Following a factory reset it is not possible to
proceed with startup without first connecting the handset to a
network, see Figure 2(b) (there is no option to skip/continue).
Connecting the handset to a WiFi network and proceeding, the
user is presented with a number of option screens. Since our
focus is on a privacy-conscious user we did not select any of
the options that share data with Apple (we note that the opt-in
options were always placed first and prominently highlighted
while the opt-out option was de-emphasised, e.g. see Figure
2(c) for a typical example). Specifically, (i) on the “Apps &
Data” screen we selected the “Don’t Transfer Apps & Data”
option, (ii) on the “Keep Your iPhone Up to Date” screen
we selected “Install Updates Manually”, (iii) on the “Location
Services” screen we selected “Disable Location Services”, (iv)
on the “Siri” and “Screen Time” screens we selected “Set Up
Later in Settings”, (v) on the “iPhone Analytics” screen we
selected “Don’t Share” (see Figure 2(c)). We did not log in
to an Apple user account during the startup process, although
the option was given to do this.
2) Google Android: Unlike with iOS, on Android following
a factory reset it is possible to proceed with startup with
and without a network connection. We collected data for both
choices. Similarly to iOS, during startup the user is presented
with a number of option screens and once again we did not
select any of the options that share data with Google (we
note that all of the option toggle switches default to the
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opt-in choice, and so it is necessary for the user to actively
select to opt-out, e.g. see Figure 3(c) for a typical example).
Specifically, we deselected the (i) “Free up space” option, (ii)
“Use location” option, (iii) “Allow scanning” option and (iv)
the “Send usage and diagnostic data” option, see Figure 3(c).
Note that there is no option to deselect automatic updates, see
the text shown at the bottom of the screen in Figure 3(c). We
did not log in to an Google user account during the startup
process

E. Test Design

We seek to define simple experiments that can be applied
uniformly to the handsets studied (so allowing direct compar-
isons) and that generate repoducible behaviour. Both Apple
and Google provide services that can be used in conjunction
with their handsets, e.g. search (Siri, OkGoogle), cloud storage
(iCloud, Google Drive), maps/location services (Apple Maps,
Google Maps), photo storage/analytics (Apple Photo, Google
Photos). Here we try to keep these two aspects separate and
to focus on the handset as a device in itself, separate from
optional services such as these. We also assume a privacy-
conscious but busy/non-technical user, who when asked does
not select options that share data with Apple and Google but
otherwise leaves handset settings at their default values7.

One important caveat is that while both Apple and Google
provide an app store (Apple App Store, Google Play store),
on iOS handsets the Apple App Store is the only way to install
public apps whereas on Android handsets use of the Google
Play store is optional, at least in principle, and other app stores
can be used plus users have the option to directly install apps
via the adb shell. Since confining users to pre-installed system
apps is overly restrictive, the Apple App Store is not really an
optional service on iPhones and we therefore include it in our
tests. Note that use of the Apple App Store requires a user to
log in to an Apple account, and so disclose their email address
and other personal details. Because of this, for comparison we
also consider the Google Play store (which also requires log in
to a Google account and disclosure of a user’s email address).

A second caveat is that on iPhones the pre-installed Apple
Settings app must be used to configure device settings (e.g. to
enable/disable location), and similarly on Android the Google
Settings app must be used. Since these settings apps are not
optional for handset users we also include them in our tests.

With these considerations in mind, for each handset we carry
out the following experiments:

1) Start the handset following a factory reset (mimicking a
user receiving a new phone), recording the network activity.

7There is also an important practical dimension to this assumption. Namely,
each handset has a wide variety of settings that can be adjusted by a user and
the settings on each handset are generally not directly comparable. Exploring
all combinations of settings between a pair of handsets is therefore impractical.
A further reason is that the subset of settings that a user is explicitly asked
to select between (typically during first startup of the handset) reflects the
design choices of the handset developer, presumably arrived at after careful
consideration and weighing of alternatives. Note that use of non-standard
option settings may also expose the handset to fingerprinting.

2) Remove and re-insert SIM, recording the network activity.

