Recall general iterative minimisation algorithm:

\[x = x_0 \]
\[\text{for } k \text{ in range(num_iters):} \]
\[\quad \text{step} = \text{calcStep}(fn,x) \]
\[\quad x = x - \text{step} \]

We know one way to choose the step, namely:

\[\text{step} = \alpha \left[\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x), \ldots, \frac{\partial f}{\partial x_n}(x) \right] = \alpha \nabla f(x) \]

where \(\alpha \) is the step size or learning rate

How to choose automate choice of \(\alpha \)?
Line search

* Update x to $x - \alpha \nabla f(x)$

* **Exact line search** → select α that minimises $f(x - \alpha \nabla f(x))$
 i.e. $\alpha \in \text{arg min}_{\alpha'} f(x - \alpha' \nabla f(x))$

* In practice an α that makes $f(x - \alpha \nabla f(x))$ decrease by a reasonable amount is good enough.

* How to carry out this optimisation? Remember α is a scalar.
 * **Grid search.** Calculate $f(x - \alpha \nabla f(x))$ over a grid of values for α
 and pick smallest → simple, robust, but how to choose grid when we don’t know the approx magnitude of α to use?
* **Iterative grid search.** Select initial grid, e.g. [0.001, 0.01, 0.1, 1, 10]. Suppose $\alpha = 0.01$ gives $f(x - \alpha \nabla f(x))$, then create a new grid around this point e.g. [0.005, 0.0075, 0.01, 0.02, 0.05, 0.075] and repeat. Again, simple and robust.
Line search

* **Bracketing methods** e.g. Golden-section search\(^1\), Brents method\(^2\)

* Hopefully fewer function evaluations than grid search (so faster/cheaper)
* When there are multiple minima, may converge to local minimum.

\(^1\)https://en.wikipedia.org/wiki/Golden-section_search
\(^2\)https://en.wikipedia.org/wiki/Brent’s_method
• **Derivative-based methods** → search for point where derivative of \(\frac{df}{dx}(x - \alpha \nabla f(x)) = 0 \).

* Derivative changes sign on either side of minimum → use that to bracket the solution

* **Backtracking search**3. Idea: try an initial large step α and then reduce ("backtrack").

* Recall $f(x + \delta) \approx f(x) + \nabla f(x)^T \delta$ with $\nabla f(x)^T \delta = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x) \delta_i$. Choosing $\delta = -\alpha \nabla f(x)$ then

$$f(x - \alpha \nabla f(x)) \approx f(x) - \alpha \nabla f(x)^T \nabla f(x)$$

with $\nabla f(x)^T \nabla f(x) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x)^2$

* Idea: try to select α such that

$$f(x - \alpha \nabla f(x)) \leq f(x) - c\alpha \nabla f(x)^T \nabla f(x)$$

with parameter $0 \leq c \leq 1$.

3https://en.wikipedia.org/wiki/Backtracking_line_search
Line search

* Python implementation of backtracking linesearch:

```python
import numpy as np
alpha=1;
beta=0.5; c = 0.5  # design parameters
df=fn.df(x)
while fn.f(x−alpha*df) > fn.f(x)−c*alpha*np.dot(df,df):
    alpha=beta*alpha
```

* Start with $\alpha = 1$, if $f(x − \alpha \nabla f(x))$ too large then decrease α to $\beta \alpha$ (with $\beta < 1$ obviously), repeat.

* E.g. when $\beta = 0.5$ then try sequence of α’s

$1, 0.5, 0.5^2, 0.5^3, 0.5^4, \ldots =1, 0.5, 0.25, 0.125, 0.0625, \ldots$

* When $\beta = 0.8$ then try sequence of α’s

$1, 0.8, 0.8^2, 0.8^3, 0.8^4, \ldots =1, 0.8, 0.64, 0.512, 0.4096, \ldots$
Example: Quadratic

- $f(x) = 0.5(x_1^2 + 10x_2^2)$, $x = [x_1, x_2]$.
- Starting value $x_0 = [1.5, 1.5]$, step size $\alpha = 0.15$

- Increasing α to 0.2 for constant step sizes causes output to diverge.
- So exact line search gives convergence in fewer iterations, but is that actually faster?
Example: Quadratic

* Time for each iteration is larger with exact line search since need to perform an optimisation to find \(\alpha \). Similarly for backtracking.

* When considering performance, accuracy vs #iterations is not enough, also need to take account of time taken for each iteration \(\rightarrow \) it's really accuracy vs wall-clock time that we're usually interested in.
Time for each iteration is larger with exact line search since need to perform an optimisation to find α. Similarly for backtracking.

In this example, constant step size converges faster vs wall-clock time than exact line search, and about the same as backtracking. But constant step size was hand-tuned...
Example: Linear Regression Quadratic Loss

- \(y^{(i)} = \theta^T x^{(i)} \), \(\theta = [-0.5, 0.2] \), \(m = 1000 \) training data points with random \(x^{(i)} \), \(i = 1, \ldots, n \)
- Cost function \(J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (\theta^T x^{(i)} - y^{(i)})^2 \)
- Starting value \(x_0 = [1, 1] \), step size \(\alpha = 0.5 \)

- Again, exact linesearch slower wrt wall-clock time.
- But remember quadratic functions/linear regression are the “easy” cases ...
Example: Toy Neural Net Quadratic Loss

\[z = f(\theta_1 x + \theta_1), \hat{y} = g(z), \theta = [1, 5], f \text{ ReLu}, g \text{ sigmoid}, m = 1000 \text{ training data points with random } x^{(i)}, \text{ quadratic loss} \]

\[\text{Starting value } x_0 = [1, 1], \text{ step size } \alpha = 0.75 \]

\[\text{In this “harder” problem (non-smooth, flat surfaces) exact line search is faster even though it involves more computation per iteration} \]
Example: Rosenbrock Function

* Another “hard” problem, although in a different way (narrow curved valley with flat valley floor).
* Starting value $x_0 = [-1.25, 0.5]$, step size $\alpha = 0.002$

* In this “harder” problem backtracking line search is faster
* Exact line search gets “stuck”, constant step size slow
Example: Rosenbrock Function

* Exact linesearch gets “stuck”. Plot of function value $f(x - \alpha \nabla f(x))$ vs α at terminal point of linesearch:

* Plot of function around point (marked by ‘+’) where exact linesearch terminates:

* Valley floor is very flat here, so direction of steepest descent is across valley and doesn’t allow function to be decreased → try another direction, or perturb ourselves away from ‘+’ point (e.g. constant step would do that)
Example: Non-Smooth Function

* Another “hard” problem (non-smooth), \(f(x) = |x_1| + x_2^2 \)

* Starting value \(x_0 = [0.02, 0.1] \), step size \(\alpha = 0.005 \)

* Linesearch methods get “stuck” away from minimum, constant step size oscillates around min (size of oscillation depends on step size) but beats linesearch methods
Linesearch methods get “stuck” away from minimum. Plot of function value $f(x - \alpha \nabla f(x))$ vs α at terminal point of linesearch:

The kink in the function has trapped the linesearch methods at a poor point → a bit like in Rosenbrock example.
Performance of line search depends on the function being minimised → no general rules (we’ll see this is true for most methods for choosing the step size unfortunately)

Need to take account of increased computation with linesearch → convergence in fewer iterations might not mean faster converges wrt wall-clock time (which is what usually matters)

For quadratic-like functions a constant step size is already v good so limited gain from using line search

For “harder” functions line search can speed up convergence (e.g. toy neural net example), but can also lead to getting stuck at a sub-optimal point (e.g. rosenbrock and non-smooth example).