Morris Inorder (Non-Recursive) Re-Visited
IFMSIG Winter Meeting 1999-2000
Hugh Gibbons
Computer Science Dept.,
Trinity College Dublin

Knuth Challenge:
Non-recursive inorder of a binary tree,
without using an explicit stack or 'boolean flags'

Inorder Traversal (Recursive Version)

```plaintext
inorder(t : TREE[G]) : LIST[G] is
do
  if is_empty (t) then
    Result := [ ] -- empty list
  else
    Result := inorder(t.left) ++ [t.value] ++ inorder(t.right)
  end
end -- Inorder
```

Notation

++ is the join operator on lists
Approach to Non-Recursive version

For non-empty t, we get,

\[
\text{Inorder}(t) = \text{Inorder}(t.\text{left}) + [t.\text{value}] + \text{Inorder}(t.\text{right}) \\
= \text{Inorder}(t.\text{left}) + \text{Inorder}(\text{build}(t.\text{value}, \text{void}, t.\text{right})) \\
= \text{Inorder}(b_1) + \text{Inorder}(b_2) \\
\text{where } b_1 = t.\text{left} \\
\text{and } b_2 = \text{build}(t.\text{value}, \text{void}, t.\text{right})
\]

Diagram:
Join operator on Trees

Consider a function `join` s.t.

\[\text{join}(b_1, b_2) \text{ ‘joins’ } b_2 \text{ to the right most of } b_1 \]

\[\text{Join } \begin{array}{c} b_1 \end{array} \begin{array}{c} b_2 \end{array} = \begin{array}{c} b_1 \end{array} \begin{array}{c} b_2 \end{array} \]

Note:

Trees with the operator, `join`, and the identity, `empty`, is a monoid.

Inorder with join

\[\text{Inorder } \begin{array}{c} \text{L} \\ \text{R} \end{array} = \text{Inorder } \begin{array}{c} \text{L} \\ \text{R} \end{array} \]

i.e.

\[
\begin{align*}
\text{inorder}(t) &= \text{inorder}(b_1) + \text{inorder}(b_2) \\
&= \text{inorder}(\text{join}(b_1,b_2)) \\
&\text{where } b_1 = t.\text{left} \\
&\quad b_2 = \text{build}(t.\text{value}, \text{void}, t.\text{right})
\end{align*}
\]
join(b1,b2 : TREE[G]):TREE[G] is
 do
 if is_empty(b1) then
 result := b2
 else
 result := build(b1.value, b1.left, Join(b1.right, b2))
 end if
 end --join

Morris Inorder -- Abstract Code

Morris_Inorder(t0 : TREE[G]) : LIST[G] is
 t : TREE[G]
 s : LIST[G]
 do
 from
 t := t0
 s := []
 until
 t = void
 loop
 if t.left = void then
 t := t.right
 s := s ++ [t.value]
 else
 t := Join(t.left, build(t.value, void, t.right))
 end
 end
 Result := s
 end -- Morris_Inorder
Binary Tree Structure/Class

class TREE [Values]

feature

 root : N is 1

 size : N

 val : {1..size}f Values -- partial on N

 left : N f N -- total
 n â 2n

 right : N f N -- total
 n â 2n+1

 first: N
 -- inorder first

 succ : N f N
 -- inorder succ

 left_sub : TREE

 right_sub : TREE

 etc.

end -- TREE

The Nodes in the tree are natural numbers, or viewed a binary numerals, an element of \{0,1\}*, the set of finite sequences from 0 and 1.
Bi-Graph instead of a Tree

In the more concrete implementation of inorder, the function, right, will be updated (and later reset) so that the Tree will become a bi-graph, hence loosing the properties of being a Tree.

Reachability

- \(x \rightarrow^R y \equiv (E k \mid k \geq 0 \land \text{right}^k x = y) \)
 -- "right reaches"

Note: \(x \rightarrow^R x \)

Similarly,

- \(x \rightarrow^L y \equiv (E k \mid k \geq 0 \land \text{left}^k x = y) \)
 -- "left reaches"

Inorder first and Inorder Successor

- \(y = \text{right}_\text{most} x \)
 \[\equiv x \rightarrow^R y \land \text{right } y \notin \text{dom val} \]

Similarly,

- \(y = \text{left}_\text{most} x \)
 \[\equiv x \rightarrow^L y \land \text{left } y \notin \text{dom val} \]
• first = left_most root

• y = succ x
 ≡ (left y ∈ dom val ∧ x = right_most (left y)) ∨ (right x ∈ dom val ∧ y = left_most (right x))

• x = pred y ≡ y = succ x

Morris Inorder

marked y
≡ right (pred y) = y

A change is needed in the definition of pred as when y is marked a cycle is introduced.

If (marked y) then

x = pred' y ≡ right x = y

i.e. when (left y) ∈ dom val

\[
x = \text{pred}' y
\equiv (\text{left } y \in \text{dom val} \land \text{left } y \rightarrow_{R} x \land (\text{right } x \notin \text{dom val} \lor \text{right } x = y)
\]

We define a function, \(\text{mor } (q, \text{lt}, \text{rt}, S, n)\) such that
mor (t.root, t.left, t.right, [], t.size) = (t.right, inorder t)

\[
\begin{align*}
mor (q, lt, rt, S, n) \\
&| S.size = n \quad f \quad (rt, S) \\
&| left q \notin \text{dom val} \quad f \quad mor (rt \ q, \ rt, S ++ [\text{val } q]) \\
&| \text{marked } q \quad f \quad mor (rt \ q, rt \uparrow \{p \atop 2p+1\}, S ++ [\text{val } q]) \\
&\neg \text{marked } q \quad f \quad mor (lt \ q, rt \uparrow \{p \atop q\}, S) \\
&\text{where } p = \text{pred}' q
\end{align*}
\]

Notation:
\[\uparrow\] is the override operator

Eiffel program
Using 'pointers', and using void for the 'undefined' links, we get the following Eiffel routine for inorder which is directly based on that of Joe Morris [Morris_79].
mor (t0:TREE[STRING]) is
 local
 rm,t : NODE[STRING]
 do
 from
 t := t0
 until
 t = void
 loop
 if t.left = void then
 print(t.value)
 t := t.right
 else
 from
 rm := t.left
 until
 rm.right=void or rm.right=t
 loop
 rm := rm.right
 end
 { rm = right_most(left t) }
 if rm.right = void then
 rm.right_set(t)
 t := t.left
 { marked t }
 else
 print(t.value)
 rm.Right_Set(void)
 { ¬ marked t }
 t := t.right
 end
 end
end -- mor
Termination
Let \(n \) = number of nodes in tree,
\(m \) = number of marked nodes
\(s \) = number of S, output list.

First attempt:
? variant?: \(2n - (m + s) \)

but for call
\[
\text{marked q \& mor (rt p, rt \{p \# 2p+1\}, S + [val p])}
\]

\(p \) gets unmarked and so \(m \) decreases by 1
while \(s \) increases by 1 and so no overall decrease in
variant.

Try
variant: \(2(n-s) - m \)

In effect, 'processing a node' is counted double of
'marking a node'.

When program terminates, \(s = n \) and \(m = 0 \).

Note:
In the article [Morris_79], the following is
suggested as a variant:

variant:
The number of nodes still to processed
+ the number of left edges
= \((n - s) + \#\text{left_edges} \)
Conclusion

The Functional Programming (FP) version of the non-recursive inorder program attempts to capture the essence of the imperative routine. Rather than verify the imperative routine directly, it is hoped to verify the FP one which then can be used in the verification of the imperative routine.

References: