Why Convolutions?

- **Sparsity.** Local information is often enough to detect basic features e.g. edges, no need to look at whole image
- **Reuse.** A feature extractor that works on one part of an image probably works on other parts, so can be re-used
- **Result:**
 - *Huge* reduction in #parameters to learn. e.g. one $3 \times 3 \times 3$ kernel has just 27 parameters, but with a separate kernel for every part of 300×300 image would need to learn $298 \times 298 \approx 89K$ kernels.

- Can also think of convolutional layer as an FC-layer with lots of constraints added → each output depends only on a small number of inputs (sparsity), same weights used for each output (reuse).
Why Many Layers?

* Local information is often enough to detect *basic* features e.g. edges, no need to look at whole image → but what about larger features e.g. a building?

* For kernel that acts directly on the input image the *receptive field* is just the kernel size e.g. 3×3 pixels → quite small

* Now receptive field of kernel in second layer is 3×3 kernels from first layer i.e. 9×9 pixels from image. Receptive field of kernel in third layer is 3×3 kernels from second layer i.e. 27×27 pixels from image.
Why Many Layers?

- First layer in ConvNet “sees” local image features
- Deeper layers combine local image features and so “see” larger features in image e.g. combine multiple lines/edges to recognise an eye
 → this is intuition behind using many layers in ConvNet i.e. “deep” learning.
Typical Modern CNN Structure

* As you go through network #channels increases and height/width decreases → rule of thumb is to repeatedly halve height/width while doubling number of channels.

* E.g.

```
28 × 28, 1 → conv 3 × 3, 32
28 × 28, 32 → max-pool (2, 2)
14 × 14, 32 → conv 3 × 3, 64
14 × 14, 64 → max-pool (2, 2)
7 × 7, 64 → softmax
```

* A common pattern is \((\text{Conv} \times n + \text{Maxpool}) \times m\):
 * \(n\) convolutional layers with same padding, followed by a max-pool layer to downsample
 * Then repeat this block \(m\) times
 * Often \(3 \times 3\) kernels in conv layers and \((2, 2)\) max-pooling

* Final/output layer is a fully-connected layer, often softmax

* Can think of this setup as convolutional layers being used to generate features that are then used as input to a logistic regression classifier (i.e. the softmax layer).
LeNet

- Designed for MNIST digit dataset we looked at before
- It's pretty old, so uses choices that are now unpopular: average pooling, sigmoid and tanh activation. Uses relatively large 5×5 kernels. Quite small: network has about 60K parameters.
- The general pattern is still used though:
 - Repeated convolution+pooling/downsampling layers with an FC-layer as the output layer.
 - #channels increases, height/width decrease as move through network
- Achieved 99.05% accuracy on test data, state of the art is now about 99.8%. Recall in our example we managed 98.5% (by running SGD for more epochs it would get close to 99.8%).
AlexNet

* Designed for ImageNet competition: 1.2M hand-labelled images, 1000 classes. Input is $227 \times 227 \times 3$ RGB image.

 * General structure is as for LeNet, but deeper (more layers):
 * Repeated convolution+pooling with an FC-layer as the output layer.
 * #channels increases, height/width decrease as move through network

 * Max-pooling, ReLU activation, much bigger network 60M parameters, dropout regularisation. Output is 2 FC-layers+softmax.

 * Performance of AlexNet kicked off renewed interest in deep learning → paper has 61K citations

 * Used GPUs but still took a week to train
Data Augmentation

- AlexNet made heavy use of *data augmentation* → pretty much standard practice now
- Training big ConvNets needs lots of data. We can “create” more data by:
 - Reflection:
 - Random crops:
 - Random scaling
 - Random adjustment of exposure and saturation
- Hopefully will make learned model more robust
* **AlexNet** accuracy was 10% better than next best at the time. Gain was attributed to #layers → 2012 was deep learning turning point
* **VGG19** achieved another 10% jump in performance in 2014
* **ResNet** achieved 4.49% error rate in 2015, beating human error rate of 5.1%
* Another important network is **GoogLeNet/Inception**, now Inception v4, but will leave you to look that up yourselves.

