Machine Learning Workflow

- Choose Features
- Select Model
- Train Model
- Test Model
- Business Application

Often bulk of effort

What really matters
Model: \(\hat{y} = h_\theta(x) \)

- \(\hat{y} \) is prediction
- \(x \) are input features
- \(h_\theta(x) \) is the model → a model; is a function mapping from input features \(x \) to a prediction.
 - Input features \(x \) is a vector of real numbers
 - Prediction \(h_\theta(x) \) is a real number (regression) or an integer (classification)
- \(\theta \) are model parameters

So far we’ve looked at linear models

- \(\hat{y} = \theta^T x \) (regression)
- \(\hat{y} = \text{sign}(\theta^T x) \) (classification)

... but other sorts of model are possible.
When first looking at a machine learning task linear and logistic regression should generally be your first port of call:

- Use linear models
- Add nonlinearity via feature engineering
- Easy and fast to train \rightarrow cost function is convex in parameters.
- Scale well, can be used with pretty big data.
- Interpretable, sort of:
 - Magnitude of parameter θ_j tells how important the j’th input feature is (if θ_j very small maybe can delete j’th feature)
 - Sign of θ_j tells whether prediction tends to increase/decrease with j’th feature.
 - ... this assumes j’th feature itself has a reasonable interpretation
- SVMs and logistic regression generally perform much the same
We can directly use the training data to make predictions:
k-Nearest Neighbour (kNN) Model

- **Training data** \((x^{(i)}, y^{(i)}), i = 1, 2, \ldots, m\)**
- **Given feature vector** \(x\):
 1. For each training data point \(i\) calculate the distance \(d(x^{(i)}, x)\) between feature vector \(x^{(i)}\) and \(x\)
 2. Select the \(k\) training data points that are closest to \(x\) i.e. for which \(d(x^{(i)}, x)\) is smallest
 * ... the \(k\) nearest neighbours
 3. Predict output \(y\) using the outputs \(y^{(i)}\) for these \(k\) closest training points.
 * In a classification problem e.g. take majority vote (if \(k = 3\) and two closest training points have label \(+1\) and other has label \(-1\) then predict \(+1\)).
 * In a regression problem e.g. calculate the average of the \(y^{(i)}\) for the \(k\) closest training points and use that as prediction

- **kNN makes predictions based directly on the training data → an example of an instance-based model**
A \(k \)-NN model needs four things to be specified:

1. A distance metric. Typically Euclidean:
\[
d(x^{(i)}, x) = \sqrt{\sum_{j=1}^{n} (x^{(i)}_j - x_j)^2}
\]

2. Number \(k \) of neighbours to use. E.g. \(k = 5 \) (select this using cross-validation)

3. Weighting of neighbour points. E.g. uniform \(w^{(i)} = 1 \) or Gaussian
\[
w^{(i)} = e^{-\gamma d(x^{(i)}, x)^2}
\]
(attach less weight to training points that are further away from query point \(x \)).

4. Method for aggregating the \(k \) neighbour points \(N_k \)
 - Classification: \(\text{sign} \left(\frac{\sum_{i \in N_k} w^{(i)} y^{(i)}}{\sum_{i \in N_k} w^{(i)}} \right) \) (majority vote when \(w^{(i)} = 1 \))
 - Regression: weighted mean \(\hat{y} = \frac{\sum_{i \in N_k} w^{(i)} y^{(i)}}{\sum_{i \in N_k} w^{(i)}} \)
Recall kNN Model

Impact of weighting:

- Suppose input is $x = 1$ (just a scalar). Three nearest neighbours are $x^{(1)} = 0.5$, $x^{(2)} = 0.75$, $x^{(1)} = 3$

- Distances are $d(x^{(1)}, x) = \sqrt{(0.5 - 1)^2} = 0.5$, $d(x^{(2)}, x) = \sqrt{(0.75 - 1)^2} = 0.25$, $d(x^{(3)}, x) = \sqrt{(3 - 1)^2} = 2$