3) Following startup, leave the handset untouched for several
days (with power cable connected) and record the network
activity. This allows us to measure the connections made when
the handset is sitting idle. This test is repeated with the user is
logged in and logged out and with location enabled/disabled.

4) Open the pre-installed app store and log in to a user
account, recording the network activity. Then log out and close
the app store app.

5) Open the settings app (Apple/Google Settings) and view
every option but leave the settings unchanged, recording the
network activity. Then close the app.

6) Open the settings app and enable location, then disable.
Record the network activity.

F. Finding Identifiers In Network Connections

Potential identifiers in network connections were extracted by
manual inspection. Basically any value present in network
messages that stays the same across messages is flagged as
a potential identifier. Where possible we try to find more
information on the nature of observed values from public doc-
uments, e.g. Apple and Google documentation, as well as by
comparing them against known software and device identifiers
e.g. the hardware serial number and IMEI of the handset.
However, we note that there is little public documentation of
the internal APIs between handset processes and their back-
end servers and public privacy policy documents also tend
to lack the necessary level of detail. We also contacted both
Apple and Google for clarification of identifiers and data sent.

V. STARTUP FOLLOWING FACTORY RESET OF HANDSET

A. Apple iOS

Upon first startup, the iOS handset initially makes a series
of connections to the sa.apple.com/grandslam endpoint. In the
first connection the handset sends its Unique Device Identifier
(UDID) via the X-Mme-Device-Id header value (this value
persists across a factory reset). In the next connection the
handset sends its hardware serial number together with the
UDID, acting to link the two:
POST https://gsa.apple.com/grandslam/MidService/
startMachineProvisioning
Headers

X-Apple-Client-App-Name: Setup
X-Apple-I-SRL-NO: C8PVCB1HJC67 //Handset hardware

serial number
X-MMe-Client-Info: <iPhone10,4> <iPhone OS;13.6.1;17G80>

<com.apple.akd/1.0 (com.apple.akd/1.0)>
X-Mme-Device-Id: 7c2694081d97b...12dc5bc5 //UUID
User-Agent: akd/1.0 CFNetwork/1128.0.1 Darwin/19.6.0

Later during the startup process the local IP address of the
handset (i.e. not of the gateway, but of the handset itself) is
sent in a POST request to /lcdn-locator.apple.com:
POST https://lcdn-locator.apple.com/lcdn/locate
Headers

User-Agent: AssetCacheLocatorService/111 CFNetwork
/1128.0.1 Darwin/19.6.0
POST body
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{"locator-tag":"#eefc633e","local-addresses":["
192.168.2.6"],"ranked-results":true,"locator-software":[{"
build":"17G80","type":"system","name":"iPhone OS","version
":"13.6.1"},{"id":"com.apple.AssetCacheLocatorService","
executable":"AssetCacheLocatorService",<...>

A connection to https://humb.apple.com/humbug/baa sends
a base64 encoded payload that decodes to XML from
com.apple.bluetoothd which contains the handset hardware
serial number and a UniqueChipID value:
<...><key>AppID</key>

<string>com.apple.bluetoothd</string>
<...><key>SerialNumber</key>

<string>C8PVCB1HJC67</string> //Handset hardware
serial number

<key>UniqueChipID</key>
<integer>2577607982549050</integer><...>

The UniqueChipID value is not the handset ECID (Exclusive
Chip Identification) value8, the unique serial number of the
handset system-on-a-chip (SoC) hardware which is also some-
times referred to as the “Unique Chip ID”.

A connection to urlsmp-device-
content.apple.com/static/region/v2/config.json shares the
handset SEID (Secure Element ID) with Apple via header
x-apple-seid:
GET https://smp-device-content.apple.com/static/region/v2/
config.json
Headers

X-Apple-I-MD-RINFO: 17106176
X-Apple-I-MD-M: 5ekJNohUcJUP1EFYFrRt...myO+0J7ljk6EljMp
X-Apple-I-MD: AAAABQAAA...SjbTAAAAAw==
User-Agent: Setup/1.0 CFNetwork/1128.0.1 Darwin/19.6.0
x-apple-soc-type: t8015
X-Apple-Web-Service-Session: 486081CF-EDD9-4B65-B5D3-0628

E298C7D7
x-apple-seid:

046E4BABBA4280017207172230942566E22AD196DF33D24C

The SEID identifies the secure element embedded in the NFC
chip used by Apple Pay for contactless payment.