1 https://paperswithcode.com/sota/image-classification-on-imagenet
K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015

Used smaller 3×3 kernels (AlexNet uses 11×11 and 5 kernels) and added more layers to maintain large receptive field → now pretty standard, reduces number of model parameters

AlexNet 8 layers (2012), VGG 19 layers (2014)

Pattern of layers: $(Conv \times n + Maxpool) \times m$ with $n = 2 - 4$ and $m = 5$. ReLU activation, max-pooling

133–144M parameters (weights file is 500MB) → larger than later networks with more layers, makes VGG slow to train. NB: 120M parameters in the three FC-layers at output
ResNet

- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Residual Learning for Image Recognition, CVPR 2016
- Similarly to VGG: uses 3×3 kernels and number of channels is doubled when height/width halved.
- Uses convolution layers with stride 2 for downsampling instead of max-pooling, and batch normalisation after each convolution.
- Introduced *skip* connections:

![Diagram of skip connections in ResNet](image)

with aim of reducing vanishing gradient problems (which become a big deal as network depth increases).

- Used 1×1 kernels to reduce number of parameters \rightarrow despite ResNet having many more layers than VGG it has fewer parameters (60M vs 144M)
- ResNet-152 achieved 4.49% error rate in ImageNet, beating human error rate of 5.1%.
Vanishing Gradients

Imagine you’re trying to press a button using a long fishing rod …

* Suppose rod is v heavy - its hard to move the far end at all \rightarrow vanishing gradient
* Suppose rod is v flexible - even small movements of your hand cause large wobbles at far end \rightarrow exploding gradient

Using equations:

* Output of layer k is $a^{[k]}$ and weights are $w^{[k]}$
* With ReLU, roughly $a^{[k]} = w^{[k]} w^{[k-1]} w^{[k-2]} \cdots w^{[2]} w^{[1]} a^{[0]}$
* So derivative/gradient wrt weight $w^{[1]}$ is $w^{[k]} w^{[k-1]} w^{[k-2]} \cdots w^{[2]} a^{[0]}$
* If $w^{[k]} \leq b < 1$, $w^{[k-1]} \leq b < 1$ etc then derivative/gradient is $< b^{k-1} a^{[0]}$ and $b^{k-1} \rightarrow 0$ as k increases since $b < 1$ \rightarrow vanishing gradient
* If $b > 1$ then $b^{k-1} \rightarrow \infty$ and k increases \rightarrow exploding gradient

Vanishing/exploding gradients cause numerical problems for gradient descent. This becomes a serious problem as #layers becomes large.
Vanishing Gradients

- ResNet idea to mitigate vanishing gradients is to add skip connections:

 ![Diagram](image)

 - Skip connections mean it's always quite easy for a weight in an early layer to affect the output of a later layer, even one many layers away.
 - Roughly, \(a^{[k]} = (w^{[k]} w^{[k-1]} + 1)(w^{[k-2]} w^{[k-3]} + 1) \ldots w^{[1]} a^{[0]} \)
 - Suppose weights are all really small, almost 0. Then \(a^{[k]} \approx (0 + 1)(0 + 1) \ldots w^{[1]} a^{[0]} = w^{[1]} a^{[0]} \) and derivative wrt \(w^{[1]} \) is \(a^{[0]} \to \) no more vanishing.
 - Combine with initialising weights to reasonable values and use of SGD with adaptive step sizes e.g. adam.
 - Also uses batch normalisation after each convolution, but this seems to be less important.
 - This all remains not so well understood ... but it only seems important for really deep networks.
1 × 1 Kernels

* 1 × 1 kernels are not too interesting if have just one input channel:

\[
\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 2 & 3 & 10 \\
3 & 2 & 1 & 4 & 5 \\
6 & 1 & 1 & 2 & 2 \\
3 & 2 & 1 & 5 & 4 \\
\end{array}
\]

Just multiply each element of input by the kernel weight, in this case 1

* But when have multiple input channels ...

\[
\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 2 & 3 & 10 \\
3 & 2 & 1 & 4 & 5 \\
6 & 1 & 1 & 2 & 2 \\
3 & 2 & 1 & 5 & 4 \\
\end{array}
\]

* ... 1 × 1 kernel takes a weighted sum across the input channels and then passes it through ReLU activation function.
1 x 1 Kernels

* We know that we can use max-pooling to reduce the height/width of an input, e.g. use (2,2) max-pooling to halve the height and width:

\[
\begin{align*}
32 \times 32, 32 & \rightarrow \text{max-pool (2,2)} \\
16 \times 16, 32 & \rightarrow
\end{align*}
\]

* But max-pooling leaves the number of channels unchanged. We can use a 1 x 1 kernel to reduce the number of channels, e.g. to shrink number of channels from 32 to 16:

\[
\begin{align*}
32 \times 32, 32 & \rightarrow \text{conv 1 x 1, 16} \\
32 \times 32, 16 & \rightarrow
\end{align*}
\]

(remember when we write “conv 1 x 1, 16” we mean 16 1 x 1 x 32 kernels, we abbreviate 1 x 1 x 32 to 1 x 1 since we know #channels in kernel must match #input channels)

* Of course can also use a 1 x 1 kernel to increase number of channels too e.g. by using conv 1 x 1, 64 in above example the output becomes 32 x 32, 64.
ResNet uses 1×1 kernels to reduce number of model parameters in very deep networks, e.g.:

* Shrinks 256 channels down to 64 channels using a 1×1 kernel, then applies 3×3 kernel to this smaller tensor and then expands back up to 256 channels using another 1×1 kernel.