- Uniform weights
 - $w^{(1)} = 1$, $w^{(2)} = 1$, $w^{(3)} = 1$
 - $\sum_{i \in N_k} w^{(i)} y^{(i)} = \frac{y^{(1)} + y^{(2)} + y^{(3)}}{3} = \frac{1 + 1 - 1}{3} = 0.66$. Predict +1

- Gaussian weights. Suppose $\gamma = 1$.
 - $w^{(1)} = e^{-0.5^2} = 0.78$, $w^{(2)} = e^{-0.25^2} = 0.94$, $w^{(1)} = e^{-2^2} = 0.02 \rightarrow$ higher weight on training points close to x.
 - $\sum_{i \in N_k} w^{(i)} y^{(i)} = \frac{0.78 \times 1 + 0.94 \times 1 + 0.02 \times (-1)}{1.74} = 0.98$. Predict +1
k-Nearest Neighbour (kNN) Model

Classification example:

- 1) Euclidean distance, 2) (i) $k = 3$ and (ii) $k = 7$, 3) uniform weights, 4) majority vote

- Note: even though it’s based on the training data, the kNN model is still just a function from input features x to prediction $+1$ or -1

- Increasing k will tend to smooth out the function, decreasing k to make it more complex

 - Increasing k tends to cause under-fitting, decreasing k to cause over-fitting. Choose k by cross-validation.
Regression example:

- 1) Euclidean distance
- 2) (i) $k = 3$ and (ii) $k = 7$
- 3) uniform weights
- 4) weighted average

Increasing k will tend to smooth out the function, decreasing k to make it track the training data points more closely (i.e. fit the “noise”).
* 1) Euclidean distance, 2) \(k = 7 \), 3) Gaussian weights \(e^{-\gamma d(x^{(i)}, x)^2} \), 4) weighted average

* Decreasing \(\sigma \) tends to smooth out the function, increasing \(\gamma \) to make it rougher. Choose \(\gamma \) and \(k \) using cross-validation.
import numpy as np
m = 25
Xtrain = np.linspace(0.0, 1.0, num=m)
ytrain = np.sign(Xtrain−0.5+np.random.normal(0,0.2,m))
Xtrain = Xtrain.reshape(-1, 1)
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=3,weights='uniform').fit(Xtrain, ytrain)

Xtest=np.linspace(0.0,1.0,num=1000).reshape(-1, 1)
ypred = model.predict(Xtest)
import matplotlib.pyplot as plt
plt.rc('font', size=18); plt.rcParams['figure.constrained_layout.use'] = True
plt.scatter(Xtrain, ytrain, color='red', marker='+')
plt.plot(Xtest, ypred, color='green')
plt.xlabel("input x"); plt.ylabel("output y")
plt.legend(["predict","train"])
plt.show()

model = KNeighborsClassifier(n_neighbors=7,weights='uniform').fit(Xtrain, ytrain)
ypred = model.predict(Xtest)
plt.scatter(Xtrain, ytrain, color='red', marker='+')
plt.plot(Xtest, ypred, color='green')
plt.xlabel("input x"); plt.ylabel("output y")
plt.legend(["predict","train"])
plt.show()
import numpy as np

m = 25
Xtrain = np.linspace(0.0, 1.0, num=m)
ytrain = 10*Xtrain + np.random.normal(0.0, 1.0, m)
Xtrain = Xtrain.reshape(-1, 1)

from sklearn.neighbors import KNeighborsRegressor
model = KNeighborsRegressor(n_neighbors=3, weights='uniform').fit(Xtrain, ytrain)

Xtest = np.linspace(0.0, 1.0, num=1000).reshape(-1, 1)
ypred = model.predict(Xtest)

import matplotlib.pyplot as plt
plt.rc('font', size=18); plt.rcParams['figure.constrained_layout.use'] = True
plt.scatter(Xtrain, ytrain, color='red', marker='+')
plt.plot(Xtest, ypred, color='green')
plt.xlabel("input x"); plt.ylabel("output y"); plt.legend(["predict", "train"])
plt.show()

model2 = KNeighborsRegressor(n_neighbors=7, weights='uniform').fit(Xtrain, ytrain)
ypred2 = model2.predict(Xtest)
plt.scatter(Xtrain, ytrain, color='red', marker='+')
plt.plot(Xtest, ypred2, color='blue')
plt.xlabel("input x"); plt.ylabel("output y"); plt.legend(["predict", "train"])
plt.show()
def gaussian_kernel100(distances):
 weights = np.exp(-100*(distances**2))
 return weights/np.sum(weights)

def gaussian_kernel1000(distances):
 weights = np.exp(-1000*(distances**2))
 return weights/np.sum(weights)

def gaussian_kernel10000(distances):
 weights = np.exp(-10000*(distances**2))
 return weights/np.sum(weights)

model2 = KNeighborsRegressor(n_neighbors=7,weights=gaussian_kernel100).fit(Xtrain, ytrain)
ypred2 = model2.predict(Xtest)
model3 = KNeighborsRegressor(n_neighbors=7,weights=gaussian_kernel1000).fit(Xtrain, ytrain)
ypred3 = model3.predict(Xtest)
model4 = KNeighborsRegressor(n_neighbors=7,weights=gaussian_kernel10000).fit(Xtrain, ytrain)
ypred4 = model4.predict(Xtest)
plt.scatter(Xtrain, ytrain, color='red', marker='+')
plt.plot(Xtest, ypred2, color='blue')
plt.plot(Xtest, ypred3, color='orange')
plt.plot(Xtest, ypred4, color='green')
plt.xlabel("input x"); plt.ylabel("output y")
plt.legend(["k=7,sigma=100", "k=7,sigma=1000", "k=7,sigma=10000", "train"])}
plt.show()
• Easy to use → only parameter is k.
• Need to choose distance function and any weighting with distance, but standard choices (Euclidean distance, uniform or Gaussian weighting) often work well
• Small data only → each prediction requires a search over training data to find k nearest neighbours, this becomes expensive/slow when there is a lot of training data
- Model uses if-then rules e.g. if $X > 0.771$ then predict class $+1$
- Constructs tree of rules, leaves of tree are the $+1$ or -1 predictions.

Example:

Note: even though it’s based on if-then rules model is still just a function from input features x to prediction $+1$ or -1.
Decision Tree Classifiers

- Control complexity of model by limiting tree depth e.g. if depth restricted to be 1 then will get a single transition between +1 and -1
- → choose tree depth using cross-validation

- Easy to understand when tree is small, but quickly becomes hard as tree gets large (as it usually does).
- Learning tree rules is NP-hard in general, special-purpose algorithms are used (not gradient decent)
- Decision trees often used as an ensemble (a “forest”) since hard to control complexity using just tree depth.
```python
import numpy as np
m = 25
Xtrain = np.linspace(0.0,1.0,num=m)
ytrain = np.sign(Xtrain−0.5+np.random.normal(0,0.2,m))
Xtrain = Xtrain.reshape(−1, 1)
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier().fit(Xtrain, ytrain)

Xtest=np.linspace(0.0,1.0,num=1000).reshape(−1, 1)
ypred = model.predict(Xtest)

import matplotlib.pyplot as plt
from sklearn.tree import export_text
print(export_text(model))
from sklearn.tree import plot_tree
plot_tree(model, fontsize=4, impurity=False, class_names=['−1','+1'])
plt.show()

plt.rc('font', size=18); plt.rcParams['figure.constrained_layout.use'] = True
plt.scatter(Xtrain, ytrain, color='red', marker='+')
plt.plot(Xtest, ypred, color='green')
plt.xlabel("input x"); plt.ylabel("output y")
plt.legend(["predict","train"])
plt.show()

model = DecisionTreeClassifier(max_depth=1).fit(Xtrain, ytrain)
ypred = model.predict(Xtest)

plot_tree(model, fontsize=4, impurity=False, class_names=['−1','+1'])
plt.show()

plt.scatter(Xtrain, ytrain, color='red', marker='+')
plt.plot(Xtest, ypred, color='green')
plt.xlabel("input x"); plt.ylabel("output y")
plt.legend(["predict","train"])
plt.show()
```