Despite selecting the ‘Don’t Share” option on the “iPhone
Analytics” screen during the startup process, telemetry data is
sent to xp.apple.com/report/2/psr ota.

During the startup process 2.6GB of data is downloaded to
the handset, a substantial quantity that appeared to consist
mainly of software updates to the pre-installed apps. We
observed roughly 42KB of data sent to Apple servers (via
URL parameters, headers and POST data).

B. Google Android

Upon startup the first connection that the Android hand-
set makes that sends data is to Google Analytics endpoint
app-measurement.com:
GET https://app-measurement.com/config/app/1%3A286455739530
%3Aandroid%3A4a942425ed36c2fa?app_instance_id=
93a09622...1ee8f0e52&platform=android&gmp_version=17786

The app instance id that is sent is linked to the device RDID
(Resettable Device Identifier or so-called Ad ID, used for

8By connecting the device to a macbook laptop then itunes reports the ECID
as 9285220B9893A, which when converted to decimal is 2577607991855418.
It can be seen that this is similar to the UniqueChipID, but not the same.

measurement and ads9) in a later call to app-measurement.
com. The next connection is made by the DroidGuard pro-
cess (used for device attestation, part of Google’s Safe-
tyNet service), which send the device hardware serial number
(which persists across a factory reset) to www.googleapis.
com/androidantiabuse. The device RDID is now sent to
www.gstatic.com and app-measurement.com. Early in the
startup process a call is made to youtubei.googleapis.com/
deviceregistration that sends a rawDeviceId value and in
due course a call to the android.clients.google.com/checkin
endpoint is made:

POST https://android.clients.google.com/checkin
POST body decoded as protobuf:
<...>
7: 85879...846810 // Google loggingId
9: "e60d...158" // Wifi Mac Address
10: "357...984248" // IMEI
11: ""
12: "Europe/Dublin"
14: 3
15: "bfMkwy...c2WT62otR8JkI=" //SHA-1 of OTA certs
16: "HT7A...4090" //Handset hardware serial number
<...>
24: "CgZmMZ-F5fTSEEAA...MFUwYaZqw" //Droidguard device key
<...>

This shares the handset Wifi MAC address, its hardware serial
number and IMEI, effectively linking these three persistent
device identifiers together. A subsequent call to android.
clients.google.com/checkin further links these values to the
Google AndroidId (a persistent device identifier that requires a
factory reset to change) and a variety of security tokens10. The
Droidguard device key is a large, opaque binary message: the
contents are intentionally obfuscated by Google and it remains
unclear whether it contains device/user identifiers11.

Cookies are sent in a number of calls, starting with one to
fonts.gstatic.com and then to play.googleapis.com (this call
includes the AndroidId and so links that with the cookie).

Despite deselecting the “Send usage and diagnostic data”
option during the startup process, a substantial quantity (ap-
proximately 1.2MB) of telemetry/logging data is sent by the
handset to play.googleapis.com/log/batch and play.googleapis.
com/play/log. The handset also sends 1.1MB of device data
to www.googleapis.com/experimentsandconfigs and 181KB to
android.clients.google.com/checkin. In total, around 3.6MB of
data is sent to Google servers (via URL parameters, headers
and POST data), see Figure 4(a), and 952MB of data are
received. That is, almost two orders of magnitude more data
is uploaded by Android (3.6MB) than by iOS (42KB) during
startup, while Android downloads around a third (952MB) of
the data of iOS (2.6GB).

9See https://developers.google.com/ads-data-hub/guides/rdid-matching.
10There is a Google help page [1] for the /checkin endpoint with partial

information on the data sent and the microG project [2] has also partially
reverse-engineered the data format used by this endpoint (there is no docu-
mentation, but microG is open source). Our measurements are consistent with
both of those.

11https://github.com/microg/GmsCore/issues/1139
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Fig. 4. Volume of data uploaded to Google and Apple servers (a) during first
10 minutes of startup after factory reset and (b) when handset lies idle.

VI. CONNECTIONS MADE WHEN HANDSET IS IDLE

A. Apple iOS

When the iPhone is left idle, roughly every 2-3 days it sends
data to gsas.apple.com/grandslam:

POST https://gsas.apple.com/grandslam/GsService2/postdata
Headers

User-Agent: akd/1.0 CFNetwork/1128.0.1 Darwin/19.6.0
X-Apple-I-UrlSwitch-Info: MDAxMDI5LTA...GF0YQ== //

x-apple-adsid base64 encoded
X-Apple-HB-Token: MDAxMDI5LTA1LTk...5XN3dnPT0= //

x-apple-adsid base64 encoded
X-Mme-Device-Id: 7c2694081d...71412dc5bc5 //UDID
X-Apple-I-MD-RINFO: 17106176
X-Apple-I-SRL-NO: C8PVCB1HJC67 //Handset hardware serial

number
X-Apple-I-MD-M: 5ekJNohU...YjL2Z //Anisette machineID12

X-Apple-I-MD: AAAABQAA...AAAAw==
POST body
<...>

<key>iccid</key>
<string>8935311180135555145</string> // SIM

Integrated Circuit Card Identifier
<key>imei</key>
<string>356765081821496</string> //Handset IMEI

<...> <key>number</key>
<string>+35389...97590</string> //

Handset phone number
<...> <key>pn</key>

<string>+35389...97590</string>
<...> <key>ptkn</key>

<string>7534B939D....6E2750CB0FD0</string>
<...> <key>sn</key>

<string>C8PVCB1HJC67</string> //Handset hardware
serial number
<...>

It can be seen that this message sends (and links together)
many handset identifiers including: the handset hardware serial
number, the handset UDID, the IMEI, the SIM serial number,
the handset phone number, the Apple advertising ID plus the
X-Apple-I-MD-M security token/anisette machine identifier.

In addition, the handset makes a number of unexpected con-
nections:

1) Although the user is not logged in to an Apple account (and
so the Apple App Store cannot be used) periodic connections
are made to init.itunes.apple.com and bag.itunes.apple.com
that send a cookie that can act as a device identifier.

2) Similarly, since the user is logged out icloud is unused
yet connections are made to icloud services that send device
identifiers, including the handset UDID.

12https://www.duffy.app/blog/icloud-auth-headers

3) Although Siri is not enabled on the handset, connections
are made to server smoot.apple.com by the parsecd process as-
sociated with Siri. When a URL is typed in Safari, correspond-
ing telemetry logging the URL is sent to smoot.apple.com.
Again, this occurs despite the fact that Apple telemetry is
disabled in the device settings.

4) Although use of location is disabled, the locationd and
geod processes associated with location services in the handset
periodically make network connections. The locationd process
downloads files that likely relate to GPS chipset settings, with
no unique device identifiers sent. However, the geod process
uploads binary messages to gsp85-ssl.ls.apple.com:
POST https://gsp57-ssl-locus.ls.apple.com/dispatcher.arpc
Headers

User-Agent: geod/1 CFNetwork/1128.0.1 Darwin/19.6.0
POST body
\x00\x01\x00\x08en-IE_IE\x00\x0ecom.apple.geod\x00\x...f
f8:4:2e:c:1c:28\x10\xa...&\n\x0f8c:4:ff:13:2:9e\x10\xb...\
x1170:4d:7b:95:14:c0\x10\...n\x1170:4d:7b:95:14:c8\x10\xc0
...\x10f2:18:98:92:17:5\x10...

It can be seen to contain the MAC addresses of nearby
devices sharing the same WiFi network as the handset e.g.
f2:18:98:92:17:5 is the WiFi MAC address of a nearby laptop,
70:4d:7b:95:14:c0 the MAC address of the WiFi access point.
WiFi MAC addresses are known to be a sensitive device
identifier, actively used for device tracking, and this has led
to the introduction of MAC address dynamic randomisation in
newer devices. However, the WiFi access point MAC address
is typically static. While it is not clear what other information
is contained in this binary message, Apple say that it does not
contain any persistent device/user identifiers, only a single-use
identifier used to manage duplicate messages. Note, however,
that the message is necessarily tagged with the handset IP
address and so can potentially be linked to other handset
messages which do contain device/user identifiers, although
there is no suggestion that Apple actually do this.

5) Despite selecting the ‘Don’t Share” option on the “iPhone
Analytics” screen during the startup process, telemetry is sent
to xp.apple.com. The message sent contains a cookie that links
the telemetry to the user’s Apple account DSID (a unique
account identifier).

In addition, connections made by the adprivacyd process,
which appears related to managing advertising settings, also
send a cookie and transmit an opaque binary message.

The Safari browser makes periodic connections to the Google
Safe Browsing anti-phishing service and connections are made
to mesu.apple.com that appear to be checking for updates.
However, no unique device identifiers appear to be sent in
these connections [4].

When the handset is idle the average time between iOS
connections to Apple servers is observed to be 264 seconds
i.e. less than 5 minutes.
1) Inserting SIM Into Handset: When a SIM is inserted the
handset sends SIM identifiers to albert.apple.com:
POST https://albert.apple.com/deviceservices/activity/
phoneNumberSimNotification
Headers
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User-Agent: CommCenter/7581 CFNetwork/1128.0.1 Darwin
/19.6.0
POST body
<...> <key>InternationalMobileEquipmentIdentity</key>

<string>356765081821496</string> // IMEI
<key>InternationalMobileSubscriberIdentity</key>
<string>2721101</string>
<key>PhoneNumber</key>
<string>089...97590</string> // Phone number
<key>SerialNumber</key>
<string>C8PVCB1HJC67</string> // Handset hardware

serial number
<key>UniqueDeviceID</key>
<string>7c2694081d97b76...2dc5bc5</string> //Handset

UDID
<...>

2) Enabling Location: When location is enabled in the hand-
set settings, additional handset network connections are made.
In particular:
POST https://gsp10-ssl.apple.com/hcy/pbcwloc
Headers

User-Agent: locationd/2394.0.33 CFNetwork/1128.0.1 Darwin
/19.6.0
POST body decoded as protobuf:
<...>
1: "f2:18:98:92:17:5" // Wifi MAC address of nearby device
2: 11
3: 18446744073709551584
4 {
1: 0x404aa..c4edd17953 // hex encoded handset latitude
2: 0xc0193..5ed5618f3 // hex encoded handset longitude

<...>

The POST body not only contains a list of MAC addresses
of devices sharing the same WiFi network as the handset but
a pair of hex values that when converted to doubles give the
latitude and longitude of the the handset (accurate to within
10m of the true position). Similarly to the /dispatcher.arpc
endpoint noted above, Apple say that this /pbcwloc message
does not contain any persistent device/user identifiers, only a
single-use identifier used to manage duplicate messages. The
handset IP address is, however, still sent with the message
and can potentially act as a device identifier. Note also that
it takes only one device to tag a home gateway/WiFi hotspot
MAC address with its GPS location and thereafter the location
of all other messages reporting that MAC address is revealed,
even if location is turned off on the handset.

In addition, connections to api-glb-dub.smoot.apple.com send
a X-Apple-FuzzedLatLong header with the approximate de-
vice location (latitude and longitude) .

B. Google Android

When the Google Pixel 2 is left idle, roughly every 6 hours
it makes a connection to android.googleapis.com/checkin that
sends many device identifiers:
POST https://android.googleapis.com/checkin
Headers

Cookie: NID=204=sa8sIUm5eJ9...NabihZ3RNI
POST body decoded as protobuf:
2: 3876027569814251330 //AndroidId
<...>
6: "27205" //Mobile operator
7: "27211" //SIM operator
8: "WIFI::"
<...>
16 {

1: "27211" //SIM operator
2: "Tesco Mobile" //Mobile carrier

<...>

6: "272110103800000" //SIM IMSI, uniquely identifies
caller on cellular network

7: "0AFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" //Mobile
Group ID Level 1

8: "\025\345" //SHA-256 hash of SIM IMSI
<...>
9: "e60d4b46d158" //Wifi MAC address
10: "357537080984248" //IMEI
11: "" //When user is logged in this reports the user email
address
12: "Europe/Dublin"
13: 0x41559e6d59911873 //Security token
14: 3
15: "bfMkwynjHzXGBPc2WT62otR8JkI="
16: "HT7AC1A04090" //Handset hardware serial number
<...>
24: "CgYqtj3OocES-2UKBoGpQIpsRtIQQA...Sy6P2voE9Sz"
//Droidguard device
key
<...>

In many ways this is akin to the iOS connection to gsas.apple.
com/grandslam/GsService2/postdata discussed above. The set
of identifiers shared is slightly different, but the connection
acts to link to together multiple long-lived device identifiers
including the handset hardware serial number and IMEI, the
SIM IMSI/serial number. In addition to these the android.
googleapis.com/checkin connection shares the AndroidId (a
persistent device identifier that requires a factory reset to
change), the user email address (when the user is logged in).
the handset Wifi MAC address, the opaque Droidguard binary
device key and also tags these with a cookie.

The handset also connects regularly to Google’s SafetyNet
device attestation service at www.googleapis.com and to
what seems to be Google’s A/B testing infrastructure at
www.googleapis.com/experimentsandconfigs. The SafetyNet
connections send the hardware serial number, RDID device
identifier (associated with advertising/measurement) and the
Droidguard device key while the A/B testing connections send
a cookie and authentication token together with device details.

Despite deselecting the “Send usage and diagnostic data”
option during the startup process the handset sends a sub-
stantial volume of telemetry/logging data to Google servers,
see Figure 4(b). This occurs mainly to two endpoints, namely
play.googleapis.com/log/batch and play.googleapis.com/play/
log. The first is associated with Google Play Services and the
second with the Google Play store app. Data is sent every 10-
20 minutes, and sometimes more frequently. Logging/teleme-
try data sent to play.googleapis.com/log/batch is tagged with
device AndroidId and an authentication token but the content
is largely opaque (binary protobufs with complex structure).
The messages sent to play.googleapis.com/log/batch appear
to be aggregated from multiple logging sources, see Table
II for a list of their names. The CARRIER SERVICES and
ANDROID DIALER logging sources are observed to send
details of mobile operator and phone number, amongst other
things13.

The messages sent to play.googleapis.com/play/log are tagged
with the AndroidId and RDID persistent device identifiers.

13Google have since told us that on foot of our recent GAEN measurement
study [5] version V52I and later of the CARRIER SERVICES log source no
longer transmit the handset phone number.



9

CARRIER SERVICES,ANDROID DIALER,ONEGOOGLE MOBILE,GOOGLE
NOW LAUNCHER,DRIVE,COPRESENCE NO IDS,AUTOFILL WITH GOOGLE,
SCOOBY EVENTS,SCOOBY EVENT LOG,BEACON GCORE,NETREC,
BRELLA,GOOGLE HELP,PHOTOS,CALENDAR,CALENDAR UNIFIED SYNC,
BUSINESS VOICE,IDENTITY FRONTEND,GMS CORE PEOPLE,LATIN IME,
DL FONTS,CAR,ICING,ACTIVITY RECOGNITION,ANDROID CONTACTS,
ANDROID GROWTH,ANDROID GSA,CLIENT LOGGING PROD,GOOGLETTS,
CAST SENDER SDK,ANDROID VERIFY APPS,ANDROID DIALER,ANDROID
BACKUP,ANDROID MESSAGING,ANDROID OTA,ANDROID GMAIL,
ANDROID SNET GCORE,GAL PROVIDER,GLAS,TACHYON LOG REQUEST,
CLEARCUT FUNNEL,CLEARCUT LOG LOSS,DIALER ANDROID PRIMES,
CARRIER SERVICES ANDROID PRIMES,TURBO ANDROID PRIMES,
PHOTOS ANDROID PRIMES,ANDROID MESSAGING PRIMES,GOOGLETTS
ANDROID PRIMES,SETTINGS INTELLIGENCE ANDROID PRIMES,ANDROID
GSA ANDROID PRIMES,SAFETYHUB ANDROID PRIMES,WIFI ASSISTANT
PRIMES,DRIVE ANDROID PRIMES,GMAIL ANDROID PRIMES,STREAMZ
ANDROID GROWTH,STREAMZ ANDROID GSA,STREAMZ ONEGOOGLE
ANDROID,STREAMZ HERREVAD,STREAMZ CALENDAR,STREAMZ
PHOTOS ANDROID,STREAMZ ANDROID AUTH ACCOUNT,STREAMZ
GELLER,STREAMZ NGA,BUGLE COUNTERS,PSEUDONYMOUS ID
COUNTERS,GMAIL COUNTERS,WESTWORLD COUNTERS,GOOGLE
KEYBOARD COUNTERS,ANDROID CONTACTS COUNTERS,WALLPAPER
PICKER COUNTERS,PLATFORM STATS COUNTERS

TABLE II
LOGGING SOURCES OBSERVED IN PLAY.GOOGLEAPIS.COM/LOG/BATCH

TELEMETRY.

Several pre-installed system apps make regular network con-
nections that share device identifiers and details:

1) The Nexus launcher searchbar connects to www.google.
com/complete/search using a cookie and events re-
lated to the app are logged by Google Analytics
app-measurement.com.

2) The Clock app connects to Google Analytics ssl.
google-analytics.com/batch.

3) The SafetyHub app periodically connects with Google’s
Firebase service at android.clients.google.com, sending
the device AndroidId and the app FirebaseId

4) The Youtube app makes connections to
youtubei.googleapis.com/youtubei/v1/account and
youtubei.googleapis.com/youtubei/v1/log event, both
send a device identifier and an authentication token. The
Youtube app (or a process on its behalf) also makes
connections to www.googleadservices.com, sending
the RDID device identifier used for advertsing.
In addition, the Youtube app makes periodic
probe connections to i.ytimg.com/generate 204 and
youtubei.googleapis.com/generate 204.

5) The Chrome browser app makes periodic connections
to the Google Safe Browsing anti-phishing service
safebrowsing.googleapis.com and the Chrome update ser-
vice pdate.googleapis.com. It also connects to accounts.
google.com. No identifiers are sent.

6) The Google Docs and Messaging apps
(or a process on its behalf) connect to
growth-pa.googleapis.com/google.internal.identity.
growth.v1.GrowthApiService/GetPromos, sending device
details but no unique identifiers.

7) Connections are made to mobilenetworkscoring-pa.
googleapis.com/v1/GetWifiQuality that may include a

device identifier (via the X-Client-Data header). The
purpose of this connection is unclear.

When the handset is idle the average time between Android
connections to Google servers is observed to be 255 seconds
i.e. similar to the 264 seconds observed for iOS.
1) Inserting SIM Into Handset: When a SIM is inserted into
the handset a connection is made to android.clients.google.
com/fdfe/uploadDynamicConfig that sends the SIM IMSI
(which uniquely identifies a caller on the cellular network)
and links this to the AndoidId:
POST https://android.clients.google.com/fdfe/
uploadDynamicConfig
Headers

user-agent: Android-Finsky/22.8.42-21<...>
x-dfe-device-id: 35ca6a89e6662742 // hex-encoded

AndroidId
x-dfe-device-config-token: CisaKQoT...4MTQyMzM1
x-dfe-device-checkin-consistency-token:

ABFEt1VpT4...Cnef2U7bDsS2p
x-dfe-phenotype: H4sIAAAAA...9cD-bQEAAA
x-dfe-encoded-targets: CAESGLOVg...oE5ALQ+64G

POST body decoded as protobuf:
<...>

1: 272110103800000 // SIM IMSI
2: "Tesco Mobile" // Mobile carrier
3: "0AFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" // Mobile

Group ID Level 1
4: "tescomobile.liffeytelecom.com" // Mobile carrier

APN
<...>
4: "dHVKO5LRPfOs71S8ynLFp9:..qXOTpK9e" ’// Firebase id of

Google Play store app
<...>

In addition, connections are made to android.googleapis.com/
checkin and /play.googleapis.com/log/batch. The connection
to android.googleapis.com/checkin shares the handset IMEI
and SIM IMSI plus mobile carrier details with Google and
links these to the AndroidId, handset hardware serial num-
ber, Wifi MAC address and a cookie. The connection to
/play.googleapis.com/log/batch
POST https://play.googleapis.com/log/batch
Headers

x-server-token: CAESKQDyi0h8ELN...KGowA
user-agent: com.google.android.gms/204516037 <...>
cookie: NID=204=VBQLUjKJOc3FW...X-lC0Ro // Cookie

POST body decoded as protobuf:
<...>

1: 3876027569814251330 // AndroidId
<...>
5: "\324\020\010...(48.0.335972766-carrierservices\_V48E\

_RC01\032\’\010\340\203\273 \022 6.8.076 (Ent\_RC11.phone\
_dynamic)2C\n\003272\022\00211\032\014Tesco
Mobile\"(0AFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF(\000\3...\
n\r+35389...7590r/\010..."\230\001\001"
6: "CARRIER\_SERVICES"
7: "204=VBQLUjKJOc3FWJoecvEe...X-lC0Ro" // Cookie

<other telemetry>

The +35389...7590 value is the handset phone number, the
mobile carrier details are also sent.
2) Enabling Location: When the user is logged out and
location is enabled no additional handset network connections
are observed.

VII. CONNECTIONS WHEN INTERACTING WITH SETTINGS
APP

A. Apple iOS

When the Settings app is opened and the various options
viewed (but not changed), this action generates multiple net-
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work connections:

1) A connection is made to idiagnostics.apple.com that
sends the handset hardware serial number

2) Telemetry is sent to xp.apple.com.

3) The adprivacyd process makes connections to cf.
iadsdk.apple.com/adserver/2.6/config, iadsdk.apple.com/
adserver/2.6/optout/optout optin and bag.itunes.apple.
com. The connection to bag.itunes.apple.com sends a
cookie.

4) The geod process makes connections to gspe35-ssl.ls.
apple.com/geo manifest/dynamic/config, gsp-ssl.ls.apple.
com/ab.arpc and gsp64-ssl.ls.apple.com/hvr/v3/use. The
latter two connections transmit binary messages which
are largely opaque but which can be seen to contain SIM
mobile carrier details, amongst other things.

5) The gamed process makes connections to init.gc.apple.
com, static.gc.apple.com, profile.gc.apple.com. The latter
two connections send authentication tokens that are linked
to the device.

6) The Preferences agent makes connections to init.itunes.
apple.com and play.itunes.apple.com which send authen-
tication tokens that are linked to the device.

B. Google Android

When the Settings app is opened and a user navigates amongst
the various options the following network connections are
observed:

1) The helprtc process makes connections
to firebaseinstallations.googleapis.com and
android.clients.google.com. These send the Firebase
Id and the device Android Id.

2) A connection is made to pagead2.googlesyndication.com
that appears to send identifiers

3) Telemetry is sent to www.google.com. This is tagged
with the device Android Id, the phone IMEI and includes
mobile carrier details as well as information on the radio
signal strength, battery level, volume settings, number of
handset reboots, whether the phone is rooted.

VIII. SUMMARY

We investigate what data iOS on an iPhone shares with Apple
and what data Google Android on a Pixel phone shares with
Google. We find that even when minimally configured and the
handset is idle both iOS and Google Android share data with
Apple/Google on average every 4.5 mins. The phone IMEI,
hardware serial number, SIM serial number and IMSI, handset
phone number etc are shared with Apple and Google. Both
iOS and Google Android transmit telemetry, despite the user
explicitly opting out of this. When a SIM is inserted both iOS
and Google Android send details to Apple/Google. iOS sends
the MAC addresses of nearby devices, e.g. other handsets and
the home gateway, to Apple together with their GPS location.

Currently there are few, if any, realistic options for preventing
this data sharing.
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