* Without this shrinkage/expansion, 256 $3 \times 3 \times 256$ kernels have 589K parameters. With shrinkage/expansion, 64 $1 \times 1 \times 256$ kernels + 64 $3 \times 3 \times 64$ kernels + 256 $1 \times 1 \times 64$ kernels combined have 69K parameters i.e. about $10 \times$ fewer.
Transfer Learning

Basic idea: train a ConvNet on a large and general image dataset, then use the ConvNet as a fixed feature extractor for a new task:

1. Take an already trained ConvNet (training takes ages → reuse a good idea!)
2. Remove the fully-connected output layer(s)
3. Add a new output layer (e.g. logistic regression or SVM) which takes the ConvNet outputs as its inputs, then train this new output layer for task at hand.

E.g. take VGG-16:

- Flatten output of last maxpool layer to get a 4096×1 vector
- Use as input to new logistic regression/softmax layer.
- Train weights in this new output layer while holding VGG-16 weights constant
- Since we hold the VGG-16 layers constant we’re just using VGG-16 to map from the input to a 4096×1 feature vector. Can then use these input features with any other model.

<table>
<thead>
<tr>
<th>ConvNet Configuration</th>
<th>A</th>
<th>A-LRN</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 weight layers</td>
<td>11 weight layers</td>
<td>13 weight layers</td>
<td>16 weight layers</td>
<td>16 weight layers</td>
<td>19 weight layers</td>
<td></td>
</tr>
<tr>
<td>input (224 × 224 RGB image)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv3-64</td>
<td>conv3-64</td>
<td>conv3-64</td>
<td>conv3-64</td>
<td>conv3-64</td>
<td>conv3-64</td>
<td></td>
</tr>
<tr>
<td>LRN</td>
<td>conv3-64</td>
<td>conv3-64</td>
<td>conv3-64</td>
<td>conv3-64</td>
<td>conv3-64</td>
<td></td>
</tr>
<tr>
<td>maxpool</td>
<td>conv3-128</td>
<td>conv3-128</td>
<td>conv3-128</td>
<td>conv3-128</td>
<td>conv3-128</td>
<td></td>
</tr>
<tr>
<td></td>
<td>conv3-128</td>
<td>conv3-128</td>
<td>conv3-128</td>
<td>conv3-128</td>
<td>conv3-128</td>
<td></td>
</tr>
<tr>
<td>conv3-256</td>
<td>conv3-256</td>
<td>conv3-256</td>
<td>conv3-256</td>
<td>conv3-256</td>
<td>conv3-256</td>
<td></td>
</tr>
<tr>
<td>conv3-256</td>
<td>conv3-256</td>
<td>conv3-256</td>
<td>conv3-256</td>
<td>conv3-256</td>
<td>conv3-256</td>
<td></td>
</tr>
<tr>
<td>maxpool</td>
<td>conv3-512</td>
<td>conv3-512</td>
<td>conv3-512</td>
<td>conv3-512</td>
<td>conv3-512</td>
<td></td>
</tr>
<tr>
<td>conv3-512</td>
<td>conv3-512</td>
<td>conv3-512</td>
<td>conv3-512</td>
<td>conv3-512</td>
<td>conv3-512</td>
<td></td>
</tr>
<tr>
<td>maxpool</td>
<td>FC-4096</td>
<td>FC-4096</td>
<td>FC-4096</td>
<td>FC-1000</td>
<td>soft-max</td>
<td></td>
</tr>
</tbody>
</table>
Transfer Learning

A variant: also fine-tune the ConvNet weights for new task. When does this make sense?

- New dataset is small and similar to dataset used to train ConvNet → probably not enough data to re-train a big ConvNet
- New dataset is large and similar to dataset used to train ConvNet → fine-tuning of ConvNet might be useful. Usually use a small step-size/learning rate so changes made are kept small.
- New dataset is small and \(v \) different from dataset used to train ConvNet → hmm
- New dataset is large and \(v \) different from dataset used to train ConvNet → re-training for ConvNet using pre-trained weights as initial values might be useful

- Some further reading: