
1

What Data Do The Google Dialer and Messages
Apps On Android Send to Google?

Douglas J. Leith
Trinity College Dublin, Ireland

28th Feb 2022

Abstract—We report on measurements of the data sent to Google
by the Google Messages and Google Dialer apps on an Android
handset. We find that these apps tell Google when message/phone
calls are made/received. The data sent by Google Messages
includes a hash of the message text, allowing linking of sender
and receiver in a message exchange. The data sent by Google
Dialer includes the call time and duration, again allowing linking
of the two handsets engaged in a phone call. Phone numbers are
also sent to Google. In addition, the timing and duration of other
user interactions with the apps are sent to Google. There is no opt
out from this data collection. The data is sent via two channels, (i)
the Google Play Services Clearcut logger and (ii) Google/Firebase
Analytics. This study is therefore one of the first to cast light on
the actual telemetry data sent by Google Play Services, which
to date has largely been opaque. We informed Google of our
findings and delayed publication for several months to engage
with them. On foot of this report Google say that they plan to
make multiple changes to their Messages and Dialer apps.

I. INTRODUCTION

We analyse the data sent to Google by Android handsets
using the Google Messages and Google Dialer apps. Both are
core apps for a mobile handset, the Messages app being used
to send and receive SMS text messages and the Dialer app
to make/receive phone calls. According to the Google Play
store the Google Messages app is installed on > 1 Billion
handsets. In the US, AT&T and T-Mobile recently announced
all Android phones on their networks will use the Google
Messages app1 and the app also comes pre-loaded on recent
Samsung handsets2 and on Xiaomi and Huawei handsets.
According to the Google Play store the Google Dialer app
is also installed on > 1 Billion handsets.

In summary, we find that:

1) When an SMS message is sent/received the Google Mes-
sages app sends a message to Google servers recording
this event, the time when the message was sent/received
and a truncated SHA256 hash of the message text. The
latter hash acts to uniquely identify the text message. The
message sender’s phone number is also sent to Google, so
by combining data from handsets exchanging messages
the phone numbers of both are revealed.

1https://www.theverge.com/2021/6/30/22556686/
att-android-phones-rcs-google-messages

2https://support.google.com/messages/answer/10324785?hl=en

2) When a phone call is made/received the Google Dialer
app similarly logs this event to Google servers together
with the time and the call duration.

This data is sufficient to allow discovery of whether a pair of
handsets are communicating.

The data sent to Google is tagged with the handset Android
ID, which is linked to the handset’s Google user account and
so often to the real identity of the person involved in a phone
call or SMS message. For example, a working phone number is
required to create a Google account, and if the person has paid
for an app on the Google Play store or uses Google Pay then
their Google account is also linked to their credit card/bank
details. In this way real-world identities of the pair of people
communicating may be revealed to Google.

In addition to logging the sending/receiving of SMS messages
and phone calls, the Google Messages and Dialer apps send
messages to Google recording user interactions with the app.
For example, when the user views an app screen, an SMS
conversation or searches their contacts the nature and timing
of this interaction is sent to Google allowing a detailed picture
of app usage over time to be reconstructed.

There is no opt out from this data collection.

When, in addition, the “See caller and spam ID” option is
enabled in the Google Dialer app (which is the default) the
app sends the phone number of each incoming call3 to Google,
together with the time of the call. By combining data from
handsets exchanging phone calls the phone numbers of both
are therefore revealed. We note that sending of incoming phone
numbers to Google is not necessary for call screening. For
example, Google’s Safe Browsing anti-phishing service for
web browsers achieves URL screening while only uploading
partial URL hashes to Google servers (these partial hashes are
used to download a list of blacklisted sites which can then be
compared locally against the URL concerned) [1], [2].

The Google Messages and Dialer apps send data to Google
via two channels: (i) the Google Play Services Clearcut logger
service and (ii) Google/Firebase Analytics. Recent Android
measurement studies have noted the large volume of data sent
by Google Play Services to Google servers on most Android

3Google state that only incoming phone numbers that are not saved in a
user’s contacts are sent to them. We note that on our test phones the contacts
list was empty.

https://www.theverge.com/2021/6/30/22556686/att-android-phones-rcs-google-messages
https://www.theverge.com/2021/6/30/22556686/att-android-phones-rcs-google-messages
https://support.google.com/messages/answer/10324785?hl=en


2

handsets [3], [4]. A substantial component of this data is sent
by the Clearcut logger service within Google Play Services.
However, the data transmission is largely opaque, being binary
encoded with little public documentation [3], [4].

The Google Play Services support page4 states that data is
collected for (i) security and fraud prevention, (ii) to provide,
maintain and improve Google Play Services APIs and core
services and (iii) to provide Google services such as syncing
of bookmarks and contacts. However, few details are given as
to the actual data collected. Google have also publicly stated
that Google Play Services data is “essential for core device
services such as push notifications and software updates across
a diverse ecosystem of devices and software builds”5.

The work reported here is the first close look at the actual
data sent by the Clearcut logger component of Google Play
Services. It is limited in nature – we focus only on the data that
the Messages and Dialer apps send via Google Play Services.
This is due to the time-consuming nature, in the absence
of public documentation, of the work involved in decoding
the binary data sent by Google Play Services. Nevertheless,
our measurements are already enough to establish that the
data sent goes beyond what is suggested by the Google Play
Services support page and Google’s public statements. The
data sent is not simply system health data (battery and CPU
statistics and the like), device configuration data needed to
check for updates, syncing of contacts and account details
etc, but rather extends to details of the phone calls and SMS
messages sent/received by users, and of user interactions with
the Messages and Dialer apps (which SMS conversations
viewed and when, dialing of phone numbers and so on).

We note that we made a request using Google’s https://takeout.
google.com/ portal for the data associated with the Google user
account used in our tests. The response to this request did not
include the call/SMS and user interaction log data that we
observed to be collected.

While we report here on Android 11 measurements, we
observed the same behaviour on a Pixel 4a handset running
Android 12.

It is important to emphasise that the measurements reported
here are certainly not comprehensive, even for the Messages
and Dialer apps. We did not look at all of the log sources
within these apps that send data to the Google Play Services
Clearcut logger, nor at cascade events such as logging gener-
ated by components of Google Play Services itself triggered
by typing in the app search bar.

A. Mitigations

1) How To Find Which Dialer and Message Apps Are In-
stalled: Unfortunately, it is not that straightforward to deter-
mine whether the dialer and message apps installed on your
handset are from Google. One quick check is to open the

4https://support.google.com/android/answer/10546414?hl=en
5E.g. see https://www.bleepingcomputer.com/news/security/

study-reveals-android-phones-constantly-snoop-on-their-users/

(a) Google Dialer (b) Google Messages

Fig. 1: Google Dialer and Messages app home screens

installed apps and compare with the screenshots in Figure 1,
but this may be unreliable. Probably the simplest, safest way
to reliably check is to install the APK Explorer app from the
F-Droid app store6. This is a verified open source app without
embedded trackers. Opening the app displays a list of installed
apps and their unique package names. The package name of
the Google Dialer is com.google.android.dialer and of Google
Messages is com.google.android.app.messaging, so search for
these.

Handset brands that come with Google Messages pre-installed
include Xiaomi, Huawei, Google and newer Samsung and
One Plus phones. Handset brands that come with the Google
Dialer pre-installed include Xiaomi, Google and newer One
Plus phones. AT&T and T-Mobile recently announced that all
Android phones on their networks will in future use the Google
Messages app7.
2) Tracker-Free Alternatives: On Android it is possible to
change the default dialer and messages apps. Verified open-
source, tracker-free dialer and messages apps are available on
the F-Droid app store. For example, Simple Dialer8, QKSMS9

and Simple SMS Messenger10.

B. GDPR

We report on a technical study here, not a legal one, and in
any case we are not legally qualified. Nevertheless, the data
collection that we observe by Google raises obvious questions
regarding GDPR data protection regulations in Europe (the
measurements were all carried out within Europe using hand-
sets purchased in Europe). Roughly speaking, there are three
main basis under GDPR for data collection11: (i) the data is
anonymised, i.e. cannot reasonably be linked to an individual
person, and so is not personal data, (ii) with consent for a
defined purpose and (iii) for the legitimate interests of Google.

6https://f-droid.org/en/packages/com.apk.editor/
7https://www.theverge.com/2021/6/30/22556686/

att-android-phones-rcs-google-messages
8https://f-droid.org/en/packages/com.simplemobiletools.dialer/
9https://f-droid.org/en/packages/com.moez.QKSMS/
10https://f-droid.org/en/packages/com.simplemobiletools.smsmessenger/
11E.g. see https://gdpr.eu/what-is-gdpr/

https://takeout.google.com/
https://takeout.google.com/
https://support.google.com/android/answer/10546414?hl=en
https://www.bleepingcomputer.com/news/security/study-reveals-android-phones-constantly-snoop-on-their-users/
https://www.bleepingcomputer.com/news/security/study-reveals-android-phones-constantly-snoop-on-their-users/
com.google.android.dialer
com.google.android.app.messaging
https://f-droid.org/en/packages/com.apk.editor/
https://www.theverge.com/2021/6/30/22556686/att-android-phones-rcs-google-messages
https://www.theverge.com/2021/6/30/22556686/att-android-phones-rcs-google-messages
https://f-droid.org/en/packages/com.simplemobiletools.dialer/
https://f-droid.org/en/packages/com.moez.QKSMS/
https://f-droid.org/en/packages/com.simplemobiletools.smsmessenger/
https://gdpr.eu/what-is-gdpr/


3

1) Lack of Anonymity: Regarding anonymity, all of the events
recorded via the Google Play Services Clearcut logger are
tagged with the handset’s Android ID. Via other data collected
by Google Play Services this ID is linked to (i) the handset
hardware serial number, (ii) the SIM IMEI (which uniquely
identifies the SIM slot) and (iii) the user’s Google account.
When a SIM is inserted the Google Messages app also links
the Android ID to the SIM serial number/ICCID, which
uniquely identifies the SIM card.

By making a request using https://takeout.google.com/ for the
data associated with the Google user account used in our tests
we further confirmed that the data reported under the heading
“Android Device Configuration Service” includes the Android
ID for each handset used (as well as the handset serial number,
SIM IMEI, last IP address used and mobile operator details).

When creating a Google account it is necessary to supply a
phone number on which a verification text can be received.
For many people this will be their own phone number. Use
of Google services such as buying a paid app on the Google
Play store or using Google Pay further links a person’s Google
account to their credit card/bank details. A user’s Google
account, and so the Android ID, can therefore commonly be
expected to be linked to the person’s real identity.

Additionally, when a message is received by the Google
Messages app the sender’s phone number is sent to Google via
the Google Play Services Clearcut logger, see Section V-B2.
By combining data from the pair of handsets involved in an
exchange of messages (which seems perfectly feasible based
on the hashes of the message text that we observe to be sent
to Google) both phone numbers may be revealed and linked to
the Android IDs. Similarly when the spam protection option is
enabled in the Google Dialer (as it is by default), see Section
VI-A4.

All of the events recorded via Google Analytics are tagged
with the user’s Google Advertising ID and the sender app’s
Firebase ID. The app Firebase ID is directly linked to the
handset Android ID when the app registers to use the Google
Analytics service, see Section III-E1.

The linkage between the various identifiers is illustrated
schematically on Figure 2.
2) No Consent: Specific consent has neither been sought nor
given for the data collection by the Google Messages and
Dialer apps that we observe, and there is no opt out.
3) Legitimate Interest: Invoking legitimate interest requires
the data to be collected for a specific purpose, that the data is
necessary for the purpose, that the data collection is balanced
against the interests and freedoms of the individual, and so
on12. The legitimate interest basis for data collection is the
least clear, and probably best left to the lawyers. We note,
however, that we could not find an app-specific privacy policy
stating the specific purpose for which the data that we observe

12E.g. see https://ico.org.uk/for-organisations/guide-to-data-protection/
guide-to-the-general-data-protection-regulation-gdpr/
lawful-basis-for-processing/legitimate-interests/.

Fig. 2: Ilustrating how handset data can be linked to a person’s
real identity. Handset data sent to Google via the Google
Play Services Clearcut logger is tagged with the Android
ID, which in turn is linked to the user’s Google account
and to device/SIM identifiers. The user’s Google account in
turn may be connected to the person’s phone number, credit
card/bank details etc and so their real identity. Handset data
sent to Google via Google/Firebase Analytics is tagged with
the Google Advertising ID and the Firebase ID of the app
carrying out the data collection. The Google Advertising ID
links this data with other data collected for advertising-related
purposes. The Firebase ID is linked to the Android ID, and so
to the user Google account etc.

is collected and the basis used for data collection. We discuss
this further next.

C. Lack of App-Specific Privacy Policy

1) Google Messages: Viewing the privacy policy of the
Google Messages app is not straightforward. It is necessary
to: (i) click on the three dots in search bar to open the Settings
menu, (ii) scroll down to see an ”About, terms and privacy”
link (see Figure 3(a)), (iii) click on this to open a new menu
that shows a “Privacy Policy” link, (iv) click on this link which
opens a Google Chrome window. At this point, to proceed
it is necessary to agree to the Google Chrome terms and
conditions, see Figure 3(b). It is not possible to proceed to
view the Messages app privacy policy without first agreeing
to the additional Google Chrome terms and conditions.

This process of navigating multiple menus and links hardly
seems best practice. Mandating acceptance of Google Chrome
terms and conditions in order to view the Messages app
privacy policy is poor practice.

We note also that the Messages app silently sends messages
to Google via Google Analytics logging the fact that the page
with the privacy policy link has been viewed, see Section V-D.
This occurs before the privacy policy itself has been viewed.

Agreeing to the Google Chrome terms and conditions leads to
a page encouraging use of Google’s sync service, see Figure
3(c) and after passing through that the user is finally allowed
to view the privacy policy web page at http://www.google.
com/intl/en IE/policies/privacy/ (note the use of http rather
than https, although this redirects to https://policies.google.
com/privacy?hl=en&gl=IE). Unfortunately, this is not an app-
specific privacy policy but the rather general Google privacy

https://takeout.google.com/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/lawful-basis-for-processing/legitimate-interests/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/lawful-basis-for-processing/legitimate-interests/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/lawful-basis-for-processing/legitimate-interests/
http://www.google.com/intl/en_IE/policies/privacy/
http://www.google.com/intl/en_IE/policies/privacy/
https://policies.google.com/privacy?hl=en&gl=IE
https://policies.google.com/privacy?hl=en&gl=IE


4

(a) (b) (c)

Fig. 3: Navigating to the Google Messages app privacy policy
page requires navigating multiple menus and links and agree-
ing to the additional Google Chrome terms and conditions.

policy. This is silent on the specific data collected by the
Messages app, the associated app-specific purposes and the
basis under which this app-specific data is collected.

We note that during the loading of this privacy policy web page
around 20 connections are made that appear to send telemetry
to Google servers, see Section V-D.
2) Google Dialer: The Google Dialer does not appear to
have an app privacy policy link, only a privacy policy as-
sociated with the Support pages. The only privacy policy
link that we could find was by following these steps: (i)
click on the three dots in search bar to open a menu, (ii)
click on the “Help and feedback” to open the Support page,
(iii) click on the three dots at the top right of the Sup-
port page to open a new menu, (iv) click on the “Privacy
Policy” link that is revealed. As with the Google Messages
app this process opens a Google Chrome window and it is
necessary to agree to the additional Google Chrome terms
and conditions in order to proceed. The user eventually ar-
rives at the web page http://www.google.com//policies/privacy/
which redirects to https://policies.google.com/privacy. This is
Google’s global privacy policy page, with no app specific
information and not localised to Europe/Ireland (unlike for the
Messages app). Similarly to the Messages app, loading the
privacy policy page prompts multiple connections including
to www.youtube-nocookie.com/youtubei/v1/log event sending
what appears to be telemetry, and to www.google-analytics.
com/j/collect, stats.g.doubleclick.net/j/collect.

D. Recommendations to Google

In light of our observations we make the following recom-
mendations (in no particular order):

1) The specific data collected by Dialer and Messages apps,
and the specific purposes for which it is collected, should
to be clearly stated in the app privacy policies.

2) The app privacy policy should be easily accessible to
users and be viewable without having to first agree
to other terms and conditions (e.g. those of Google

Chrome). Viewing of the privacy policy should not be
logged/tracked prior to consent to data collection.

3) Data on user interactions with an app, e.g. app screens
viewed, buttons/links clicked, actions such as sending/re-
ceiving/viewing messages and phone calls, is different in
kind from app telemetry such as battery usage, memory
usage, slow operation of the UI. User’s should be able to
opt out of collection of their interaction data.

4) User interaction data collected by Google should be made
available to users on Google’s https://takeout.google.com/
portal (where other data associated with a user’s Google
account can already be downloaded).

5) When collecting app telemetry such as battery usage,
memory usage etc, the data should only be tagged with
short-lived session identifiers, not long-lived persistent
device/user identifiers such as the Android ID

6) When collecting data only coarse time stamps should
be used, e.g. rounded to the nearest hour. The current
approach of using timestamps with millisecond accuracy
risks being too revealing. Better still, use histogram data
rather than timestamped event data, e.g. a histogram of
the network connection time when initiating a phone call
seems sufficient to detect network issues.

7) Halt the collection of the sender phone number via the
CARRIER_SERVICES log source when a message is
received, and halt collection of the SIM ICCID by Google
Messages when a SIM is inserted. Halt collection of a
hash of sent/receivedmessage text.

8) The current spam detection/protection service transmits
incoming phone numbers to Google servers. This should
be replaced by a more privacy-preserving approach, e.g.
one similar to that used by Google’s Safe Browsing anti-
phishing service which only uploads partial hashes to
Google servers [1], [2].

9) A user’s choice to opt out of “Usage and diagnostics”
data collection should be fully respected i.e. result in a
halt to all collection of app usage and telemetry data.

E. Response From Google

The apps studied here are in active use by many millions
of people. We informed Google of our findings, delayed
publication to allow them to respond and in fairness to Google
they have engaged positively with us. In summary,

1) Google say they plan to change the app onboarding flow
so that users are notified this is a Google app with a
link to Google’s consumer privacy policy. This will likely
include opportunities to provide more “Privacy Tours”
that walk the user through an overview of the app’s
data use and data collection. This will include a new
on/off toggle to cover data collection that Google do not
consider to be essential for the app to function.

2) Will halt the collection of the sender phone number via
the CARRIER_SERVICES log source, collection of the

http://www.google.com//policies/privacy/
https://policies.google.com/privacy
www.youtube-nocookie.com/youtubei/v1/log_event
www.google-analytics.com/j/collect
www.google-analytics.com/j/collect
stats.g.doubleclick.net/j/collect
https://takeout.google.com/


5

SIM ICCID and of a hash of sent/receivedmessage text
by Google Messages (the latter change will be rolled
out with version 10.9.160 of Google Messages, the other
changes in the next release).

3) Will remove logging of call related events in Firebase
Analytics from both Google Dialer and Messages.

4) Re the recommendation to use short-lived session identi-
fiers for telemetry data, Google say they would like to
see more logging moved to using the least long-lived
identifier available whenever possible and that this an
ongoing project.

5) Re the spam detection/protection service, Google note
that this only occurs for phone numbers not in the
handset contacts list and plan to (i) create a product
tour explaining to new users and reminding current users
that caller ID and spam protection is turned on for user
protection, and letting them know how to disable it,
(ii) add a visual indicator within the Messages app that
indicates when spam protection is enabled, (iii) investi-
gate whether an approach similar to the Safe Browsing
hash prefix solution can be used. Google also state that
the timestamp logged in the SCOOBY EVENTS log
message (see Section VI.A.4) is fuzzed to the nearest
hour server-side, and will also be fuzzed client-side from
version v75 onwards of the Dialer app.

6) Google state that there are back-end server controls to
regulate joins between the Android ID and user account
data, but the policy used to manage joins is not publicly
available. Google also note that when a handset has
multiple Google user accounts then its Android ID would
be associated with all of those user accounts.

It’s worth noting that this summary of our discussions is
written by us, not Google. It reflects our understanding of
those discussions but any mistakes are of course our own.

Google also provided clarification on the purposes of some of
the data collection observed. Namely:

1) The message hash is collected for detecting message
sequencing bugs.

2) Phone numbers are collected to improve regex pattern
matching for automatic recognition of one-time pass-
words sent over RCS. Messages automatically recognizes
incoming One-Time Password (OTP) codes to avoid the
user having to fill them in. This can be a frequent point
of failure and the phone number data is used to improve
recognition by providing ground-truth based on known
OTP sender numbers.

3) The ICCID data is used to support Google Fi.

4) Firebase Analytics logging of events (not including phone
numbers) is used to measure the effectiveness of app
download promotions (for Messages and Dialer specif-
ically). Namely, to measure not only whether the app
was downloaded but also whether it was used once
downloaded.

II. RELATED WORK

Probably closest to the present work are recent analyses of
the data shared by Google Play Services [5], [3], [4]. The
measurement study in [5] was motivated by the emergence of
Covid contact tracing apps based on the Google-Apple Expo-
sure Notification (GAEN) system, which on Android requires
that Google Play Services to be enabled. This highlighted the
extensive data collection Google Play Services. The follow-
up work in [3] extended consideration to the data sent to
Apple by an iPhone/IOS. Recently, in [4] the data sent by
six variants of the Android OS, namely those developed by
Samsung, Xiaomi, Huawei, Realme, LineageOS and e/OS, is
measured (in [5], [3] only Google-brand Android handsets
were studied). While the focus was on data sent to non-Google
servers, e.g. on the data sent to Samsung by a Samsung-brand
handset, this study again highlighted the large volume of data
uploaded to Google by Google Play Services on all handsets
apart from the e/OS handset. The volume of data uploaded to
Google was observed to be at least 10× that uploaded by the
mobile OS developer, rising to around 30× for the Xiaomi,
Huawei and Realme handsets. This occurs despite the ‘usage
& diagnostics” option being disabled for Google Play Services
in these studies. These previous studies also note the opaque
nature of this data collection by Google, with there being no
public documentation, use of binary encoded payloads and
obfuscated code.

The microG project13 is an open source re-implementation
of parts of the Google Play Services API used by popular
apps (in particular the Fused Location, Maps, Firebase Cloud
Messaging/push notifications, authentication and SafetyNet
components). However, the microG project has specifically
avoided re-implementation of the analytics components of
Google Play Services, including Google/Firebase Analytics
and the Clearcut logger service, and it is these that we study
here.

III. THE CHALLENGE OF SEEING WHAT DATA IS SENT

It is generally straightforward to observe packets sent from a
mobile handset. Specifically, we configure the handsets studied
to use a WiFi connection to a controlled access point, on which
we use tcpdump to capture outgoing traffic. However, this is
of little use for privacy analysis because: (i) packet payloads
are almost always encrypted due to the widespread use of
HTTPS to transfer data; (ii) prior to message encryption, data
is often encoded in a binary format for which there is little or
no public documentation

A. Decrypting HTTPS Connections

Almost all of the data we observe is sent over HTTPS con-
nections and so encrypted using TLS/SSL (in addition to any
other encryption used by the app). However, decrypting SSL
connections is relatively straightforward. We route handset
traffic via a WiFi access point (AP) that we control, configure
this AP to use mitmdump as a proxy [6] and adjust the

13https://microg.org/.

SCOOBY_EVENTS
https://microg.org/


6

Fig. 4: Measurement setup. Mobile handset configured to
access the Internet using a WiFi access point hosted on a
Raspberry Pi. A system certificate is installed on the phone to
be able to decrypt outgoing traffic. The accesspoint pretends
to any process running on the handset to be the destination
server, creates a connection to the actual target, and relays
requests and their replies between handset and server while
logging the traffic.

firewall settings to redirect all WiFi HTTP/HTTPS traffic to
mitmdump so that the proxying is transparent to the handset.
When a process running on the handset starts a new network
connection, the mitmdump proxy pretends to be the destination
server and presents a fake certificate for the target server. This
allows mitmdump to decrypt the traffic. It then creates an
onward connection to the actual target server and acts as an
intermediary, relaying requests and their replies between the
app and the target server while logging the traffic. The setup
is illustrated schematically in Figure 4.

System processes typically carry out checks on the authen-
ticity of server certificates received when starting a new
connection and abort the connection when these checks fail.
For Google apps and services, installing the mitmproxy CA
cert as a trusted certificate causes these checks to pass.
Installing a trusted cert is slightly complicated in Android
10 and later, since the system disk partition, on which
trusted certs are stored, is read-only and security measures
prevent it being mounted as read-write. Fortunately, folders
within the system disk partition can be overriden by cre-
ating a new mount point corresponding to the folder, and
in this way the mitmdump CA cert can be added to the
/system/etc/security/cacerts folder.

B. Google Play Services Telemetry

The Google Message and Dialer apps do not send data directly
to Google, but rather send data to event logging services
within Google Play Services. Specifically, to the Clearcut
logger service and the Google/Firebase Analytics service.
These Google Play Service components expose APIs that the
app uses to communicate with them. The Clearcut logger and
Google/Firebase Analytics services then batch up data received
and forward it to Google servers. The Clearcut logger sends
data to https://play.googleapis.com/log/batch while Google/-
Firebase Analytics sends data to https://app-measurement.
com/. This process is illustrated schematically in Figure 5.

The Clearcut logger and Google/Firebase Analytics services
encode the data in different formats for sending to Google.
We discuss these formats in more detail next.

Clearcut logger

Firebase Analytics

Google Play ServicesApp

https://play.googleapis.com/log/batch

https://app-measurement.com/

Fig. 5: Schematic illustrating app data flow. The app sends
event data to Google Play Services via the Clearcut logger
and Firebase Analytics APIs. These Google Play Services
components then batch up the data and send it to Google
servers. Note that Google Play Services provides many other
APIs and services in addition to the Clearcut logger and
Firebase Analytics.

C. Decoding Google Play Services Clearcut Logger Data

The Clearcut logger service within Google Play Services sends
data to https://play.googleapis.com/log/batch. Each message
sent includes an NID cookie and an x-server-token authen-
tication token (which act as device identifiers), followed by
the message body, e.g.

POST https://play.googleapis.com/log/batch
Headers

x-server-token: CAESOQDyi0h8...YWXxG0vLQ
cookie: NID=511=Oy6F1KJ7JeZ...yZ0RhdX8o6efg

<Body>

The message body is encoded in a binary protobuf format14.
Figure 6 shows the structure of the decoded message, in-
cluding an example header message, and Table I gives a
list of log sources observed by [3] (this list is probably not
comprehensive). Note that the sequence of log entries sent by
each log source is encoded as a protobuf array. That is, as
a sequence of <length/varint><protbuf> entries from which
the individual log entry protobufs need to be extracted and
decoded. Standard tools cannot decode a protobuf array but
we have made software tools that we have developed for this
publicly available, see below.

Protobufs can be decoded without knowledge of the mes-
sage content using the Google Protobuf compiler with the
--decode_raw option. However, this means that the in-
terpretation of values is missing and there is also sometimes
ambiguity as to interpretation of the value types. Figure 7(a)
shows an example of a log entry generated by the Google Mes-
sages app ANDROID_MESSAGING log source and decoded in
this way. While the contents of the log entry can be viewed, it
remains largely opaque since the interpretation of the various
numerical and string values is not known.

Since there is no public documentation, to determine the mean-
ing of these values we (i) decompile the Google Messages app,
(ii) identify the protobuf used to encode the log entry within
the decompiled code (this step is non-trivial since the Google

14https://developers.google.com/protocol-buffers/

https://play.googleapis.com/log/batch
https://app-measurement.com/
https://app-measurement.com/
https://play.googleapis.com/log/batch
https://developers.google.com/protocol-buffers/


7

header
log entry

log entry

/log/batch message

Fig. 6: Structure of messages sent to play.googleapis.com/
log/batch by the Google Play Services Clearcut logger. Each
message consists of one or more bundles of log entries,
indicated in brown. Each bundle has a header containing
device details and persistent identifiers (Google androidID,
NID cookie) and specifying the log source. This header is
followed by one or more log entries, the format of the log
entries being determined by the log source.

CARRIER_SERVICES, ANDROID_DIALER, ONEGOOGLE_MOBILE, GOOGLE_NOW_LAUNCHER,
DRIVE, COPRESENCE_NO_IDS, AUTOFILL_WITH_GOOGLE, SCOOBY_EVENT,
SCOOBY_EVENT_LOG, BEACON_GCORE, NETREC, BRELLA, GOOGLE_HELP, PHOTOS,
CALENDAR, CALENDAR_UNIFIED_SYNC, BUSINESS_VOICE, IDENTITY_FRONTEND,
GMS_CORE_PEOPLE, LATIN_IME, DL_FONTS, CAR, ICING, ACTIVITY_RECOGNITION,
ANDROID_CONTACTS, ANDROID_GROWTH, ANDROID_GSA, CLIENT_LOGGING_PROD,
GOOGLETTS, CAST_SENDER_SDK, ANDROID_VERIFY_APPS, ANDROID_BACKUP,
ANDROID_MESSAGING, ANDROID_OTA, ANDROID_GMAIL, ANDROID_SNET_GCORE,
GAL_PROVIDER, GLAS, TACHYON_LOG_REQUEST, CLEARCUT_FUNNEL, CLEARCUT_LOG_LOSS,
DIALER_ANDROID_PRIMES, CARRIER_SERVICES_ANDROID_PRIMES, TURBO_ANDROID_PRIMES,
PHOTOS_ANDROID_PRIMES, ANDROID_MESSAGING_PRIMES, GOOGLETTS_ANDROID_PRIMES,
SETTINGS_INTELLIGENCE_ANDROID_PRIMES, ANDROID_GSA_ANDROID_PRIMES,
SAFETYHUB_ANDROID_PRIMES, WIFI_ASSISTANT_PRIMES, DRIVE_ANDROID_PRIMES,
GMAIL_ANDROID_PRIMES, STREAMZ_ANDROID_GROWTH, STREAMZ_ANDROID_GSA,
STREAMZ_ONEGOOGLE_ANDROID, STREAMZ_HERREVAD, STREAMZ_CALENDAR,
STREAMZ_PHOTOS_ANDROID, STREAMZ_ANDROID_AUTH_ACCOUNT, STREAMZ_GELLER,
STREAMZ_NGA, BUGLE_COUNTERS, PSEUDONYMOUS_ID_COUNTERS, GMAIL_COUNTERS,
WESTWORLD_COUNTERS, GOOGLE_KEYBOARD_COUNTERS, ANDROID_CONTACTS_COUNTERS,
WALLPAPER_PICKER_COUNTERS, PLATFORM_STATS_COUNTERS

[

TABLE I: Log source names observed in Google
Play Services Clearcut logger messages sent to
play.googleapis.com/log/batch (taken from [3]). The log
sources studied here are highlighted in red.

Messages app contains more than 2000 distinct protobufs15.)
and then (iii) trace back within the code to determine how the
value of each entry in the protobuf is calculated. Figure 7(b)
shows the result of this fairly laborious process.

It can be seen that many of the numerical values within
the message encode event and state information, for ex-

15The protobufs themselves are encoded within the app in
compact protobuf format, which is undocumented although there
are useful comments embedded in the Android source code, see
https://cs.android.com/android/platform/superproject/+/master:external/
protobuf/java/core/src/main/java/com/google/protobuf/RawMessageInfo.java

logEntry:{
1: 1635013045967
6 {
1: 2
3 {
1: 1
2: 1
<...>
5 {
1: 1635013045028
2: 898

}
8: 2
9: 1282237833693804524
12: 1
14: 2
16: 2
17: 4
18: 10
19: 4
20 {
1: 30524580
3: ""

}
21: 778
27: 8480061162880308485
31: "NOT_AVAILABLE"
33: "-8443536869600326524"
34: "5478611868067030819"
<...>

(a)

logEntry:{
timestamp: 1635013045967
event {
eventType: BUGLE_MESSAGE
bugleMessage {
messageProtocol: ONE_ON_ONE
bugleMessageStatus: SENT
<...>
messageTiming {
currentTime_ms: 1635013045028
elapsedTimeSinceMsgSendRecv_ms: 898

}
bugleMessageSource: CONVERSATION_ACTIVITY
usageStatsLoggingId: 12822378336938045248
conversationType: ONE_ON_ONE
sendAttempt: FIRST_ATTEMPT_TO_SEND
wasRCS: HAS_ALWAYS_BEEN_XMS_CONVERSATION
rcsStatus: RCS_AVAILABILITIES_ISSUES
configStatus: CARRIER_SETUP_PENDING
phoneNumberFormat2: PHONENUMBER
carrierServicesData {
versionCode: 30524580
3: ""

}
messageSendClickToSentLatency: 778
conversationIdSHA1: 8480061162880308485
RcsConfig: "NOT_AVAILABLE"
sha256HashMsg: "-8443536869600326524"
sha256HashPrevMsg: "5478611868067030819"
<...>

(b)

Fig. 7: Example of Google Messages ANDROID_MESSAGING
Clearcut logger log entry: (a) protobuf decoded using Google
Protobuf compiler with the --decode_raw option, (b) after
reverse engineering the schema.

ample the number 2 in field 1 encodes the fact that this
is a BUGLE MESSAGE event (Bugle is the internal name
used for the Messages app). Note that the enum labels
here, e.g. BUGLE MESSAGE, are extracted from the app
code and so are Google’s own. Other values encode the
fact that a message was successfully sent as part of a con-
versation (bugleMessageSource) as well as the time
(in milliseconds since 1st Jan 1970) when the message
was sent (currentTime_ms) and the log entry was sent
(timestamp). Observe also the two truncated SHA256 hash
values near the bottom of the message. We shall return to these
shortly, but note that the sha256HashMsg value is a hash
of the time, in hours since 1st Jan 1970, that the message was
sent and of the message content i.e the message text, truncated
to 128 bits. This hash uniquely identifies the message that
was sent. The sha256HashPrevMsg similarly identifies the
previous message sent/received in the conversation. In the
absence of documentation the interpretation of such values is
simply impossible without the kind of time-consuming reverse
engineering carried out here.

Each log source sending data to the Clearcut logger service
uses its own protobuf format for log entries, necessitating
seperate reverse engineering of each in order to decode the
message content.

Figure 8 shows an example of a decoded Google Di-
aler log entry generated in response to manually di-
aling a phone number. The AOSPEventType value
MAIN_CLICK_FAB_TO_OPEN_DIALPAD records the fact
that the dialpad was opened, and the timestamp records
the time when this occurred. As the phone number is
typed a searchQuery event is logged for each digit
typed, see Figure 8(a) for an example log entry sent

play.googleapis.com/log/batch
play.googleapis.com/log/batch
https://cs.android.com/android/platform/superproject/+/master:external/protobuf/java/core/src/main/java/com/google/protobuf/RawMessageInfo.java
https://cs.android.com/android/platform/superproject/+/master:external/protobuf/java/core/src/main/java/com/google/protobuf/RawMessageInfo.java


8

logEntry:{
timestamp: 1635013503410
event {
impressionEvent {
timestamp: 1635013503410
deviceDetails {
buildDevice: "walleye"
buildModel: "Pixel 2"
buildVersionRelease: "11"
buildID: "RP1A.201005.004.A1"
releaseStatus: RELEASE
systemApp: true
updatedSystemApp: true
deviceClass: DEFAULT_GOOGLE_DEVICE
simOperator: "Tesco Mobile"
country: "ie"
elapsedDaysSinceDialerInstall: 4678
mobileOperator: "27205"
installedBy: "com.android.vending"
14: "0AFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"

}
AOSPEventType: MAIN_CLICK_FAB_TO_OPEN_DIALPAD

}
}
subEvent: 1340
tz_offset: 3600
<...>

}

Fig. 8: Example of Google Dialer ANDROID_DIALER Im-
pression event log entry recording event that dialpad has been
opened.

logEntry:{
timestamp: 1635013208570
event {
searchQuery {
queryLength: 3
searchTimeMillis: 47
5: 1

}
}
tz_offset: 3600
<...>

}

(a)

callDetails {
isIncoming: False
callInitiationType: Dialpad
lookupResultType: NOT_FOUND
disconnectCause: REMOTE
callDuration: 48605 // ms
callSetupTiming {<...>}
deviceDetails {<...>}
callID: "d97ae1a6-...7d7ecb7"
<...>

}

(b)

Fig. 9: More examples of Google Dialer ANDROID_DIALER
log entries: (a) logging each key press when dialing a phone
number, (b) call details sent upon completion of a call,
including the call duration (in milliseconds).

in response to a keypress. When a phone call fin-
ishes this event is also logged, using a message simi-
lar to that in Figure 8 but with AOSPEventType value
USER_PARTICIPATED_IN_A_CALL and including addi-
tional data recording call details, including the call duration
(in milliseconds), see Figure 8(b).

D. Decoding Google Play Services /checkin Message

Google Play Services sends periodic messages to android.
googleapis.com/checkin that act to link together a number of
persistent device and user identifiers, see [7], [5], [3], [4].
An abridged decoded example of one these connections is as
follows:

POST https://android.googleapis.com/checkin
Headers:

Cookie:
NID=511=H_JOLe0z_gYPWW...oo_n5wHitQ
Body:

imei: "357537089248629"
androidId: 4438613795332237289
<...>
IMEI: "35753708924862"
account "[doug.leith@gmail.com]"
accountToken: "ya29.a0AR...mUWA"
timeZone: "Europe/Dublin"
securityToken: 8517022668257493554
<...>
hardwareSerialNumber: "HT85G1A05551"
<...>

Observe that the message contains the (i) Android ID (a long-
lived device identifier that can only be changed by carrying
out a factory reset), (ii) the IMEI (which uniquely identifies
the handset SIM slot), (ii) the hardware serial number (which
uniquely identifies the handset), (iv) the NID cookie (which
acts as a persistent device identifier), (v) the Google account
username/email (which identifies the handset user) and (vi) a
user account authorisation token (which again identifies the
handset user).

As already noted, logging messages sent by the Clearcut
logger to https://play.googleapis.com/log/batch are tagged with
the AndroidID, and so via this /checkin message can be linked
to long-lived device and user identifiers.

E. Decoding Google/Firebase Analytics Event Logging

In addition to logging events via the Google Play Services
Clearcut logger service, the Google Dialer and Messages apps
also log events using the Google/Firebase Analytics service.
Decoding of Google Analytics messages is much simpler than
for the Clearcut logger service since the same protobuf format
is used for all messages.
1) Registering App With Google/Firebase Analytics: Apps
using Google/Firebase Analytics first register with the service
by connecting to android.clients.google.com/c2dm/register3.
For example, here is the Google Dialer registering:

POST https://android.clients.google.com/c2dm/register3
Headers:

Authorization: AidLogin 4438613795332237289:8517022668257493554
app: com.google.android.dialer

Body:
X-subtype=566865154279&sender=566865154279&X-app_ver=7903277&X-osv=30&X-cliv=
fiid-21.1.1&X-gmsv=213916046&X-appid=f86VDMH_SSGcArMl6Up973&X-scope=*&
X-Goog-Firebase-Installations-Auth=eyJhb...UiZvYtC&X-gmp_app_id
=1:566865154279:android:85888a731cba65c4ed1242&X-Firebase-Client=
fire-analytics/19.0.2+fire-core/19.3.2_1p+fire-fcm/20.1.7_1p+fire-android/+
fire-installations/16.3.6_1p+fire-iid/21.1.1&X-firebase-app-name-hash=R1dAH9
...1tLxhI&X-Firebase-Client-Log-Type=1&X-app_ver_name=70.05.401408800&app=com.
google.android.dialer&device=4438613795332237289&app_ver=7903277&info=s_uTu6
...yRc&gcm_ver=213916046&plat=0&cert=203...a0439&target_ver=30
<<< HTTP 200, 169.00B

The AidLogin header contains the AndroidID value
4438613795332237289 plus a security token. The X-appid
value is the Firebase ID, which uniquely identifies the Google
Dialer app instance. This Firebase ID is also encoded in
the X-Goog-Firebase-Installations-Auth value
which is a JWT token16 that decodes to:

{
"appId": "1:566865154279:android:85888a731cba65c4ed1242",
"exp": 1635322812,
"fid": "f86VDMH_SSGcArMl6Up973",
"projectNumber": 566...54279

}

2) Google/Firebase Analytics Event Logging: After reg-
istering with Google/Firebase Analytics, apps can log
events. Logged events are batched and sent to https://
app-measurement.com/a. Each event is tagged with app, de-
vice and user information, see Figure 10. This includes the
app Firebase ID (which uniquely identifies the app instance is
linked to the handset via the AndroidID during the registration
with Google/Firebase Analytics, see above) and the handset
Google Advertising ID (which links the event with other user
data collected for advertising purposes), see Section VII for
further discussion of this.

16https://jwt.io/

android.googleapis.com/checkin
android.googleapis.com/checkin
https://play.googleapis.com/log/batch
android.clients.google.com/c2dm/register3
https://app-measurement.com/a
https://app-measurement.com/a
https://jwt.io/


9

bundle {
<event>
<user_info>
message_timestamp: 1635013256591
event_timestamp: 1635013211681
bundle_end_timestamp: 1635013250642
last_bundle_end_timestamp: 1635013039074
operating_system: "android"
operating_system_version: "11"
Build_MODEL: "Pixel 2"
language_country: "en-ie"
timezone_offset_mins: 60
package_name: "com.google.android.dialer"
app_version: "70.05.401408800"
gmp_version: 44007
gms_version: 213916
google_ad_id: "916c714a-e838-479d-a7a6-3325d838da5f"
random_hex: "27119320961e981207e9f885ddfb897b"
dev_cert_hash: 12863297414841520258
daily_conversions_count: 17
gmp_app_id: "1:566865154279:android:85888a731cba65c4ed1242"
last_bundle_start_timestamp2: 1635013035855
firebase_instance_id: "f86VDMH_SSGcArMl6Up973"
app_version_int: 7903277
config_version: 1631224292436546
dynamite_version: 53

}

Fig. 10: Structure of a Firebase Analytics message. Each
message consists of a sequence of bundles, each bundle
contains the event information together with device and user
information. In particular, each event is tagged with both the
app Firebase ID, which is linked to the device Android ID
when the app registers with Firebase Analytics, and the Google
Advertising ID.

event {
event_info {
setting_code: "_o" // firebase_event_origin
data_str: "app"

}
event_info {
setting_code: "_sc" // firebase_screen_class
data_str: "LegacyInCallActivity"

}
event_info {
setting_code: "_si" // firebase_screen_id
data_int: 6625442165989094212

}
event_code: "OUTGOING_CALL_PLACED"
event_timestamp: 1635013242676
previous_event_timestamp: 1635013037816

}

Fig. 11: Example of decoded Firebase Analytics event message
when a phone call is made using the Google Dialer

The event itself is encoded as a protobuf and Figure 11
shows an example of a decoded event logged by the Google
Dialer app when a phone call is made. The event_code
value OUTGOING_CALL_PLACED records the fact that a
call was made and the event_timestamp records the
time when the call was made. The event_info value
LegacyInCallActivity records the app screen (or “ac-
tivity” in Android parlance) from which the call was made.

F. Reconstructed Protobuf Definitions and Decoding Software

The reconstructed protobuf definitions used here are available
at https://github.com/doug-leith/android-protobuf-decoding,
together with python scripts that can be used as a mitmproxy
addon to parse recorded packet traces. For step by step
instructions on how to collect decrypted packet traces from
an Android handset see https://github.com/doug-leith/cydia.

(a) (b) (c)

Fig. 12

IV. EXPERIMENTAL SETUP

A. Hardware and Software Used

Mobile handsets: Google Pixel 2 running Android 11
(build RP1A.201005.004.A1) with Google Play Services ver.
21.39.16 (150400-402663742) rooted using Magisk v23.0.
Google Dialer ver. 70.05.401408800, Google Messages ver.
10.0.014 (Isengard RC01.phone dynamic). Although we only
present measurements for Android 11 we also collected
measurements from a Google Pixel 4a running Android 12
(build SP1A.210812.015), Google Play Services ver. 21.39.17
(190400-405802548), Google Dialer ver. 68.0.392726590,
Google Messages ver 8.4.041. The behaviour observed is
almost identical to that of Android 11.

WiFi access point: Raspberry Pi 4 Model B Rev 1.2/Rasp-
bian GNU Linux 11/Mitmproxy 6.0.2 with iptables firewall
configured to redirect HTTP/S traffic to port 8080 (on which
mitmproxy listens) and also to block UDP traffic on HTTPS
port 443 (so as to force any Google QUIC traffic to fall back
to using TCP since we have no tools for decrypting QUIC).

B. Device Settings

At the start of each test we removed any SIM card and
reflashed the handset with a fresh factory image. Following
this, the handset reboots to a welcome screen and the user is
then presented with a number of option screens. We note that
all of the option toggle switches default to the opt-in choice,
and so it is necessary for the user to actively select to opt-
out. To mimic a privacy conscious user, we unchecked any
of the options that asked to share data and only agreed to
mandatory terms and conditions. Specifically, we deselected
the (i) “Free up space” option, (ii) “Use location” option,
(iii) “Allow scanning” option and (iv) the “Send usage and
diagnostic data” option, see Figure 12(a). Note that there is
no option to deselect automatic updates. We did not log in
to Google user account during the onboarding process. After
onboarding we inserted a SIM.

C. Test Design

Following previous mobile handset privacy studies [3], [4]
we assume a privacy-conscious but busy/non-technical user,

https://github.com/doug-leith/android-protobuf-decoding
https://github.com/doug-leith/cydia


10

who when asked, does not select options that share data but
otherwise leaves handset settings at their default values. This
provides a baseline for privacy analysis, and we expect that
the level of data sharing may well be larger for a less privacy-
conscious user.

Both the Google Dialer and Messages app include spam
detection/protection services. By default these are enabled
for both apps, but can be disabled by a user via the set-
tings menu in each app. To explore the impact of these
services on data sharing we take measurements both with
spam detection/protection enabled (the default) and with it
disabled. Google documentation17 also suggests that these
spam detection/protection services may treat calls/messages
from phone numbers that are already in the handset contacts
database differently from numbers that not in handset contacts
database.

With these considerations in mind we carry out the following
experiments:

Phone number in contacts:

1) Start a pair of handsets following a factory reset (mim-
icking a user receiving a new phone), insert a SIM in each
handset and disable mobile data.

2) Login in to a Google account. This downloads a list of
contacts, including the calling number used in our tests.

3) Make/receive phone calls and send/receive SMS messages
between the pair of handsets. Record the network activity.

4) Disable the “Caller ID and spam detection” option in
Google Dialer and the “Spam protection” option on Google
Messages (both default to “on”, see Figure 12)

5) Make/receive calls and send/receive SMS messages.
Record the network activity.

Phone number not in contacts: As above, but do not login to
Google account (the handset contacts database will be empty).

Interacting With Apps: During the above tests we interact
with the apps to send/receive SMS messages and make/receive
phone calls. Since our measurements in these tests established
that user interactions (screens viewed, buttons clicked) are
logged and sent to Google by the apps we then also addi-
tionally carried out tests where we (i) viewed the call history,
(ii) viewed recent calls/favourites, (iii) viewed/edited contact
details, (iv) opened the in-app settings menu and viewed the
settings screens, (v) entered both text and phone numbers in
the app search bar and

App Privacy Policy: We also tried to view the app privacy
policy.

17“Your chats stay private with spam detection”, Google Support page
https://support.google.com/messages/answer/9327903.

V. RESULTS: GOOGLE MESSAGES

A. Inserting SIM

When a SIM is inserted into the handset Google Mes-
sages records this event via the Google Play Services AN-
DROID MESSAGING log source:

event {
eventType: BUGLE_TELEPHONY_EVENT
bugleTelephonyEvent {
carrierInfo {
simStatus: LOADED
simInfoNotUpdated: true
simOperator: "27211"
subscriptions {
usingDefaultDataSubscriptionId: true
numSimSlots: ONE
DefaultSubscriptions {
usingDefaultVoiceSubscriptionId: true
usingDefaultSmsSubscriptionId: true
usingDefaultDataSubscriptionId: true

}
}
simSerialNumber: "89353111802...65506"
simCarrierId: -1

}}}

and also via the Google Play Services CARRIER SERVICES
log source:

event {
<...>
packageVersionName: "10.0.014 (Isengard_RC01.phone_dynamic)"
<...>
simOperator: "27211"
<...>
simSerialNumber: "89353111802...65506"
<...>

}

The packageVersionName value is the version name of
Google Messages app. The simOperator value specifies
the SIM operator (in this case 48 Mobile Ireland). The
simSerialNumber value is the SIM card serial number or
ICCID, which uniquely identifies the SIM card. Since these
event records are also tagged with the handset AndroidID
(see Figure 6) they act to link the handset and the SIM.
Additionally, Google Play Services also separately sends SIM
details and the AndroidID to https://android.clients.google.
com/fdfe/uploadDynamicConfig, see [3], [4].

B. Sending/Receiving An SMS Message

We present measurements when sending an SMS message
between two handsets using Google Messages with the spam
protection service disabled and the handset phone numbers not
in their contacts list. However, we note that in our tests similar
behaviour was also observed when spam protection is enabled
and/or the handset phone numbers are in the contacts list.
1) ANDROID MESSAGING log source: On the handset send-
ing a text we observe, for example, the following sequence of
event messages sent by Google Messages via the Google Play
Services ANDROID MESSAGING log source18:

1635968886592 BUGLE_MESSAGE bugleMessageStatus: CREATED
1635968886593 BUGLE_APP_CONFIGURATION
1635968886600 BUGLE_COMPOSE
1635968886623 BUGLE_P2P_SUGGESTION suggestionEventType: SENT_MESSAGE
1635968886735 BUGLE_MESSAGE bugleMessageStatus: MESSAGE_ID_CREATED
1635968887029 BUGLE_P2P_SUGGESTION suggestionEventType: REQUEST
1635968887562 BUGLE_MESSAGE bugleMessageStatus: SENT sha256HashMsg: "
247836537599431109" sha256HashPrevMsg: "200428458475182371"

The first BUGLE MESSAGE event records the fact that a
new message is created, the last BUGLE MESSAGE event

18Each event message is similar to that in Figure 7 but for clarity and to
save space we just show selected values from each message

https://android.clients.google.com/fdfe/uploadDynamicConfig
https://android.clients.google.com/fdfe/uploadDynamicConfig


11

records the fact that the message was successfully sent. The
BUGLE APP CONFIGURATION event records the orienta-
tion of the screen and whether the handset is in multi-window
mode. The other events log internal app processing steps as a
new message is sent for transmission.

At the receiving handset we observe the following correspond-
ing sequence of event messages:

1635968888138 BUGLE_P2P_SUGGESTION suggestionEventType: REQUEST
1635968888460 BUGLE_MESSAGE bugleMessageStatus: RECEIVED sha256HashMsg: "
247836537599431109" sha256HashPrevMsg: "200428458475182371"
1635968888685 BUGLE_P2P_SUGGESTION suggestionEventType: RECEIVED_MESSAGE
1635968890295 BUGLE_NOTIFICATION
1635968890295 BUGLE_APP appLaunch: VIA_NOTIFICATION
1635968890426 BUGLE_CONTACT_BANNER
1635968890712 BUGLE_MESSAGE bugleMessageStatus: READ

The first BUGLE MESSAGE records the receipt of the mes-
sage. The BUGLE P2P SUGGESTION events record pro-
cessing of the message by the Google suggestions service
(which can suggest links for more information related to a
message, quick replies etc19). The BUGLE APP event records
launch of the app by the user clicking on the message arrival
notification, and the final BUGLE MESSAGE event records
the fact that the received message has been displayed.
2) CARRIER SERVICES log source: On the receiving hand-
set the phone number of the SMS sender is transmitted to
Google via the Google Play Services CARRIER SERVICES
log source, e.g.

timestamp: 1635968888300
event {
<...>
packageVersionName: "10.0.014 (Isengard_RC01.phone_dynamic)"
<...>

incomingPhoneNumber: "+353872...351"
<...>
}

The packageVersionName value is the version name of
Google Messages app. When a pair of handsets engage in
a back-and-forth exchange of SMS messages, each handset
sends the phone number of the other to Google via the
CARRIER SERVICES log source. Identifying a pair of com-
municating handsets (which is feasible, see below) therefore
allows the phone numbers of both phones to be discovered.
3) Google Analytics Event Logging: On the handset sending
a text an event message is sent to Google Analytics to record
this, e.g.20:

1635968887562 data_str: "ConversationActivity" event_code: "ACTIVE_EVENT"
package_name: "com.google.android.apps.messaging"
google_ad_id: "916c714a-e838-479d-a7a6-3325d838da5f"
firebase_instance_id: "eVpvvohEDCqhfIGC7pXLnv"

On the receiving handset a corresponding event message is
also sent to Google Analytics, e.g.

1635968894940 data_str: "ConversationActivity" event_code: "ACTIVE_EVENT"
package_name: "com.google.android.apps.messaging"
google_ad_id: "0fcb9970-3c60-426d-8186-452793942752"
firebase_instance_id: "fkT8O_dZhqxcNAfYucplGA"

These Google Analytics event messages act to link the SMS
message exchange to the Google Advertising IDs of the
handsets, and so to other advertising-related data held by

19https://support.google.com/messages/answer/9265111?hl=en
20Each event message is similar to that in Figures 10 and 11 but to save

space we just show selected values from each message

0 500 1000 1500 2000 2500

logged event time (s)

0

0.5

1

1.5

2
Phone 1 (Sending text)

Phone 2 (Receiving text

Fig. 13: Example of Google Messages log entry timestamps
on a pair of communicating handsets. The x-axis is the logged
event timestamp (rescaled from milliseconds to seconds and
offset so the first entry has timestamp 0).

Google and also potentially to third parties (recent measure-
ments reveal that, for example, Samsung, Xiaomi, Realme and
Microsoft all silently log handset data tagged with the Google
Advertising ID via pre-installed system apps [4]).
4) Using Timing To Identify Pairs Of Communicating Hand-
sets: When the sender and receiver in a text conversation
are both using Google Messages, then the time when the
message was sent and the time when it was received are
both sent to Google via the above event logging messages.
This information can potentially be used to identify pairs of
handsets engaged in an SMS text conversation. For example,
Figure 13 shows the send and receive times sent to Google by
a pair of handsets as a sequence of SMS messages are sent
(at roughly 5 minute, or 300 second, intervals). On modern
cellular networks the delay between sending and receiving a
text is small (about 1 second in this experiment) and so both
handsets log events with similar timestamps. Hence, given log
event timestamp data such as that in Figure 13 it is possible
to infer whether two handsets are communicating.
5) Using Message Hashes To Identify Pairs Of Communi-
cating Handsets: Google Messages also sends to Google a
signature of each message sent/received that uniquely iden-
tifies the message. Observe that the sha256HashMsg and
sha256HashPrevMsg values logged by the sender and
receiver in the above measurements are the same.

The sha256HashMsg value is derived from the SHA256
hash of the time, in hours since 1st Jan 1970, when the
message was sent/received concatenated with the message
content i.e the message text. This SHA256 hash is 32 bytes
long, the lower 8 bytes are converted to a long int and then
to a decimal string, which gives the sha256HashMsg value.
Pseudo-code for the hash calculation is as follows:

1 byte[] bytes1 = String.valueOf(timestamp_ms / TimeUnit.HOURS.toMillis(1)).
getBytes("UTF-8")

2 byte[] bytes2 = messageText.getBytes("UTF-8")
3 byte[32] hash1 = SHA256(concat(bytes2, bytes1))
4 long hash2 = (long) (hash1[0] & 255)
5 for (i=1; i<8; i_++) {
6 hash2 |= ((long) hash1[i] & 255) << (i*8)
7 }
8 return String.valueOf(hash2)

https://support.google.com/messages/answer/9265111?hl=en


12

User Interaction ANDROID MESSAGING Events Recorded
Open app by (i) clicking
icon, (ii) clicking message
notification

BUGLE APP
VIA LAUNCH ICON,
VIA NOTIFICATION

Message create, read BUGLE MESSAGE
CREATED, READ

View a conversation BUGLE CONVERSATION
Enter text in search box BUGLE SEARCH

SEARCHBOX,
FILTER CLICKED,
SEARCH QUERY

View home screen HOME SCREEN
Contact: view, add, delete BUGLE CONTACTS EVENT

TABLE II: ANDROID MESSAGING events observed record-
ing user interactions with Google Messages app. When an
event is recorded, the time, event name and relevant app/mes-
sage information (e.g. conversation ID) are sent to Google.
Events are tagged with the handset AndroidID.

The sha256HashPrevMsg value is the hash for the previ-
ous message sent/received in the conversation.

These sha256HashMsg and sha256HashPrevMsg val-
ues therefore act to uniquely identify the SMS messages sent.
Identifying whether a pair of handsets using Google Messages
are communicating therefore simply involves comparing the
sha256HashMsg values sent by both handsets to Google.

We note that these hash values are not suitable for spam pre-
vention since they contain the send/receive timestamp and so
spam messages received at different times will have different
hash values even though the message text is the same. Rather
they seem crafted in way that facilitates linking both ends
of a message exchange. We note also that the code where
the hash values are calculated contains the descriptive text
“E2EChatIntegrityMetricsHelperImpl”. “E2E” is a commonly
used technical abbreviation for “end-to-end” which is also
suggestive that the purpose of the hashes is the linking of
the two ends of a message exchange.

C. Interacting With Messages App

When a user interacts with the Google Message app, their
actions are recorded and sent to Google both via the Google
Play Services ANDROID MESSAGING log source and via
Google Analytics. Table II lists the events recording user
interactions via ANDROID MESSAGING that we observed
in our measurements. The event names, which are extracted
from the app itself and so are Google’s own, are largely
self-explanatory and include opening of the app, composing
and reading a message, viewing a conversation (message
exchanges between the same pair of handsets), entering text
in the app search bar (where phone numbers, contact names
etc are entered), navigating to the app home screen. Table III
lists the events recording user interactions that we observed
sent via Google Analytics. Events generally record the activity
name (an activity being a screen within the app e.g. the
HomeActivity is the main screen in the app), the time of the
event and the duration.

We note that entering text (a phone number, contact name
etc) in the app search bar is observed to generate logging of a

User Interaction Google Analytics Event
View an app screen HomeActivity, ConversationActivity, Ze-

roStateSearchActivity, PeopleAndOption-
sActivity, ApplicationSettingsActivity,
SpamSettingsActivity, SmartsSettingsAc-
tivity, FederatedLearningSettingsActivity,
AboutPrivacyTermsActivity

Send/receive a message ACTIVE EVENT

TABLE III: Google Analytics events observed recording user
interactions with Google Messages app. When an event is
recorded, the time, event name and duration are sent to Google.
Events are tagged with the Google Advertising ID and app
FirebaseID (which is linked to the handset AndroidID).

cascade of internal Google Play Services events, including via
the ICING and AUTOFILL WITH GOOGLE Google Play
Services log sources. However, we leave decoding of this data
sent to Google to future work.

D. Viewing App Privacy Policy

As already noted, viewing the privacy policy of the Google
Messages app is not straightforward. It is necessary to: (i)
click on the three dots in search bar to open the Settings menu,
(ii) scroll down to see an ”About, terms and privacy” link
(see Figure 3(a)), (iii) click on this to open a new menu that
shows a “Privacy Policy” link, (iv) click on this link which
opens a Google Chrome window. At this point, to proceed
it is necessary to agree to the Google Chrome terms and
conditions, see Figure 3(b). It is not possible to proceed to
view the Messages app privacy policy without first agreeing
to the additional Google Chrome terms and conditions.

