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Overview

> We have seen how to fit Bayesian models to data using MCMC

» This is a powerful computational tool that lets us fit a lot of
different models in a Bayesian framework

> We are going to look at a simple hierarchical model that is a
natural fit in this framework



Statistical models — review

» So far we have looked at
» Binomial models
» Normal models
> We have seen how to fit these models to data in a Bayesian
framework
> Assign priors to parameters
» Fit using MCMC if needed
» Interpret and posterior distribution for parameters as needed



Normal distribution - generative model

p~ N(po,1/70)
T Ng(aab)
i=1,....,n:y; ~N(u,1/7)

» Conditional posterior distributions for © and 7:
N|y7 T~ N(:U’m 1/7-'7)

Tly, .~ G(an, bn)



Normal distribution - graph representation




Normal distribution - plate notation




Normal distribution - conditional on 7




Normal distribution - conditional on p




Comparing multiple means

> Now suppose we observe data samples from K multiple groups:

yi=Yii,--. 7)/n1,1

YK = Y1,Ks- -5 Ynk,K-
» We assume that each sample is normally distributed:
Yik ~ N(Ok, 1/Tw),

for each observation i in each group k.

» We assume a common precision (variance) parameter 7 across
all groups.



Example - schools data

## school mathscore
## 1157 58 50.94
## 889 46 35.77
## 447 24 46.94
## 1649 86 64.73
## 962 50 41.55
## 1231 61 55.28

> We assess exam scores of n = 1993 students from 100 different
schools
» Same context as earlier example but many more schools



Comparing multiple means - data

80~ . .

mathscore

785872766 ABASSBLS DEBCGT PBHE713006 250 9034: 247857

reorder(school, mathscore, median)



Comparing multiple groups

> We want to compare the performance of the schools, i.e., at
the level of population means

01,. .. 0k.

» We could of course directly compare the sample means
.)717 A 7.y_l<'
» But we know there is variability in the way that these summary

statistics have been collected:

» A student’s performance in an exam will vary from day to day;
» Some students are weaker/stronger than others, so different
samples may obtain a somewhat different scores.

» Our comparison needs to take this into account and distinguish
between systematic and random variation.



Schools data
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Modelling approach

P A classic approach to take here would be to perform a
hypothesis test

» Assume a null model where d = 0 across all groups;

» Take the variability of the data into account

» |f the scores are different enough that statistical significance is
achieved = conclude that a difference exists.

» Otherwise, if e.g., p > 0.05, fail to reject Hy and conclude that
no real differences can be detected in the data.



Modelling approach

» This approach is well known and called ANOVA (analysis of
variance)

» But we can criticise this approach.

» Suppose that p = 0.055. Is this result really so different from
p = 0.0457

» The intial ANOVA test also only gives an overall result. To
compare all groups requires adjustments to avoid catastrophic
Type 1 error.

> It is more flexible to explicitly model these means in a Bayesian
framework.



Comparing multiple means - model

» Let i be a population mean;

P> Let 7, be precision between groups;

> Let 6, denote mean of group k;

> Let 7, be precision within groups; this is common to all
groups.



Comparing multiple means - model

» Model the data as follows:
Ok=p+de,k=1,....K

> di ~ N(0,1/7p) for all k.

» Then:
Yik =p+de+eip,i=1...,ng

> ¢k ~N(0,1/7) for all i, k, i.e., noise.



Comparing multiple means - model

» Another way to write this is that we assume that:

> Fork=1,...,K:

0;( NN(,U,, l/Tb);

> Fori=1,...,ng:
Yik ~ N0k, 1/70),
P> These representations are equivalent

» But | prefer the latter representation

» makes dependency between variables more explicit
» more parsimonious



Choosing priors

P> Let's choose the following priors for this model
> o~ N(po,1/70);
> 7, ~ G(a, b);
> Let 7y, ~ G(a, B);
» These choices should be unsurprising at this point
» see notes on Normal model for details
> We don't need to specify a prior for group means 61, ..., 0k.
» 1 and 75 act as the “prior” in this case — see graph.



Comparing multiple means — graph
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Inference

» In practice, we can fit this model using Stan, or other specialist
languages.

