What’s really going on?

- Haskell as a re-write system makes sense, but . . .
- . . . how is the rewrite system implemented?
- We know what purity is, but now we need to understand how it is achieved.
- We need to drill down further into the execution model for Haskell

Abstract Syntax Trees

- The Haskell Parser converts Haskell source-text into internal abstract syntax trees (AST).
- These trees are built from boxes of various types and edges (pointers).
- We shall describe an execution model that manipulates these trees directly.

AST Boxes

- Atomic Values and Variables: 3, True, 'c' v
 ![Atomic Values and Variables Diagram]
- Data Constructors: [], :"!
 ![Data Constructors Diagram]
 The “cons” box has 2 pointers to relevant components
- Function Application:
 ![Function Application Diagram]
 The “apply” box also has 2 pointers to relevant components
Consider application `sum (2:1:[])`

- We match against pattern `sum (x:xs)` with binding `x ↦ 2, xs ↦ 1:[]`
 - this is done by matching AST trees recursively
 - the bindings are pointers to relevant AST fragments
- We want to replace application by rhs `x + sum xs`, using the bindings above to get `2 + sum (1:[])`
 - We use rhs as a template,
 - we build a copy, replacing formal arguments using bindings,
 - we replace the application AST by the rhs AST copy.
- The fact we build a copy of the rhs AST is crucial for referential transparency

Note how binary application has a “spine” of 2 @-nodes.

\[
\begin{align*}
a + b &= (((+) a) b) \\
\end{align*}
\]
AST Binding

- The bindings from that successful match:
 binding: \(x \mapsto 2, \, xs \mapsto 1:[] \)

- \(x \mapsto 2 \)
 - \(x \)
 - \(2 \)

- \(xs \) : \(1 \) \([] \)
 - \(: \)
 - \(1 \)
 - \([] \)

AST Copying

- The rhs from that successful match: \(x + \text{sum} \, xs \)

- \(x + \text{sum} \, xs \)
 - \(+ \)
 - \(x \)
 - \(\text{sum} \)
 - \(xs \)

- The copy built replacing pattern variables by their bindings:
 copy: 2 + \(\text{sum} \, (1:[]) \)

- 2 + \(\text{sum} \, (1:[]) \)
 - \(+ \)
 - \(2 \)
 - \(\text{sum} \)
 - \((1:[]) \)

AST Shorthand

- The AST Box diagrams take up a lot of space
 Let’s introduce a shorthand version
 - drop single boxes for basic values: 1 [] True v
 - drop triple boxes for application and cons-ing:
 \(f \, a \, x:xs \)
 - so for example, \(x + \text{sum} \, xs \) now looks like:

Haskell AST Execution — another example

- The HOF map is defined as follows:
 \[
 \text{map} \, f \, [] = []
 \text{map} \, f \, (x:xs) = (f \, x) : \text{map} \, f \, xs
 \]

- We have the following rhs ASTs:

 \[
 []
 \]

- \(\text{map} \, f \, x \)
 - \(\text{map} \)
 - \(f \)
 - \(x \)
 - \([] \)
 - \(xs \)
Consider application \texttt{map inc (1:2:3[])} where \texttt{inc x = x+1}

1. We match 2nd case \(f \mapsto \text{inc}, x \mapsto 1, xs \mapsto 2:3:[] \)

 We build a \textit{copy} of 2nd rhs, using bindings

 \[
 \begin{array}{l}
 \text{(inc 1) : (map inc (2:3:[]))}
 \end{array}
 \]

2. We match 2nd case, \(f \mapsto \text{inc}, x \mapsto 2, xs \mapsto 3:[] \)

 We build a \textit{copy} of 2nd rhs, using bindings

 \[
 \begin{array}{l}
 \text{(inc 1) : ((inc 2) : (map inc (3:[])))}
 \end{array}
 \]

3. We match 2nd case, \(f \mapsto \text{inc}, x \mapsto 3, xs \mapsto [] \)

 We build a \textit{copy} of 2nd rhs, using bindings

 \[
 \begin{array}{l}
 \text{(inc 1) : ((inc 2) : ((inc 3) : (map inc [])))}
 \end{array}
 \]

4. We match 1st case, \(f \mapsto \text{inc} \)

 We build a \textit{copy} of 2nd rhs, using bindings

 \[
 \begin{array}{l}
 \text{(inc 1) : ((inc 2) : ((inc 3) : []))}
 \end{array}
 \]

\textbf{The Importance of Copying (I)}

- We clearly need to copy the function rhs, otherwise we
couldn’t re-use that function.
- But in the application \texttt{map inc [1..3]} we not only copied
 the rhs, but that built us a \textit{copy} of the original list.
- Couldn’t a smart implementation realise that the copies
 simply had the leaves changed from \texttt{x} to \texttt{inc x}, and change
 these in place
 (so-called “destructive update”)?

\textbf{Before evaluating map inc [1..3]}

- We have the application as an AST (simplified)

\[
\begin{array}{c}
\text{map} \\
\downarrow \\
\circ \\
\leftarrow \quad [1..3] \\
\end{array}
\]

- \(\bullet \) denotes a pointer to the application
- (We show the original list as one lump)

\textbf{How Haskell does map inc [1..3]}

- We build a copy, and swing our application pointer to indicate
 that copy

\[
\begin{array}{c}
\text{map} \\
\downarrow \\
\circ \\
\leftarrow \quad [inc 1, inc 2, inc 3] \\
\end{array}
\]

- the original list and other arguments are still present
- If there are no further pointers to the original list it becomes
garbage, which is handled behind the scenes.
How we might optimise \(\text{map inc \ [1..3]}\)

- We update the list in place and swing our application pointer to indicate that update.

![Diagram]

- We don't alter the \(\text{map rhs ASTs}\).
- We (the compiler) somehow manage to see that the list structure is unchanged so we do destructive update in place.

The Importance of Copying (II)

- Destructive Update breaks Referential Transparency
- Consider the following program:
 \[
 \text{myfun} \ \text{xs} = (\text{xs, map inc xs})
 \]
 We have paired together references to both the original \(\text{xs}\), and the result of mapping \(\text{inc}\) across it.
- If we use copying, then the two lists returned by \(\text{myfun}\) are different.
- If we use destructive update, then the two lists returned by \(\text{myfun}\) are equal.
 - but this contradicts the following law for non-empty \(\text{xs}\):
 \[
 \text{head} (\text{map inc xs}) = \text{inc} (\text{head xs})
 \]

Copying as a show-stopper (I)

- Imagine that \(\text{bigds}\) is a very large datastructure and \(\text{bigmod}\) is a function with parameters that performs large changes to it.
- Copying means that the following sequence of calls is very expensive to run:
 \[
 \text{let bigds1 = bigmod p1 bigds} \\
 \text{bigds2 = bigmod p2 bigds1} \\
 \ldots \\
 \text{bigdsn' = bigmod pn' bigdsn} \\
 \text{in ...}
 \]
- So pure functional languages are not good for implementing large databases, processing large amounts of data, supporting design of large artefacts (i.e VLSI chips), ...?
Copying and Real-World I/O are inconsistent

- We cannot implement real-world I/O in a pure (referentially transparent) language
- So pure functional languages are just intellectual toys . . .
- Real-world functional languages (e.g. ML, Lisp, Scheme) are impure so they can
 - support real-world I/O
 - allow destructive update for large datastructures
- This slide summarises a view of (pure) functional languages still widely believed today
- This view was justifiable, until the early 1990s (Yes, that long ago !)
 - But the slide title is still correct . . .