At this point the Messages app silently sends messages to
Google Analytics https://app-measurement.com/a logging the
fact that the page with the privacy policy link has been viewed,
e.g.

event_info {
setting_code: "_pc" // firebase_previous_class
data_str: "AboutPrivacyTermsActivity"

}
event_code: "_vs" // screen_view
event_timestamp: 1636311111608
}
package_name: "com.google.android.apps.messaging"
google_ad_id: "916c714a-e838-479d-a7a6-3325d838da5f"
firebase_instance_id: "eVpvvohEDCqhfIGC7pXLnv"

Agreeing to the Google Chrome terms and conditions loads
the page at http://www.google.com/intl/en IE/policies/privacy/
which redirects to https://policies.google.com/privacy?hl=en&
gl=IE. During the loading of this page (i) 20 connec-
tions are made to www.youtube-nocookie.com/youtubei/v1/
log event sending what appears to be telemetry, (ii) a con-
nection is made to download https://www.google-analytics.
com/analytics.js, (iii) and then connections are made to www.
google-analytics.com/j/collect, stats.g.doubleclick.net/j/collect
and https://play.google.com/log:

https://app-measurement.com/a
http://www.google.com/intl/en_IE/policies/privacy/
https://policies.google.com/privacy?hl=en&gl=IE
https://policies.google.com/privacy?hl=en&gl=IE
www.youtube-nocookie.com/youtubei/v1/log_event
www.youtube-nocookie.com/youtubei/v1/log_event
https://www.google-analytics.com/analytics.js
https://www.google-analytics.com/analytics.js
www.google-analytics.com/j/collect
www.google-analytics.com/j/collect
stats.g.doubleclick.net/j/collect
https://play.google.com/log


13

POST https://www.google-analytics.com/j/collect?v=1&_v=j93&a=1137820265&t=
pageview&_s=1&dl=https://policies.google.com/privacy&dr=http://www.google.com
/&ul=en-ie&de=UTF-8&dt=Privacy Policy - Privacy & Terms - Google&sd=24-bit&sr
=412x732&vp=412x604&je=0&_u=YEBAAEABAAAAAC &jid=2016745238&gjid=857776913&cid
=1233068479.1636311067&tid=UA-28138501-1&_gid=1044709367.1636311067&_r=1&_slc
=1&z=1504113415
Headers

referer: https://policies.google.com/

POST https://stats.g.doubleclick.net/j/collect?t=dc&aip=1&_r=3&v=1&_v=j93&tid=
UA-28138501-1&cid=1233068479.1636311067&jid=2016745238&gjid=857776913&_gid
=1044709367.1636311067&_u=YEBAAEAAAAAAAC &z=1415398462
Headers

x-client-data: COznygE=
referer: https://policies.google.com/

POST https://play.google.com/log?format=json&hasfast=true
Headers

x-client-data: COznygE=
referer: https://policies.google.com/

<post body appears to be telemetry>

VI. RESULTS: GOOGLE DIALER

A. Making/Receiving A Phone Call

We now present measurements when making a phone calls
between two handsets using Google Dialer with the Caller
and Spam ID option disabled. When this option is enabled
additional event messages are sent to Google, but we will
describe these later.
1) ANDROID MESSAGING log source: On the handset ini-
tiating the phone call we observe, for example, the following
sequence of event messages sent by the Google Dialer via the
Google Play Services ANDROID DIALER log source21:

1635969033382 MAIN_CLICK_FAB_TO_OPEN_DIALPAD
1635969034630 searchQuery
1635969039257 queryLength: 1
1635969039478 queryLength: 2
1635969039881 queryLength: 3
1635969041305 queryLength: 4
1635969041680 queryLength: 5
1635969042060 queryLength: 6
1635969044085 queryLength: 7
1635969044556 queryLength: 8
1635969044906 queryLength: 9
1635969045359 queryLength: 10
1635969064139 PRECALL_INITIATED
1635969065267 TIDEPODS_STATUS_BAR_NOTIFICATION_SHOWED
1635969065297 TIDEPODS_BUBBLE_SHOWED
1635969085622 SCOOBY_CALL_LOG_SPAM_DISABLED
1635969085622 USER_PARTICIPATED_IN_A_CALL callDuration: 12344
1635969085720 ANNOTATED_CALL_LOG_FORCE_REFRESH_CHANGES_NEEDED
1635969085868 ANNOTATED_CALL_LOG_FORCE_REFRESH_NO_CHANGES_NEEDED
1635969085918 ANNOTATED_CALL_LOG_NOT_DIRTY

To make the call the dialpad in the app is
opened and the phone number typed. The
MAIN CLICK FAB TO OPEN DIALPAD event records
opening of the dialpad, the next sequence of SearchQuery
event messages record each individual keypess as the
phone number is typed, and also the timing of these
keypresses. The PRECALL INITIATED event through
to the TIDEPODS BUBBLE SHOWED record the
internal process of initating the call over the phone
network and displaying the in-call user interface. The
USER PARTICIPATED IN A CALL event records the
termination of the call and, amongst other things, sends
the call duration to Google (the value is in milliseconds so
a value of 12344 corresponds to a call of 12.344 seconds
duration). The last three CALL LOG events record internal
actions associated with updating the handset call log.

At the receiving handset we observe the following correspond-
ing sequence of event messages:

21Each event message is similar to that in Figures 8 and 9 but to save space
we just show selected values from each message

1635969070066 CALL_SCREENING_SERVICE_MUSIC_IS_NOT_ACTIVE
1635969070096 INCOMING_CALL_SCREENED
1635969070639 TIDEPODS_BUBBLE_SHOWED
1635969070644 TIDEPODS_STATUS_BAR_NOTIFICATION_SHOWED
1635969072226 TIDEPODS_STATUS_BAR_NOTIFICATION_ANSWER
1635969085350 SCOOBY_CALL_LOG_SPAM_DISABLED
1635969085350 USER_PARTICIPATED_IN_A_CALL callDuration: 12865
1635969085483 ANNOTATED_CALL_LOG_FORCE_REFRESH_CHANGES_NEEDED

The first events record call screening, displaying a notification
to the user that here is an incoming call and the user pressing
the answer button. The USER PARTICIPATED IN A CALL
event records the termination of the call and sends the call
duration to Google. Note the close match in the call durations
recorded by the sender and receiver i.e. 12.344 seconds and
12.865 seconds respectively. Presumably the small difference
of 0.52 seconds is due to the telephone network delay between
one phone hanging up and the other phone being informed of
this.
2) Google Analytics Event Logging: On the handset initiating
the phone call an event message is sent to Google Analytics
to record this, e.g.

data_str: "LegacyInCallActivity" event_code: "OUTGOING_CALL_PLACED"
package_name: "com.google.android.dialer"
google_ad_id: "916c714a-e838-479d-a7a6-3325d838da5f"
firebase_instance_id: "f86VDMH_SSGcArMl6Up973"

At the receiving handset the incoming call is also logged to
Google Analytics:

data_str: "LegacyInCallActivity" event_code: "INCOMING_CALL_RECEIVED"
package_name: "com.google.android.dialer"
google_ad_id: "0fcb9970-3c60-426d-8186-452793942752"
firebase_instance_id: "cyoEhnfBQtChaUDlrYRfYB"

These Google Analytics event messages act to link the phone
call to the Google Advertising ID of the sender handsets, and
so to other advertising-related data held by Google and also
potentially to third parties.
3) Identifying Pairs Of Communicating Handsets: When the
caller and receiver in a phone conversation are both using the
Google Dialer, then the time when the time the call ended and
the call duration are both sent to Google via the above event
logging messages. This information can potentially be used
to identify pairs of handsets engaged in phone conversations.
For example, Figure 14 shows the call times and durations
sent to Google by a pair of handsets as they engage in a
sequence of phone calls (at roughly 5 minute, or 300 second,
intervals). Clearly, by comparing the pattern of call times and
call durations on a pair of handsets it is possible to infer
whether two handsets are communicating.
4) Caller and Spam ID Enabled: When the Caller and Spam
ID option is enabled we observe additional events sent to
Google via the Google Play Services SCOOBY EVENTS log
source (Scooby in the internal name for the spam scanning
service). For example:

timestamp: 1635013551317
event {
1 {
packageName: "Dialer"
packageVersionName: "70.05.401408800"
incomingPhoneNumber: "+353872...351"
<...>

}

The packageVersionName value is the version name
of Google Dialer app. Note that this SCOOBY EVENTS
message is sent every time a call is received and even if



14

0 500 1000 1500 2000 2500

logged event time (s)

0

10

20

30

40

50

60

lo
g

g
e

d
 c

a
ll 

d
u

ra
ti
o

n
 (

s
)

Phone 1 (Making call)

Phone 2 (Receiving call

Fig. 14: Example of Google Dialer log entries on a pair
of communicating handsets. The x-axis is the logged event
timestamp (rescaled from milliseconds to seconds and offset
so the first entry has timestamp 0), the y-axis is the logged
callDuration value (again rescaled from milliseconds to sec-
onds).

the phone number is in the handset contacts database. When
a pair of handsets engage in a back-and-forth phone calls
and both have the Caller and Spam ID option enabled, then
each handset sends the phone number of the other to Google
via the SCOOBY EVENTS log source. Identifying a pair
of communicating handsets (which seems feasible based on
the data we observe to be collected by Google, see above)
therefore allows the phone numbers of both phones to be
discovered.

B. Interacting With Dialer App

Similarly to Google Messages, when a user interacts with
the Google Dialer app, their actions are recorded and
sent to Google both via the Google Play Services AN-
DROID DIALER log source and via Google Analytics. Ta-
ble IV lists the events recording user interactions via AN-
DROID DIALER that we observed in our measurements. App
screens viewed are also logged via Google Analytics.

C. Viewing App Privacy Policy

The Google Dialer does not appear to have any app privacy
policy link. The only privacy policy link that we could find was
by following these steps: (i) click on the three dots in search
bar to open ta menu, (ii) click on the ”Help and feedback”
to open the Support page, (iii) click on the three dots at the
top right of the Support page to open a new menu, (iv) click
on the ‘Privacy Policy” link that is revealed but this privacy
policy appears to be associated with the Support page rather
than the Dialer app. As with the Google Messages app this
process opens a Google Chrome window and it is necessary to
agree to the additional Google Chrome terms and conditions
in order to proceed. The user eventually arrives at the web
page http://www.google.com//policies/privacy/ which redirects
to https://policies.google.com/privacy. This is Google’s global
privacy policy page, with no app specific information and not
localised to Europe/Ireland (unlike for the Messages app).

User
Interaction

ANDROID MESSAGING Events Recorded

Start/finish a
phone call

PRECALL INITIATED,
USER DID NOT PARTICIPATE IN CALL,
USER PARTICIPATED IN CALL

Answer call TIDEPODS STATUS BAR NOTIFICATION ANSWER
Open
dialpad

MAIN CLICK FAB TO OPEN DIALPAD

Hang up IN CALL DIALPAD HANG UP BUTTON PRESSED
Search for
contact, type
a phone
number

MAIN CLICK SEARCH BAR, searchQuery

View
contacts

MAIN SWITCH TAB TO CONTACTS

View
favourites

MAIN SWITCH TAB TO FAVORITE,
MAIN OPEN WITH TAB FAVORITE

View call log MAIN SWITCH TAB TO CALL LOG,
CALL LOG LAUNCHED,
CALL LOG SHOW POPUP MENU, closeCallLog

Open menu MAIN TOOLBAR SHOW MENU
View call
history

MAIN TOOLBAR MENU OPEN CALL HISTORY

TABLE IV: ANDROID DIALER observed events recording
user interactions with Google Dialer app. When an event
is recorded, the time, event name and relevant app/message
information are sent to Google. Events are tagged with the
handset AndroidID.

During this process a number of requests are made to
www.google.com/tools/feedback/mobile, presumably associ-
ated with pre-loading Support page data. Some of the re-
sponses set a cookie but these appear to be scrubbed since
they are not resent in later requests. Similarly to the Google
Messages app, loading the privacy policy page prompts mul-
tiple connections to www.youtube-nocookie.com/youtubei/v1/
log event sending what appears to be telemetry, and to
www.google-analytics.com/j/collect, stats.g.doubleclick.net/j/
collect.

VII. LACK OF ANONYMITY

The data logging that we report here is, for many people, not
anonymous since it can be directly linked to their online and
real-world identities. This can happen in several ways:

A. Android ID

All of the events recorded via the Google Play Services
Clearcut logger are tagged with the handset’s Android ID.

Via the data that is regularly sent to https://android.googleapis.
com/checkin by Google Play Services the handset Android
ID is linked to (i) the handset hardware serial number, (ii)
the SIM IMEI (which uniquely identifies the SIM slot) and
(iii) the user’s Google account, see Section III-D. Via the data
sent when a SIM is inserted the Android ID is also linked to
the SIM serial number/ICCID, which uniquely identifies the
SIM card, see Section V-A. By making a request using https:
//takeout.google.com/ for the data associated with the Google
user account used in our tests we further confirmed that the
device Android ID is linked with the user Google account and
device/SIM identifiers. Namely, the data reported under the
heading “Android Device Configuration Service” includes the

http://www.google.com//policies/privacy/
https://policies.google.com/privacy
www.google.com/tools/feedback/mobile
www.youtube-nocookie.com/youtubei/v1/log_event
www.youtube-nocookie.com/youtubei/v1/log_event
www.google-analytics.com/j/collect
stats.g.doubleclick.net/j/collect
stats.g.doubleclick.net/j/collect
https://android.googleapis.com/checkin
https://android.googleapis.com/checkin
https://takeout.google.com/
https://takeout.google.com/


15

Android ID for each handset used as well as the handset serial
number, SIM IMEI, last IP address used and mobile operator
details.

When creating a Google account it is necessary to supply a
phone number on which a verification text can be received. For
many people this will be their own phone number22, thereby
linking their Google account to their phone number. Use of
Google services such as buying a paid app on the Google Play
store or using Google Pay further links a person’s Google
account to their credit card/bank details. A user’s Google
account, and so the Android ID, can therefore commonly be
expected to be linked to the person’s real identity.

Additionally, when a message is received by the Google
Messages app the sender’s phone number is sent to Google
via the Google Play Services Clearcut logger, see Section
V-B2. By combining data from the pair of handsets involved
in an exchange of messages (which seems perfectly feasible
based on the hashes of the message text that we observe to be
collected) both phone numbers may be revealed and linked to
the Android IDs. Similarly when the spam protection option is
enabled in the Google Dialer (as it is by default), see Section
VI-A4.

The value of the Android ID can be changed, but this requires
carrying out a full factory reset of the handset. Further, unless
the handset, SIM card and Google account are also changed
at the same time then the new Android ID value can be easily
relinked to the handset/SIM/user via the data sent to Google
by Google Play Services, as already noted.

B. Google Advertising ID

All of the events recorded via Google Analytics are tagged
with the user’s Google Advertising ID and the sender app’s
Firebase ID. The app Firebase ID is directly linked to
the handset Android ID when the app registers to use the
Google Analytics service, see Section III-E1, and so to the
handset/SIM/user. The Google Advertising ID is used to
link together other data collected by Google for advertising
purposes and and also potentially by third parties (recent
measurements reveal that, for example, Samsung, Xiaomi,
Realme and Microsoft all silently log handset data tagged with
the Google Advertising ID via pre-installed system apps [4]).
Depending on the advertising-related data collected (e.g. if
payment/purchase or account data is collected), this can lead
to the Google Advertising ID becoming de-anonymised.

The Google Advertising ID can be reset by the handset user,
but this needs to be done manually and so is probably an
infrequent occurence.

C. Handset Phone Number

When a message is received by the Google Messages app the
sender’s phone number is sent to Google, see Section V-B2.

22While it is possible to use online services that use a shared phone number
to temporarily receive texts, or to buy a scratch SIM that is later discarded,
in practice it seems unlikely that many people would take such steps.

By combining data from the pair of handsets involved in an
exchange of messages both phone numbers are therefore re-
vealed. Similarly, when the spam protection option is enabled
in the Google Dialer (as it is by default), see Section VI-A4

VIII. SUMMARY

We report on measurements of the data sent to Google by the
Google Messages and Google Dialer apps on an Android hand-
set. We find that these apps tell Google when message/phone
calls are made/received. The data sent by Google Messages
includes a hash of the message text, allowing linking of sender
and receiver in a message exchange, and by Google Dialer
the call time and duration, again allowing linking of the two
handsets engaged in a phone call. Phone numbers are also
sent to Google. In addition, the timing and duration of user
interactions with the apps are sent to Google. There is no
opt out from this data collection. The data is sent via two
channels, the Google Play Services (i) Clearcut logger and (ii)
Google/Firebase Analytics. This study is therefore one of the
first to cast light on the actual telemetry data sent by Google
Play Services, which to date has largely been opaque.

REFERENCES

[1] “Google Safe Browsing API (v4),” 2020. [Online]. Available: https:
//developers.google.com/safe-browsing/v4

[2] D. J. Leith, “Web Browser Privacy: What Do Browsers Say When They
Phone Home?” IEEE Access, 2021.

[3] ——, “Mobile Handset Privacy: Measuring The Data iOS and Android
Send to Apple And Google,” in Proc Securecomm, 2021.

[4] H. Liu, P. Patras, and D. J. Leith, “Android Mobile OS Snooping By
Samsung,Xiaomi, Huawei and Realme Handsets,” in SCSS Tech Report,
Oct 2021, 2021. [Online]. Available: https://www.scss.tcd.ie/doug.leith/
Android privacy report.pdf

[5] D. J. Leith and S. Farrell, “Contact Tracing App Privacy: What Data
Is Shared By Europe’s GAEN Contact Tracing Apps,” in Proc IEEE
INFOCOM, 2021.

[6] A. Cortesi, M. Hils, T. Kriechbaumer, and contributors, “mitmproxy: A
free and open source interactive HTTPS proxy (v5.01),” 2020. [Online].
Available: https://mitmproxy.org/

[7] “Learn about the Android Device Configuration Service, Google
Help Pages,” Accessed 5 August 2020. [Online]. Available: https:
//support.google.com/android/answer/9021432?hl=en

https://developers.google.com/safe-browsing/v4
https://developers.google.com/safe-browsing/v4
https://www.scss.tcd.ie/doug.leith/Android_privacy_report.pdf
https://www.scss.tcd.ie/doug.leith/Android_privacy_report.pdf
https://mitmproxy.org/
https://support.google.com/android/answer/9021432?hl=en
https://support.google.com/android/answer/9021432?hl=en

	Introduction
	Mitigations
	How To Find Which Dialer and Message Apps Are Installed
	Tracker-Free Alternatives

	GDPR
	Lack of Anonymity
	No Consent
	Legitimate Interest

	Lack of App-Specific Privacy Policy
	Google Messages
	Google Dialer

	Recommendations to Google
	Response From Google

	Related Work
	The Challenge of Seeing What Data Is Sent
	Decrypting HTTPS Connections
	Google Play Services Telemetry
	Decoding Google Play Services Clearcut Logger Data
	Decoding Google Play Services /checkin Message
	Decoding Google/Firebase Analytics Event Logging
	Registering App With Google/Firebase Analytics
	Google/Firebase Analytics Event Logging

	Reconstructed Protobuf Definitions and Decoding Software

	Experimental Setup
	Hardware and Software Used
	Device Settings
	Test Design

	Results: Google Messages
	Inserting SIM
	Sending/Receiving An SMS Message
	ANDROID_MESSAGING log source
	CARRIER_SERVICES log source
	Google Analytics Event Logging
	Using Timing To Identify Pairs Of Communicating Handsets
	Using Message Hashes To Identify Pairs Of Communicating Handsets

	Interacting With Messages App
	Viewing App Privacy Policy

	Results: Google Dialer
	Making/Receiving A Phone Call
	ANDROID_MESSAGING log source
	Google Analytics Event Logging
	Identifying Pairs Of Communicating Handsets
	Caller and Spam ID Enabled

	Interacting With Dialer App
	Viewing App Privacy Policy

	Lack Of Anonymity
	Android ID
	Google Advertising ID
	Handset Phone Number

	Summary
	References