» However it is still instructive to review how to perform
inference in this case

» So we will outline the key steps



Inference - build the posterior

» Assume for now that u, 7, 7, are known.
> We have a joint distribution for y and 6 of the form:
Py, 01, 7o, Tw) = p(y10, 7w )p(6] 11, 7b)

K ng
- H H P(Yik|Oks Tw ) P(Ok| 12s Tb)-
k=1i=1



Building the posterior

» We can then construct the full posterior by adding in prior
terms for u, 7y, and 7, :

p(97 M, Th, 7—W|.y7 Ho, 70, 4, bv «, 5)
o p(y, 0|1, Tb, Tw ) (1] 110, T0) P(Tb| @, B) P(Tw | v, B)

K ng K
X {H H p(Yik 9k,Tw)} X H p(Ok|p, 7b)
k=1i=1 k=1

xp(plpo, 70)p(76|a, b)p(Twex, ).

» Note the relationship between the structure of this posterior
and the graph on the previous slide.



Conditional distributions — p




Conditional distributions — 1
» The conditional distribution p(u|6,7p) for the population mean
L is:
K

p(ul0, 7b, 10, 70) o< [ p(Oklre, 76)p (12l o, 7o),
k=1

» where p(0|u, 7p) is a normal distribution, for all k, and
p(1] 10, 70) is also normal.

> Hence :U‘|97 Ths 40, TO ™~ N(MKv 1/TK)7 with

_ KTbQ_—i-To,uo'
K= Kty + 10

Tk = K7p + 70.



Conditional distributions — 7,




Conditional distributions — 74

» The conditional distribution for the between group precision 7

is:
K

p(Tb|97 K, a, b) X H p(ek’:u7 Tb),D(’Tb|3, b)7
k=1

» where p(0|u, 7p) is a normal distribution, for all k, and
p(7p|a, b) is Gamma.
» Then 74|60, i, a, b ~ G(ak, bk), with

aK:K/2+a;

bk =

N

K
{Z(ek - M)2} + b.

k=1



Conditional distributions — 6




Conditional distributions — 6

» The conditional distribution for each 6 is:

Ng

p(Okly 1> 7o, Tw) o< T | P(vikl|OkTw) P(Okl 12, 7h)
i—1

» where p(yik|0kTw) and p(Ok|p, 7p) are both normally
distributed, for all i and k.

» Then Okly, i, 7o, Tw ~ N (An,, 1/7n,), with

NkTwYk + Thlt

A, =
M NeTw + Th

Yne = NkTw + Th.



Conditional distributions — 7,




Conditional distributions — 7,

» The conditional distribution for within group precision 7, is:

K

Tw)P(Tw|a, B);

p(Twl0, o
k=1i=1

» p(yikl0k, Tw) is normal for all i, k, and p(7y|c, B) is Gamma

> = TW|97 O[,ﬂ ~ g(amﬁn)u with

K
n
an:Z?k‘i‘a;
k=1

S

k

K
bk = 1/2{2

k=1i=1

(Vik — 0k)? } + b.



Inference for model

» Because the conditional distributions are available in all cases,
we can update the model using a Gibbs sampler.

» Even if we use a different approach, the conditional
distributions of the parameters give us an insight into what we
learn from the data.

» The hierarchical structure of the model means that the group
means 01, ...,0k behave like the "data” for p and 7p;

» Conversely, i and 7, behave like hyperparameters for each 6y,
even though they are estimated from the data.



Interpreting the model

» Note that, when estimating 0, the conditional mean A, has
the form

NkTwYk + Thit
NKTy + Th

A, =

Nk

» So the estimate for 0y is effectively a weighted combination of
elements
Py, estimated directly from the data and relating explicitly to
group k;
» 1 indirectly estimated from data across all groups.
» We are pooling information across all samples when assessing
individual groups.



Interpreting the model

» In this context, u can be called a shrinkage factor.

» In a full hierarchical model, we “borrow” information between
all groups when estimating the parameters of individual groups.

» This is useful when the sample size for some groups is small.



Schools data - global
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Schools data - # vs y
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Conclusion

» We have looked a hierarchical model to compare data from K
groups.
» This is our first “proper” statistical model.
> We estimated the model using Gibbs samplers automatically
using Stan:
» The structure of our model meant that inference was
straightforward.
» This structure also lets us pool information across several groups
» This is helpful when information is limited (sample size is small)
for some groups
» You should be clear on what each parameter in the models
represents, and how to interpret the model output.
» When a model has a lot of parameters we sometimes need to be
creative in how we interpret this output.



Extensions

P It is possible to extend the hierarchy of the model further if the
data set has richer structure, for example:

» schools in regions
» students in classes

» Inference in this case would be very similar to the models we
have examined.

» In fact, in many cases Bayesian inference can be thought of as
“mechanical”, and there is dedicated software to implement
such models as simply as possible.



