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Overview

I We have seen how to fit Bayesian models to data using MCMC

I This is a powerful computational tool that lets us fit a lot of
different models in a Bayesian framework

I We are going to look at a simple hierarchical model that is a
natural fit in this framework



Statistical models – review

I So far we have looked at
I Binomial models
I Normal models

I We have seen how to fit these models to data in a Bayesian
framework
I Assign priors to parameters
I Fit using MCMC if needed
I Interpret and posterior distribution for parameters as needed



Normal distribution - generative model

µ ∼ N (µ0, 1/τ0)

τ ∼ G(a, b)

i = 1, . . . , n : yi ∼ N (µ, 1/τ)

I Conditional posterior distributions for µ and τ :

µ|y , τ ∼ N (µn, 1/τn)

τ |y , µ ∼ G(an, bn)



Normal distribution - graph representation



Normal distribution - plate notation



Normal distribution - conditional on τ



Normal distribution - conditional on µ



Comparing multiple means

I Now suppose we observe data samples from K multiple groups:

y1 = y1,1, . . . , yn1,1

...

yK = y1,K , . . . , ynK ,K .

I We assume that each sample is normally distributed:

yi ,k ∼ N (θk , 1/τw ),

for each observation i in each group k.

I We assume a common precision (variance) parameter τ across
all groups.



Example - schools data

## school mathscore
## 1157 58 50.94
## 889 46 35.77
## 447 24 46.94
## 1649 86 64.73
## 962 50 41.55
## 1231 61 55.28

I We assess exam scores of n = 1993 students from 100 different
schools

I Same context as earlier example but many more schools



Comparing multiple means - data
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Comparing multiple groups

I We want to compare the performance of the schools, i.e., at
the level of population means

θ1, . . . , θK .

I We could of course directly compare the sample means
ȳ1, . . . , ȳK .

I But we know there is variability in the way that these summary
statistics have been collected:
I A student’s performance in an exam will vary from day to day;
I Some students are weaker/stronger than others, so different

samples may obtain a somewhat different scores.

I Our comparison needs to take this into account and distinguish
between systematic and random variation.



Schools data



Modelling approach

I A classic approach to take here would be to perform a
hypothesis test
I Assume a null model where d = 0 across all groups;
I Take the variability of the data into account
I If the scores are different enough that statistical significance is

achieved ⇒ conclude that a difference exists.
I Otherwise, if e.g., p > 0.05, fail to reject H0 and conclude that

no real differences can be detected in the data.



Modelling approach

I This approach is well known and called ANOVA (analysis of
variance)

I But we can criticise this approach.
I Suppose that p = 0.055. Is this result really so different from

p = 0.045?
I The intial ANOVA test also only gives an overall result. To

compare all groups requires adjustments to avoid catastrophic
Type 1 error.

I It is more flexible to explicitly model these means in a Bayesian
framework.



Comparing multiple means - model

I Let µ be a population mean;
I Let τb be precision between groups;
I Let θk denote mean of group k;
I Let τw be precision within groups; this is common to all

groups.



Comparing multiple means - model

I Model the data as follows:

θk = µ+ dk , k = 1, . . . ,K

I dk ∼ N (0, 1/τb) for all k.

I Then:
yi ,k = µ+ dk + εi ,k , i = 1, . . . , nk

I εi ,k ∼ N (0, 1/τw ) for all i , k, i.e., noise.



Comparing multiple means - model

I Another way to write this is that we assume that:

I For k = 1, . . . ,K :

θk ∼ N (µ, 1/τb);

I For i = 1, . . . , nk :

yi,k ∼ N (θk , 1/τw ),

I These representations are equivalent

I But I prefer the latter representation
I makes dependency between variables more explicit
I more parsimonious



Choosing priors

I Let’s choose the following priors for this model
I µ ∼ N (µ0, 1/τ0);
I τb ∼ G(a, b);
I Let τw ∼ G(α, β);

I These choices should be unsurprising at this point
I see notes on Normal model for details

I We don’t need to specify a prior for group means θ1, . . . , θK .
I µ and τb act as the “prior” in this case – see graph.



Comparing multiple means – graph



Inference

I In practice, we can fit this model using Stan, or other specialist
languages.

I However it is still instructive to review how to perform
inference in this case

I So we will outline the key steps



Inference - build the posterior

I Assume for now that µ, τb, τw are known.

I We have a joint distribution for y and θ of the form:

p(y , θ|µ, τb, τw ) = p(y |θ, τw )p(θ|µ, τb)

=
K∏

k=1

nk∏
i=1

p(yi ,k |θk , τw )p(θk |µ, τb).



