CS2010: ALGORITHMS AND DATA STRUCTURES

Lecture 4: Order of Growth, Asymptotic Notation, Memory Performance

Vasileios Koutavas

School of Computer Science and Statistics
Trinity College Dublin
LAST WEEK

→ Estimate the performance of algorithms by
 → Experiments & Observations
 → Precise Mathematical Calculations
 → Approximate Mathematical Calculations using Cost Models
 → Every basic operation costs 1 time unit
 → Keep only the higher-order terms
 → Count only some operations

→ This Lecture: Classification according to running time order of growth
Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

Run program, **doubling** the size of the input.

<table>
<thead>
<tr>
<th>N</th>
<th>time (seconds)</th>
<th>ratio</th>
<th>\lg ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>500</td>
<td>0.0</td>
<td>4.8</td>
<td>2.3</td>
</tr>
<tr>
<td>1,000</td>
<td>0.1</td>
<td>6.9</td>
<td>2.8</td>
</tr>
<tr>
<td>2,000</td>
<td>0.8</td>
<td>7.7</td>
<td>2.9</td>
</tr>
<tr>
<td>4,000</td>
<td>6.4</td>
<td>8.0</td>
<td>3.0</td>
</tr>
<tr>
<td>8,000</td>
<td>51.1</td>
<td>8.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

\[
\frac{T(2N)}{T(N)} = \frac{a(2N)^b}{aN^b} = 2^b
\]

seems to converge to a constant $b \approx 3$

Hypothesis. Running time is about aN^b with $b = \lg$ ratio.

Caveat. Cannot identify logarithmic factors with doubling hypothesis.
1.4 Analysis of Algorithms

- introduction
- observations
- mathematical models
- order-of-growth classifications
- theory of algorithms
- memory
Common order-of-growth classifications

Definition. If $f(N) \sim c \cdot g(N)$ for some constant $c > 0$, then the order of growth of $f(N)$ is $g(N)$.
- Ignores leading coefficient.
- Ignores lower-order terms.

Ex. The order of growth of the running time of this code is N^3.

```
int count = 0;
for (int i = 0; i < N; i++)
    for (int j = i+1; j < N; j++)
        for (int k = j+1; k < N; k++)
            if (a[i] + a[j] + a[k] == 0)
                count++;
```

Typical usage. With running times.

where leading coefficient depends on machine, compiler, JVM, ...
Common order-of-growth classifications

Good news. The set of functions

1, log N, N, N log N, N^2, N^3, and 2^N

suffices to describe the order of growth of most common algorithms.
Common order-of-growth classifications

<table>
<thead>
<tr>
<th>order of growth</th>
<th>name</th>
<th>typical code framework</th>
<th>description</th>
<th>example</th>
<th>(T(2N) / T(N))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>constant</td>
<td>(a = b + c;)</td>
<td>statement</td>
<td>add two numbers</td>
<td>1</td>
</tr>
<tr>
<td>(\log N)</td>
<td>logarithmic</td>
<td>while ((N > 1)) { N = N / 2; ... }</td>
<td>divide in half</td>
<td>binary search</td>
<td>(~ 1)</td>
</tr>
<tr>
<td>(N)</td>
<td>linear</td>
<td>for (int (i = 0; i < N; i++)) { ... }</td>
<td>loop</td>
<td>find the maximum</td>
<td>2</td>
</tr>
<tr>
<td>(N \log N)</td>
<td>linearithmic</td>
<td>[see mergesort lecture]</td>
<td>divide and conquer</td>
<td>mergesort</td>
<td>(~ 2)</td>
</tr>
<tr>
<td>(N^2)</td>
<td>quadratic</td>
<td>for (int (i = 0; i < N; i++)) for (int (j = 0; j < N; j++)) { ... }</td>
<td>double loop</td>
<td>check all pairs</td>
<td>4</td>
</tr>
<tr>
<td>(N^3)</td>
<td>cubic</td>
<td>for (int (i = 0; i < N; i++)) for (int (j = 0; j < N; j++)) for (int (k = 0; k < N; k++)) { ... }</td>
<td>triple loop</td>
<td>check all triples</td>
<td>8</td>
</tr>
<tr>
<td>(2^N)</td>
<td>exponential</td>
<td>[see combinatorial search lecture]</td>
<td>exhaustive search</td>
<td>check all subsets</td>
<td>(T(N))</td>
</tr>
</tbody>
</table>
Example: **3-SUM**

Q. Approximately how many array accesses as a function of input size N?

```
int count = 0;
for (int i = 0; i < N; i++)
    for (int j = i+1; j < N; j++)
        for (int k = j+1; k < N; k++)
            if (a[i] + a[j] + a[k] == 0)
                count++;
```

A. $\approx \frac{1}{2} N^3$ array accesses.

- Count only array accesses
- Cost of each array access: 1 time unit
- use tilde notation

$$\binom{N}{3} = \frac{N(N-1)(N-2)}{3!} \approx \frac{1}{6} N^3$$

Order of Growth: N^3
Example: Binary Search
Binary search demo

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

- Too small, go left.
- Too big, go right.
- Equal, found.

successful search for 33
Trivial to implement?

- First binary search published in 1946.
- First bug-free one in 1962.
- Bug in Java's Arrays.binarySearch() discovered in 2006.

```java
public static int binarySearch(int[] a, int key) {
    int lo = 0, hi = a.length-1;
    while (lo <= hi) {
        int mid = lo + (hi - lo) / 2;
        if (key < a[mid]) hi = mid - 1;
        else if (key > a[mid]) lo = mid + 1;
        else return mid;
    }
    return -1;
}
```

Invariant. If key appears in the array a[], then a[lo] ≤ key ≤ a[hi].
Binary search: mathematical analysis

Proposition. Binary search uses at most $1 + \lg N$ key compares to search in a sorted array of size N.

Def. $T(N) = \# \text{ key compares to binary search a sorted subarray of size } \leq N$.

Binary search recurrence. $T(N) \leq T(N/2) + 1 \text{ for } N > 1, \text{ with } T(1) = 1$.

Pf sketch. [assume N is a power of 2]

\[
T(N) \leq T(N/2) + 1 \quad [\text{ given }]
\leq T(N/4) + 1 + 1 \quad [\text{ apply recurrence to first term }]
\leq T(N/8) + 1 + 1 + 1 \quad [\text{ apply recurrence to first term }]
\vdots
\leq T(N/N) + 1 + 1 + \ldots + 1 \quad [\text{ stop applying, } T(1) = 1]
= 1 + \lg N
The base of the logarithm contributes only a constant factor to the running time.

\[\log_a N = \frac{\log_b N}{\log_b a} = c \cdot \log_b N \]

where \(c = 1/\log_b a \) is a constant (does not depend on \(N \)).

EX. BINS (Binary search) runs in \(T_{\text{BINS}}(N) \sim \lg N \)

Suppose SUPERBINS, a faster algorithm for binary search, that runs in \(T_{\text{superbin}}(N) \sim \log_{16} N \) time.

Then we would have \(T_{\text{SUPERBINS}}(N) \sim \frac{1}{\log_{2^{16}}} \lg N = \frac{1}{4} \lg N \sim \frac{1}{4} T_{\text{BINS}}(N) \).

Although the faster algorithm runs in 1/4 of the time of binary search, it still has the same order of growth:

When the input size doubles, the running time increases by the same amount:

\[
\frac{T_{\text{SUPERBINS}}(2N)}{T_{\text{SUPERBINS}}(N)} = \frac{T_{\text{BINS}}(2N)}{T_{\text{BINS}}(N)} = \frac{T_{\text{BINS}}(2N)}{T_{\text{BINS}}(N)}
\]

\(^1\lg N \) is notation for \(\log_2 N \)
Example: 3-SUM

Q. **Approximately how many array accesses** as a function of input size N?

```java
int count = 0;
for (int i = 0; i < N; i++)
    for (int j = i+1; j < N; j++)
        for (int k = j+1; k < N; k++)
            if (a[i] + a[j] + a[k] == 0)
                count++;
```

A. $\sim \frac{1}{2} N^3$ array accesses.

$\binom{N}{3} = \frac{N(N-1)(N-2)}{3!}$

$\sim \frac{1}{6} N^3$

Can we do better?
An $N^2 \log N$ algorithm for 3-SUM

Algorithm.
- Step 1: Sort the N (distinct) numbers.
- Step 2: For each pair of numbers $a[i]$ and $a[j]$, binary search for $-(a[i] + a[j])$.

input

30 -40 -20 -10 40 0 10 5

sort

-40 -20 -10 0 5 10 30 40

binary search

<table>
<thead>
<tr>
<th>Pair</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-40, -20)</td>
<td>60</td>
</tr>
<tr>
<td>(-40, -10)</td>
<td>50</td>
</tr>
<tr>
<td>(-40, 0)</td>
<td>40</td>
</tr>
<tr>
<td>(-40, 5)</td>
<td>35</td>
</tr>
<tr>
<td>(-40, 10)</td>
<td>30</td>
</tr>
<tr>
<td>(-20, -10)</td>
<td>30</td>
</tr>
<tr>
<td>(-10, 0)</td>
<td>10</td>
</tr>
<tr>
<td>(10, 30)</td>
<td>-40</td>
</tr>
<tr>
<td>(10, 40)</td>
<td>-50</td>
</tr>
<tr>
<td>(30, 40)</td>
<td>-70</td>
</tr>
</tbody>
</table>

What is the order of growth?
An $N^2 \log N$ algorithm for 3-SUM

Algorithm.
- Step 1: Sort the N (distinct) numbers.
- Step 2: For each pair of numbers $a[i]$ and $a[j]$, binary search for $-(a[i] + a[j])$.

Analysis. Order of growth is $N^2 \log N$.
- Step 1: N^2 with insertion sort.
- Step 2: $N^2 \log N$ with binary search.

Remark. Can achieve N^2 by modifying binary search step.

Input
30 -40 -20 -10 40 0 10 5

Sort
-40 -20 -10 0 5 10 30 40

Binary search
(-40, -20) 60
(-40, -10) 50
(-40, 0) 40
(-40, 5) 35
(-40, 10) 30

(10, 30) -40
(10, 40) -50
(30, 40) -70

only count if $a[i] < a[j] < a[k]$ to avoid double counting
Comparing programs

Hypothesis. The sorting-based $N^2 \log N$ algorithm for 3-SUM is significantly faster in practice than the brute-force N^3 algorithm.

<table>
<thead>
<tr>
<th>N</th>
<th>time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>0.1</td>
</tr>
<tr>
<td>2,000</td>
<td>0.8</td>
</tr>
<tr>
<td>4,000</td>
<td>6.4</td>
</tr>
<tr>
<td>8,000</td>
<td>51.1</td>
</tr>
</tbody>
</table>

ThreeSum.java

<table>
<thead>
<tr>
<th>N</th>
<th>time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>0.14</td>
</tr>
<tr>
<td>2,000</td>
<td>0.18</td>
</tr>
<tr>
<td>4,000</td>
<td>0.34</td>
</tr>
<tr>
<td>8,000</td>
<td>0.96</td>
</tr>
<tr>
<td>16,000</td>
<td>3.67</td>
</tr>
<tr>
<td>32,000</td>
<td>14.88</td>
</tr>
<tr>
<td>64,000</td>
<td>59.16</td>
</tr>
</tbody>
</table>

ThreeSumDeluxe.java

Guiding principle. Typically, better order of growth \Rightarrow faster in practice.
Asymptotic Notation
In the Theory of Algorithms we are interested in the order of growth of runtime \(T(N) \), expressed as a function of the input size \(N \).

\(T(N) \) may not be a simple function and can have different orders of growth for different values of \(N \).

Rationale of asymptotic notation:

- larger \(N \)'s are more important than smaller ones
- consider the order of growth when \(N \to \infty \) (asymptotic order of growth)
→ $\Theta(g(N))$: the set of functions with asymptotic order of growth $g(N)$.

EX. The (worst case) running time $T(N)$ of Insertion Sort is in $\Theta(N^2)$. We write $T(N) = \Theta(N^2)$

†Abuse of notation, means $T(N) \in \Theta(N^2)$.
→ $\Theta(g(N))$: the set of functions with asymptotic order of growth $g(N)$.

EX. The (worst case) running time $T(N)$ of Insertion Sort is in $\Theta(N^2)$.
We write $T(N) = \Theta(N^2)$.

→ $O(g(N))$: the set of functions with asymptotic order of growth $\leq g(N)$.

EX. The (worst case) running time $T(N)$ of Insertion Sort is in $O(N^3)$.
We write $T(N) = O(N^3)$.

†Abuse of notation, means $T(N) \in \Theta(N^2)$.
→ **Θ(g(N))**: the set of functions with asymptotic order of growth \(g(N) \).
 EX. The (worst case) running time \(T(N) \) of Insertion Sort is in \(Θ(N^2) \).
 We write \(T(N) = Θ(N^2) \) †

→ **\(O(g(N)) \)**: the set of functions with asymptotic order of growth \(\leq g(N) \).
 EX. The (worst case) running time \(T(N) \) of Insertion Sort is in \(O(N^3) \).
 We write \(T(N) = O(N^3) \) †

→ **\(Ω(g(N)) \)**: the set of functions with asymptotic order of growth \(\geq g(N) \).
 EX. The (worst case) running time \(T(N) \) of Insertion Sort is in \(Ω(N) \).
 We write \(T(N) = Ω(N) \) †

†Abuse of notation, means \(T(N) ∈ Θ(N^2) \).
Commonly-used notations in the theory of algorithms

<table>
<thead>
<tr>
<th>notation</th>
<th>provides</th>
<th>example</th>
<th>shorthand for</th>
<th>used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Theta</td>
<td>asymptotic order of growth</td>
<td>(\Theta(N^2))</td>
<td>(\frac{1}{2} N^2) (10 N^2) (5 N^2 + 22 N \log N + 3N) (\vdots)</td>
<td>classify algorithms</td>
</tr>
<tr>
<td>Big Oh</td>
<td>(\Theta(N^2)) and smaller</td>
<td>(O(N^2))</td>
<td>(10 N^2) (100 N) (22 N \log N + 3N) (\vdots)</td>
<td>develop upper bounds</td>
</tr>
<tr>
<td>Big Omega</td>
<td>(\Theta(N^2)) and larger</td>
<td>(\Omega(N^2))</td>
<td>(\frac{1}{2} N^2) (N^5) (N^3 + 22 N \log N + 3N) (\vdots)</td>
<td>develop lower bounds</td>
</tr>
</tbody>
</table>
FORMAL DEFINITIONS OF ASYMPTOTIC NOTATION

\[f(n) = \Theta(g(n)) \]

\(\Theta(g(N)) = \left\{ f(N) : \text{there exist positive constants } c_1, c_2, N_0 \text{ such that } 0 \leq c_1 g(N) \leq f(N) \leq c_2 g(N) \text{ for all } N \geq N_0 \right\} \)
FORMAL DEFINITIONS OF ASYMPTOTIC NOTATION

\[f(n) = \Theta(g(n)) \]

\[\Theta(g(N)) = \left\{ f(N) : \text{there exist positive constants } c_1, c_2, N_0 \text{ such that } 0 \leq c_1 g(N) \leq f(N) \leq c_2 g(N) \text{ for all } N \geq N_0 \right\} \]

\[f(n) = O(g(n)) \]

\[O(g(N)) = \left\{ f(N) : \text{there exist positive constants } c, N_0 \text{ such that } 0 \leq f(N) \leq c g(N) \text{ for all } N \geq N_0 \right\} \]
FORMAL DEFINITIONS OF ASYMPTOTIC NOTATION

\[f(n) = \Theta(g(n)) \equiv \{ f(N) : \text{there exist positive constants } c_1, c_2, N_0 \text{ such that} \]
\[0 \leq c_1 g(N) \leq f(N) \leq c_2 g(N) \text{ for all } N \geq N_0 \} \]

\[f(n) = O(g(n)) \equiv \{ f(N) : \text{there exist positive constants } c, N_0 \text{ such that} \]
\[0 \leq f(N) \leq c g(N) \text{ for all } N \geq N_0 \} \]

\[f(n) = \Omega(g(n)) \equiv \{ f(N) : \text{there exist positive constants } c, N_0 \text{ such that} \]
\[0 \leq c_1 g(N) \leq f(N) \text{ for all } N \geq N_0 \} \]
Suppose myAlgorithm has an asymptotic running time \(T(N) = O(N^2 \log N) \)

Does that necessarily mean

- \(T(N) = O(N^3) \)?
- \(T(N) = O(N^2) \)?
- \(T(N) = \Omega(N) \)?
- \(T(N) = \Omega(N^3) \)?
- \(T(N) = \Omega(N^2 \log N) \)?
- \(T(N) = \Theta(N^2 \log N) \)?

