* Training data: \(\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(m)}, y^{(m)})\} \)
* Training data is labelled i.e. we know \(y^{(1)}, y^{(2)} \) etc
Unsupervised Learning

∗ Training data: \(\{x^{(1)}, x^{(2)}, \ldots, x^{(m)} \} \)

∗ Training data is unlabelled i.e. we do not know \(y^{(1)}, y^{(2)} \) etc.

∗ We need algorithms that try to cluster the training data ...
Applications

- Social network analysis e.g. try to detect communities/groupings based on social graph
- News, Music e.g. try to cluster related news articles or songs
- Market segmentation e.g. try to cluster customers for targeted advertising
k-means algorithm
Consider a 1D dataset with four examples: -3, -1, 2, 4. Suppose the initial cluster centres are -4 and 0 ...

Round 1:
- point -3 is assigned to centre -4, points -1, 2 and 4 are assigned to centre 0
- update the centres to be the average of the assigned points, so the first centre becomes \(-3/1=-3\) and the second centre \((-1+2+4)/3=1.66\)

Round 2:
- points -3 and -1 are assigned to centre -3 and points 2 and 4 to centre 1.66
- update centres to \((-3-1)/2=-2\) and \((2+4)/2=3\)

Round 3: points -3 and -2 are assigned to centre -2 and points 2 and 4 to centre 3. stop
« k-means algorithm

Input:
- \(k \), number of clusters
- Training data: \(\{ x^{(1)}, x^{(2)}, \ldots, x^{(m)} \} \)
- We’ll drop the \(x_0 = 1 \) convention and use \(x_1, \ldots, x_n \) as elements of \(x \).

Randomly initialise \(k \) cluster centres \(\mu^{(1)}, \ldots, \mu^{(k)} \). e.g. choose \(k \) points from training set and use these (need \(k < m \)).
- Repeat:
 - cluster assignment:
 for \(i = 1 \) to \(m \),
 \(c^{(i)} := \) index of cluster centres closest to \(x^{(i)} \)
 - update centres:
 for \(j = 1 \) to \(k \)
 \(\mu^{(j)} := \) average (mean) of points assigned to cluster \(j \)
- Stop when assignments no longer change
\[k \text{-means algorithm: optimisation objective} \]

\[c^{(i)} = \text{index of cluster to which example } x^{(i)} \text{ is assigned} \]

\[\mu_j = \text{centre of cluster } j \]

\[\mu_{c^{(i)}} = \text{cluster centre to which example } x^{(i)} \text{ is assigned} \]

\[\|x - c\|^2 = \sum_{j=1}^{n} (x_j - c_j)^2 \] (Euclidean distance)

Goal: minimise

\[J(c^{(1)}, \ldots, c^{(m)}, \mu^{(1)}, \ldots, \mu^{(k)}) = \frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - \mu^{(c^{(i)})}\|^2 \]
k-means algorithm: optimisation objective

Goal: minimise
\[J(c^{(1)}, \ldots, c^{(m)}, \mu^{(1)}, \ldots, \mu^{(k)}) = \frac{1}{m} \sum_{i=1}^{m} \| x^{(i)} - \mu^{(c^{(i)})} \|^2 \]

* Repeat:
 cluster assignment:
 for \(i = 1 \) to \(m \),
 \[c^{(i)} := \text{index of cluster centres closest to } x^{(i)} \]
 i.e. select \(c^{(1)}, \ldots, c^{(m)} \) to minimise
 \[J(c^{(1)}, \ldots, c^{(m)}, \mu^{(1)}, \ldots, \mu^{(k)}) \]

update centres:
for \(j = 1 \) to \(k \)
 \[\mu_j := \text{average (mean) of points assigned to cluster } j \]
 \[= \frac{1}{|C_j|} \sum_{k \in C_j} x^k \] where \(C_j = \{ i : c^{(i)} = j \} \)
 i.e. select \(\mu^{(1)}, \ldots, \mu^{(k)} \) to minimise
 \[J(c^{(1)}, \ldots, c^{(m)}, \mu^{(1)}, \ldots, \mu^{(k)}) \] (a least squares task)

* Stop when assignments no longer change
- *k*-means algorithm can converge to a local optimum, rather than a global optimum. E.g.
Use random initialisation and multiple runs of algorithm:

for $i = 1$ to 100
 randomly initialise the k centres $\mu^{(1)}, \ldots, \mu^{(k)}$
 run k-means algorithm
 compute cost function $J(c^{(1)}, \ldots, c^{(m)}, \mu^{(1)}, \ldots, \mu^{(k)})$

Pick clustering that gives lowest cost $J(c^{(1)}, \ldots, c^{(m)}, \mu^{(1)}, \ldots, \mu^{(jk)})$
Cross-validation:

* Split data into test and training data (random splits of \(k \)-fold)
* run \(k \) means algorithm on training data
* Calculate cost \(J(c^{(1)}, \ldots, c^{(m)}, \mu^{(1)}, \ldots, \mu^{(k)}) \) for the test data not used for training
* Repeat for multiple splits and several values of \(k \).
Example: Clustering News Articles

- Dataset:
 https://www.kaggle.com/snapcrack/all-the-news/home
- Fields: id, title, publication name, author, date, year, month, url, content. E.g.:
 - Rift Between Officers and Residents as Killings Persist in South Bronx - The New York Times
 - Tyrus Wong, 'Bambi' Artist Thwarted by Racial Bias, Dies at 106 - The New York Times
 - Among Deaths in 2016, a Heavy Toll in Pop Music - The New York Times
 - Kim Jong-un Says North Korea Is Preparing to Test Long-Range Missile - The New York Times
- We’ll use 50,000 articles from articles1.csv
- Remove stop words, use stemming, use bag of words model to map text to feature vector
Example: Clustering News Articles

```python
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.feature_extraction.text import TfidfVectorizer
import matplotlib.pyplot as plt
from sklearn.model_selection import KFold
import math
text = pd.read_csv('articles1_1000.csv')
text_content = text['content']
tfidf = TfidfVectorizer(stop_words = 'english', max_features=500, max_df=0.5).fit_transform(text_content).toarray()

K = range(5, 50, 5)
SSE_mean = []; SSE_std=[]
for k in K:
    gmm = KMeans(n_clusters=k)
    kf = KFold(n_splits=5)
    m=0; v=0
    for train, test in kf.split(tfidf):
        gmm.fit(train.reshape(-1, 1))
        cost=-gmm.score(test.reshape(-1, 1))
        m=m+cost; v=v+cost*cost
    SSE_mean.append(m/5); SSE_std.append(math.sqrt(v/5-(m/5)*m/5))
plt.errorbar(K, SSE_mean, yerr=SSE_std, xerr=None, fmt='bx-')
plt.ylabel('cost'); plt.xlabel('number of clusters'); plt.show()

k = 15
gmm = KMeans(n_clusters=k).fit(tfidf)
centers = gmm.cluster_centers_.argsort()[:,::25]; terms = vector.get_feature_names()
for i in range(0,k):
    word_list=[
        for j in centers[i,:25]:
            word_list.append(terms[j])
        print("cluster%d:"% i); print(word_list)

labels = gmm.predict(tfidf); count = 0
print("similiar articles:")
for j in range(0,labels.shape[0]):
    if labels[j]==0:
        print("n+text[title].iloc[j])
        count = count+1
    if (count>=5):
        break
```

Example: Clustering News Articles

Choose $k = 15$:

![Graph showing the cost of clustering with respect to the number of clusters. The cost decreases as the number of clusters increases, reaching a minimum around $k = 15$.](image-url)
Example: Clustering News Articles

Typical output:

cluster 0:
cluster 1:
['ms', 'family', 'mother', 'husband', 'school', 'children', 'york', 'life', 'times', 'film', 'daughter', 'news', 'home', 'told', 'father', 'women', 'work', 'house', 'food', 'later', 'day', 'love', 'public', 'education', 'job']
cluster 2:
['judge', 'court', 'supreme', 'justice', 'law', 'order', 'case', 'death', 'legal', 'federal', 'administration', 'lawyers', 'washington', 'democrats', 'senate', 'republicans', 'united', 'wrote', 'right', 'state', 'executive', 'government', 'ban', 'cases', 'white']

... similiar articles:
After The Biggest Loser, Their Bodies Fought to Regain Weight – The New York Times
Scientists Say the Clock of Aging May Be Reversible – The New York Times

similiar articles:
5 Must-See Shows if You're in New York This Month – The New York Times
Broadway Breaks Multiple Records Through New Year's Weekend – The New York Times
Brock Osweiler and Texans Knock the Battered Raiders Out of the Playoffs – The New York Times
Summary

- k-means algorithm is straightforward, popular, often works pretty well
- Two situations where it performs less well:
 - Clusters overlap i.e. an item can be a member of more than one cluster simultaneously → we’ve looked at “hard” k-means but easy extension to soft k-means
Some situations where it performs less well:

- Clusters are not roughly spherical e.g. if long and narrow → extend k-means to estimate shape of cluster
More on ML

- Get a decent GPU and try to implement deep learning object detection etc - you have all the tools you need for this already
- Deep Learning for text analytics/natural language processing e.g. BERT
- Time series, incl. recurrent neural nets
- Recurrent neural nets for session-aware recommenders (special case of time-series)
- Explainable models incl. visualising deep learning models
- Ensemble methods: bagging and boosting
- Online learning: exploration/exploitation, multi-arm bandits, reinforcement learning
- Privacy-aware machine learning: k-anonymity, differential privacy
- Scalable, fast optimisation methods. GPU programming.