Neural Networks

* Linear model: \(\hat{y} = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots \)

* Draw this schematically as:

```
\begin{align*}
  x_0 & \quad \theta_0 \\
  x_1 & \quad \theta_1 \\
  \vdots & \quad \theta_n \\
  x_n & \\
\end{align*}
```

\[\hat{y} \]

* A small generalisation: \(\hat{y} = f(\theta^T x) \) where \(f \) is some function e.g. \(\text{sign} \)

```
\begin{align*}
  x_0 & \quad \theta_0 \\
  x_1 & \quad \theta_1 \\
  \vdots & \quad \theta_n \\
  x_n & \\
\end{align*}
```

\[f \]

\[\hat{y} \]

NB: We first take the weighted sum of the inputs \(x_1, x_2 \) etc and then apply function \(f \) to result.
Multi-Layer Perceptron (MLP)

* To get an MLP we add an extra “layer”. E.g.

\[
\begin{align*}
 z_1 &= f(\theta_{01}^1 x_0 + \theta_{11}^1 x_1 + \cdots + \theta_{n1}^1 x_n) \\
 z_2 &= f(\theta_{02}^1 x_0 + \theta_{12}^1 x_1 + \cdots + \theta_{n2}^1 x_n) \\
 \hat{y} &= g(\theta_1^2 z_1 + \theta_2^2 z_2)
\end{align*}
\]

* MLP is a three layer network: (i) an \textit{input layer}, (ii) a \textit{hidden layer}, (iii) an \textit{output layer}

* Not restricted to just two nodes in hidden layer, can have as many as we like.

* The parameters θ_{01}^1 etc are called \textit{weights}. It quickly gets messy indexing all the weights, often they’re omitted from these schematics

* The function f is called the \textit{activation} function, g is the output function.
Example

- One input, two nodes in hidden layer, activation function is sigmoid $f(x) = g(x) = \frac{e^x}{1+e^x}$.

\[z_1 = f(5x), z_2 = f(2x), \hat{y} = f(z_1 - 2z_2) = f(f(5x) - 2f(2x)) \]

- By varying the number of hidden nodes and the weights the MLP can generate a wide range of functions mapping input x to output \hat{y}.
Choices of Activation & Output Function

* **ReLU (Rectified Linear Unit)**
 \[f(x) = \begin{cases} x & x \geq 0 \\ 0 & x < 0 \end{cases} \]
 - Popular in *hidden layer*. Quick to compute, observed to work pretty well.
 - But can lead to “dead” neurons where output is always zero → leaky ReLU

* **Sigmoid**
 \[g(x) = \frac{e^x}{1+e^x} \]
 - Sigmoid used in *output layer* when output is a probability (so between 0 and 1). For classification problems predict +1 when \(\frac{e^x}{1+e^x} > 0.5 \), −1 when \(\frac{e^x}{1+e^x} < 0.5 \)

* **tanh**
 \[g(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \]
 - Used to be common for hidden layers
 - An output layer alternative for classification tasks
Cost Function & Regularisation

Cost function:

* Typically use logistic loss function for classification problems
* And square loss $\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$ for regression problems
* In both cases the cost function is non-convex in the neural net weights/parameters → non-convexity plus large number of weights/parameters means training a neural net is often slow/hard

Regularisation

* Typically L_2 penalty i.e. the sum of the squared weights/parameters
* Can also use drop outs → randomly setting the outputs of a fraction of nodes in hidden layer to zero at each gradient descent step. But we don’t go into this here.
Movie Review Example

Apply MLP to movie review example. Use cross-validation to select (i) #hidden nodes, (ii) L_2 penalty weight C.

- Performance not too sensitive to #hidden nodes, so choose a small number e.g. 5
 - Ups and downs in plot likely due to failure to find global minimum of cost function (the wiggles change from run to run as initial condition for optimisation changes)
- Performance insensitive to penalty weight C, so long as $C \geq 5$ or thereabouts
Movie Review Example

MLP settings:

- hidden layer has 5 nodes, penalty weight $C = 5$, ReLU activation function

Confusion matrix:

<table>
<thead>
<tr>
<th></th>
<th>predicted positive</th>
<th>predicted negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>true positive</td>
<td>60</td>
<td>5</td>
</tr>
<tr>
<td>true negative</td>
<td>28</td>
<td>67</td>
</tr>
</tbody>
</table>

with $m = 160$ data points (20% test split from full data set of 800 points).