\(T(N) = O(N^2 \log N) \) means \(T(N) \) is below the blue line...
Suppose myAlgorithm has an asymptotic running time $T(N) = O(N^2 \log N)$

Does that necessarily mean

→ $T(N) = O(N^3)$? YES
→ $T(N) = O(N^2)$? NO
→ $T(N) = \Omega(N)$? NO
→ $T(N) = \Omega(N^3)$? NO
→ $T(N) = \Omega(N^2 \log N)$? NO
→ $T(N) = \Theta(N^2 \log N)$? NO
Suppose \texttt{myAlgorithm} has an asymptotic running time $T(N) = \Omega(N^2 \log N)$.

Does that necessarily mean

\begin{align*}
 \rightarrow & \ T(N) = O(N^3) \text{?} \\
 \rightarrow & \ T(N) = O(N^2) \text{?} \\
 \rightarrow & \ T(N) = \Omega(N) \text{?} \\
 \rightarrow & \ T(N) = \Omega(N^3) \text{?} \\
 \rightarrow & \ T(N) = O(N^2 \log N) \text{?} \\
 \rightarrow & \ T(N) = \Theta(N^2 \log N) \text{?}
\end{align*}
Suppose myAlgorithm has an asymptotic running time $T(N) = \Omega(N^2 \log N)$.

Does that necessarily mean

- $T(N) = O(N^3)$? NO
- $T(N) = O(N^2)$? NO
- $T(N) = \Omega(N)$? YES
- $T(N) = \Omega(N^3)$? NO
- $T(N) = O(N^2 \log N)$? NO
- $T(N) = \Theta(N^2 \log N)$? NO

$T(N) = \Omega(N^2 \log N)$ means $T(N)$ is above the blue line...

...so it must be above the green line, for some c_2, ($T(N) = \Omega(N)$).
Suppose myAlgorithm has an asymptotic running time \(T(N) = \Theta(N^2 \log N) \)

Does that necessarily mean

\[\text{ → } T(N) = O(N^3) ? \]
\[\text{ → } T(N) = O(N^2) ? \]
\[\text{ → } T(N) = \Omega(N) ? \]
\[\text{ → } T(N) = \Omega(N^3) ? \]
\[\text{ → } T(N) = \Omega(N^2 \log N) ? \]
\[\text{ → } T(N) = O(N^2 \log N) ? \]
Suppose myAlgorithm has an asymptotic running time $T(N) = \Theta(N^2 \log N)$

Does that necessarily mean

→ $T(N) = O(N^3)$?
→ $T(N) = O(N^2)$?
→ $T(N) = \Omega(N)$?
→ $T(N) = \Omega(N^3)$?
→ $T(N) = \Omega(N^2 \log N)$? YES
→ $T(N) = O(N^2 \log N)$? YES

$T(N) = \Theta(N^2 \log N)$

means $T(N)$ is between the blue lines...

...so it must be above the bottom blue line ($T(N) = \Omega(N^2 \log N)$)
and below the top blue line ($T(N) = O(N^2 \log N)$)
Suppose myAlgorithm has an asymptotic running time \(T(N) = \Theta(N^2 \log N) \)

Does that necessarily mean

- \(T(N) = O(N^3) \)? YES
- \(T(N) = O(N^2) \)? NO
- \(T(N) = \Omega(N) \)? YES
- \(T(N) = \Omega(N^3) \)? NO
- \(T(N) = \Omega(N^2 \log N) \)? YES
- \(T(N) = O(N^2 \log N) \)? YES

\[T(N) = \Theta(N^2 \log N) \]

means \(T(N) \) is between the blue lines...

...so it must be above the green line, for some \(c_3 \)
(\(T(N) = \Omega(N) \)) and below the brown line, for some \(c_4 \)
(\(T(N) = O(N^3) \))
→ **Tilde notation**: an approximate model

→ **Asymptotic notation** $O/Theta/Omega$: order of growth when $N \to \infty$
→ **Tilde notation**: an approximate model

→ **Asymptotic notation** $O/\Theta/Omega$: order of growth when $N \to \infty$

→ **Common mistake 1**: interpret $O/\Theta/Omega$ as worst/average/best case running times

→ **Common mistake 2**: interpret asymptotic notation as an approximate model
→ **Tilde notation**: an approximate model

→ **Asymptotic notation** $O/\Theta/Omega$: order of growth when $N \to \infty$

→ **Common mistake 1**: interpret $O/\Theta/Omega$ as worst/average/best case running times

→ **Common mistake 2**: interpret asymptotic notation as an approximate model

→ **Book S&W**: uses the Tilde-notation.

→ **This module**: use asymptotic notation.
 → **Easy calculations** because of the properties of asymptotic notation
Simplify: Constant coefficients are equivalent to 1;
Keep only highest order term

Ex:

\[\Theta(1) = \Theta(2) = \Theta(300) \]
\[\Theta(N^2) = \Theta(10N^2) = \Theta(100N^2) \]
\[\Theta(lgN) = \Theta(log_{10} N) = \Theta(log_{20} N) \]
\[\Theta(N + \log N) = \Theta(N) \]
\[\Theta(10N^2 + 5\log N + 30) = \Theta(N^2) \]

And the same for \(O \) and \(\Omega \)

Always use the simplest forms!
Addition: keep only the highest order terms

Theorem
\[\Theta(f(N)) + \Theta(g(N)) = \Theta(f(N)) \quad \text{when } f(N) \geq_\infty g(N) \]

Ex:
- \[\Theta(1) + \Theta(1) = \Theta(1) \]
- \[\Theta(N^2) + \Theta(N \log N) = \Theta(N^2) \]
- \[\Theta(\log N) + \Theta(N \log N) = \Theta(N \log N) \]

And the same for \(O \) and \(\Omega \)
Multiplication: multiply inner functions

Theorem
\[\Theta(f(N)) \times \Theta(g(N)) = \Theta(f(N) \times g(N)) \]

Ex:
\[\rightarrow \Theta(1) \times \Theta(1) = \Theta(1) \]
\[\rightarrow \Theta(N^2) \times \Theta(N \log N) = \Theta(N^3 \log N) \]
\[\rightarrow \Theta(\log N) \times \Theta(2^N) = \Theta(2^N \log N) \]

And the same for \(O \) and \(\Omega \)
public static int binarySearch(int[] a, int key) {
 int lo = 0, hi = a.length-1;
 while (lo <= hi) {
 int mid = lo + (hi - lo)/2;
 if (key < a[mid]) hi = mid - 1;
 else if (key > a[mid]) lo = mid + 1;
 else return mid;
 }
 return -1;
}

Asymptotic (worst case) analysis:
```java
public static int binarySearch(int[] a, int key) {
    int lo = 0, hi = a.length - 1;
    while (lo <= hi) {
        int mid = lo + (hi - lo) / 2;
        if (key < a[mid]) hi = mid - 1;
        else if (key > a[mid]) lo = mid + 1;
        else return mid;
    }
    return -1;
}
```

Asymptotic (worst case) analysis:

Line 2: executed $\Theta(1)$ times, execution takes $\Theta(1)$ time \Rightarrow $T_2 = \Theta(1)$

Lines 3 – 8: executed $\Theta(\log N)$ times, each execution takes $\Theta(1)$ time \Rightarrow $T_{3-8} = \Theta(\log N) \times \Theta(1) = \Theta(\log N)$

Lines 9 – 10: executed $\Theta(1)$ times, execution takes $\Theta(1)$ time \Rightarrow $T_{9-10} = \Theta(1)$
```java
1  public static int binarySearch(int[] a, int key) {
2      int lo = 0, hi = a.length - 1;
3      while (lo <= hi) {
4          int mid = lo + (hi - lo) / 2;
5          if (key < a[mid]) hi = mid - 1;
6          else if (key > a[mid]) lo = mid + 1;
7          else return mid;
8      }
9      return -1;
10  }
```

Asymptotic (worst case) analysis:

Line 2: executed $\Theta(1)$ times, execution takes $\Theta(1)$ time $\Rightarrow T_2 = \Theta(1)$