Building the posterior

I We can then construct the full posterior by adding in prior
terms for µ, τb, and τw :

p(θ, µ, τb, τw |y , µ0, τ0, a, b, α, β)

∝ p(y , θ|µ, τb, τw )p(µ|µ0, τ0)p(τb|a, b)p(τw |α, β)

∝
{ K∏

k=1

nk∏
i=1

p(yi ,k |θk , τw )
}
×

K∏
k=1

p(θk |µ, τb)

×p(µ|µ0, τ0)p(τb|a, b)p(τw |α, β).

I Note the relationship between the structure of this posterior
and the graph on the previous slide.



Conditional distributions – µ



Conditional distributions – µ

I The conditional distribution p(µ|θ, τb) for the population mean
µ is:

p(µ|θ, τb, µ0, τ0) ∝
K∏

k=1
p(θk |µ, τb)p(µ|µ0, τ0),

I where p(θk |µ, τb) is a normal distribution, for all k, and
p(µ|µ0, τ0) is also normal.

I Hence µ|θ, τb, µ0, τ0 ∼ N (µK , 1/τK ), with

µK = Kτb θ̄ + τ0µ0
Kτb + τ0

;

τK = Kτb + τ0.



Conditional distributions – τb



Conditional distributions – τb

I The conditional distribution for the between group precision τb
is:

p(τb|θ, µ, a, b) ∝
K∏

k=1
p(θk |µ, τb)p(τb|a, b),

I where p(θk |µ, τb) is a normal distribution, for all k, and
p(τb|a, b) is Gamma.

I Then τb|θ, µ, a, b ∼ G(aK , bK ), with

aK = K/2 + a;

bK = 1
2

{ K∑
k=1

(θk − µ)2
}

+ b.



Conditional distributions – θk



Conditional distributions – θk

I The conditional distribution for each θk is:

p(θk |y , µ, τb, τw ) ∝
nk∏

i=1
p(yik |θkτw )p(θk |µ, τb)

I where p(yik |θkτw ) and p(θk |µ, τb) are both normally
distributed, for all i and k.

I Then θk |y , µ, τb, τw ∼ N (λnk , 1/γnk ), with

λnk = nkτw ȳk + τbµ

nkτw + τb
;

γnk = nkτw + τb.



Conditional distributions – τw



Conditional distributions – τw

I The conditional distribution for within group precision τw is:

p(τw |θ, α, β) ∝
K∏

k=1

nk∏
i=1

p(yi ,k |θk , τw )p(τw |α, β),

I p(yi ,k |θk , τw ) is normal for all i , k, and p(τw |α, β) is Gamma
I ⇒ τw |θ, α, β ∼ G(αn, βn), with

αn =
K∑

k=1

nk
2 + α;

bK = 1/2
{ K∑

k=1

nk∑
i=1

(yi ,k − θk)2
}

+ b.



Inference for model

I Because the conditional distributions are available in all cases,
we can update the model using a Gibbs sampler.

I Even if we use a different approach, the conditional
distributions of the parameters give us an insight into what we
learn from the data.

I The hierarchical structure of the model means that the group
means θ1, . . . , θK behave like the “data” for µ and τb;

I Conversely, µ and τb behave like hyperparameters for each θk ,
even though they are estimated from the data.



Interpreting the model

I Note that, when estimating θk , the conditional mean λnk has
the form

λnk = nkτw ȳk + τbµ

nkτw + τb

I So the estimate for θk is effectively a weighted combination of
elements
I ȳk estimated directly from the data and relating explicitly to

group k;
I µ indirectly estimated from data across all groups.

I We are pooling information across all samples when assessing
individual groups.



Interpreting the model

I In this context, µ can be called a shrinkage factor.

I In a full hierarchical model, we “borrow” information between
all groups when estimating the parameters of individual groups.

I This is useful when the sample size for some groups is small.



Schools data - global parameters



Schools data - schools means θ



Schools data - θ vs ȳ



Conclusion

I We have looked a hierarchical model to compare data from K
groups.
I This is our first “proper” statistical model.

I We estimated the model using Gibbs samplers automatically
using Stan:
I The structure of our model meant that inference was

straightforward.
I This structure also lets us pool information across several groups
I This is helpful when information is limited (sample size is small)

for some groups
I You should be clear on what each parameter in the models

represents, and how to interpret the model output.
I When a model has a lot of parameters we sometimes need to be

creative in how we interpret this output.



Extensions

I It is possible to extend the hierarchy of the model further if the
data set has richer structure, for example:
I schools in regions
I students in classes

I Inference in this case would be very similar to the models we
have examined.

I In fact, in many cases Bayesian inference can be thought of as
“mechanical”, and there is dedicated software to implement
such models as simply as possible.