ROC Curve:
```python
import matplotlib.pyplot as plt
plt.rc('font', size=18);plt.rcParams['figure.constrained_layout.use'] = True

crossval=False
if crossval:
    mean_error=[]; std_error=[]
    hidden_layer_range = [5,10,25,50,75,100]
    for n in hidden_layer_range:
        print("hidden layer size %d\n"%n)
        from sklearn.neural_network import MLPClassifier
        model = MLPClassifier(hidden_layer_sizes=(n), max_iter=300)
        from sklearn.model_selection import cross_val_score
        scores = cross_val_score(model, X, y, cv=5, scoring='f1')
        mean_error.append(np.array(scores).mean())
        std_error.append(np.array(scores).std())

plt.errorbar(hidden_layer_range,mean_error,yerr=std_error,linewidth=3)
plt.xlabel('#hidden layer nodes'); plt.ylabel('F1')
plt.show()

mean_error=[]; std_error=[]
C_range = [1,5,10,100,1000]
for Ci in C_range:
    print("C %d\n"%Ci)
    from sklearn.neural_network import MLPClassifier
    model = MLPClassifier(hidden_layer_sizes=(5), alpha = 1.0/Ci)
    from sklearn.model_selection import cross_val_score
    scores = cross_val_score(model, X, y, cv=5, scoring='f1')
    mean_error.append(np.array(scores).mean())
    std_error.append(np.array(scores).std())

plt.errorbar(C_range,mean_error,yerr=std_error,linewidth=3)
plt.xlabel('C'); plt.ylabel('F1')
plt.show()
```
```python
from sklearn.neural_network import MLPClassifier
model = MLPClassifier(hidden_layer_sizes=(5), alpha=1.0/5).fit(Xtrain, ytrain)
preds = model.predict(Xtest)
from sklearn.metrics import confusion_matrix
print(confusion_matrix(ytest, preds))
from sklearn.dummy import DummyClassifier
dummy = DummyClassifier(strategy="most_frequent").fit(Xtrain, ytrain)
ydummy = dummy.predict(Xtest)
predictions = confusion_matrix(ytest, ydummy)

from sklearn.metrics import roc_curve
preds = model.predict_proba(Xtest)
print(model.classes_)
fpr, tpr, _ = roc_curve(ytest, preds[:,1])
plt.plot(fpr,tpr)
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(C=10000).fit(Xtrain, ytrain)
fpr, tpr, _ = roc_curve(ytest, model.decision_function(Xtest))
plt.plot(fpr,tpr,color='orange')
plt.legend(['MLP','Logistic Regression'])
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.plot([0, 1], [0, 1], color='green',linestyle='--')
plt.show()
```
Recall gradient descent to minimise cost function $J(\theta)$:

* Start with some parameter vector θ of size n
* Repeat:

 for $j=0$ to n \{ $\delta_j := -\alpha \frac{\partial J}{\partial \theta_j}(\theta)$ \}

 for $j=0$ to n \{ $\theta_j := \theta_j + \delta_j$ \}

Cost function is a sum over prediction error at each training point, e.g. $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$. Rewrite as

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} l_i(\theta)$$

where e.g. $l_i(\theta) = (h_{\theta}(x^{(i)}) - y^{(i)})^2$. Then

$$\frac{\partial J}{\partial \theta_j}(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial l_i}{\partial \theta_j}(\theta)$$

When m is large then calculating this sum is slow.
Stochastic gradient descent (SGD) to minimise cost function $J(\theta)$:

* Start with some parameter vector θ of size n
* Repeat:
 * Pick training data point i,
 * e.g. randomly or by cycling through all data points.
 * for $j=0$ to n \{ $\delta_j := -\alpha \frac{\partial l_i}{\partial \theta_j}(\theta)$ \}
 * for $j=0$ to n \{ $\theta_j := \theta_j + \delta_j$ \}

At each update we use just one point from the training data, so avoid sum over all points ...

* Each update is fast to compute
* But need more iterations to minimise $J(\theta)$.

Now add mini-batches and parallelise ...
Stochastic gradient descent with mini-batches of size q:

* Start with some parameter vector θ of size n
* Repeat:
 * for $i = 1$ to q:
 * Pick training data point i,
 e.g. randomly or by cycling through all data points.
 for $j=0$ to n \(\{ \delta_j := -\alpha \frac{\partial l_i}{\partial \theta_j}(\theta) \} \)
 for $j=0$ to n \(\{ \theta_j := \theta_j + \delta_j \} \)

If have q processors then each can run for-loop in parallel and takes same time as one SGD update. Now:

* Each update is fast to compute
* Reduce number of iterations by factor of q compared to vanilla SGD.

Because of communication and synchronization costs between processors often make mini-batch size larger than number of processors and at each round calc a few updates separately on each processor, not just one.
Calculating gradient \(\frac{\partial l_i}{\partial \theta_j} \) for neural nets

* Calculate output \(\hat{y} \) of neural network → forward propagation (the sorts of neural nets we’re considering are sometimes called feedforward networks)

Apply training data input \(x^{(i)} \) to hidden layer and calculate outputs of hidden layer, then apply outputs from hidden layer to output layer and calculate output \(\hat{y} \).
Training Neural Networks: Stochastic Gradient Descent [Optional]

Calculating gradient $\frac{\partial l_i}{\partial \theta_j}$ for neural nets

- To calculate derivatives $\frac{\partial l_i}{\partial \theta_j}$ for all weights/parameters j efficiently use backpropagation.
 - Calculate difference between neural network output \hat{y} and training data output $y^{(i)}$. Adjust weights θ_1^2, θ_2^2 connecting hidden layer and output layer to reduce this error.
 - Now calculate how hidden layer outputs should be adjusted to reduce error. Adjust weights θ_0^1 etc connecting input layer to hidden layer accordingly.

- Backpropagation = process for calculating $\frac{\partial l_i}{\partial \theta_j}$ for all weights θ_j. But often backpropagation is also used as shorthand for the whole process of stochastic gradient descent.
A neural net is just another model i.e. a function mapping from input to prediction. Biological analogies are generally spurious and just confusing.

Hard to interpret what the weights mean → its a black box model.

Can be tricky/slow to train → cost function is non-convex in weights/parameters, plus often many weights/parameters that need to be learned.

Popular in 1990s, then less so. Resurgence of interest from around 2010 due to use in image processing → mainly relates to their use for feature engineering and especially the use of convolutional layers.