Lines 3 – 8: executed $\Theta(\log N)$ times, each execution takes $\Theta(1)$ time $\Rightarrow T_{3-8} = \Theta(\log N) \times \Theta(1) = \Theta(\log N)$

Lines 9 – 10: executed $\Theta(1)$ times, execution takes $\Theta(1)$ time $\Rightarrow T_{9-10} = \Theta(1)$

Total Running time: $T(N) = T_2 + T_{3-8} + T_{9-10} = \Theta(1) + \Theta(\log N) + \Theta(1) = \Theta(\log N)$
```java
public void insertion_sort(int[] a) {
    for (int j = 1; j < a.length; j++) {
        int i = j - 1;
        while (i >= 0 && a[i] > a[i+1]) {
            int temp = a[i];
            a[i] = a[i+1];
            a[i+1] = temp;
            i--;
        }
    }
}
```

Asymptotic (worst case) analysis:
Asymptotic (worst case) analysis:

Lines 2,3,10: executed $\Theta(N)$ times, execution takes $\Theta(1)$ time $\Rightarrow T_{2,3,10} = \Theta(N)$
Asymptotic (worst case) analysis:

Lines 2,3,10: executed $\Theta(N)$ times, execution takes $\Theta(1)$ time $\Rightarrow T_{2,3,10} = \Theta(N)$

Lines 4 – 9: executed $\Theta(\log N^2)$ times, each execution takes $\Theta(1)$ time $\Rightarrow T_{4-9} = \Theta(N^2) \times \Theta(1) = \Theta(N^2)$

Line 11: executed $\Theta(1)$ times, execution takes $\Theta(1)$ time $\Rightarrow T_{11} = \Theta(1)$

Total Running time: $T(N) = T_{2,3,10} + T_{4-9} + T_{11} = \Theta(N) + \Theta(N^2) + \Theta(1) = \Theta(N^2)$
A software engineer was asked to design an algorithm which will input two unsorted arrays of integers, A (of size N) and B (also of size N), and will output true when all integers in A are present in B. The engineer came up with two alternatives. Which one is better?

```java
boolean isContained1(int[] A, int[] B) {
    boolean AInB = true;
    for (int i = 0; i < A.length; i++) {
        boolean iInB = linearSearch(B, A[i]);
        AInB = AInB && iInB;
    }
    return AInB;
}

boolean isContained2(int[] A, int[] B) {
    int[] C = new int[B.length];
    for (int i = 0; i < B.length; i++) { C[i] = B[i] }
    sort(C); // heapsort
    boolean AInC = true;
    for (int i = 0; i < A.length; i++) {
        boolean iInC = binarySearch(C, A[i]);
        AInC = AInC && iInC;
    }
    return AInC;
}
```
Write the following asymptotic order of growths in ascending order, from the most to the least efficient, using $<$ or \leq to show the equivalences and inequivalences between them.

$\Theta(N \log N)$
$\Theta(N)$
$\Theta(N^2 + 3N + 1)$
$\Theta(1)$
$\Theta(5N)$
$\Theta(N^3 + \log N)$
$\Theta(N^2)$
$\Theta(10)$
$\Theta(10N^3 + 2 \log(N))$
$\Theta(10 \log(N))$
$\Theta(2^N)$
1.4 Analysis of Algorithms

- introduction
- observations
- mathematical models
- order-of-growth classifications
- theory of algorithms
- memory
Types of analyses

Best case. Lower bound on cost.
- Determined by “easiest” input.
- Provides a goal for all inputs.

Worst case. Upper bound on cost.
- Determined by “most difficult” input.
- Provides a guarantee for all inputs.

Average case. Expected cost for random input.
- Need a model for “random” input.
- Provides a way to predict performance.

Ex 1. Array accesses for brute-force 3-SUM.
- **Best:** $\sim \frac{1}{2} N^3$
- **Average:** $\sim \frac{1}{2} N^3$
- **Worst:** $\sim \frac{1}{2} N^3$

Ex 2. Compares for binary search.
- **Best:** ~ 1
- **Average:** $\sim \lg N$
- **Worst:** $\sim \lg N$
Theory of algorithms

Goals.
- Establish “difficulty” of a problem.
- Develop “optimal” algorithms.

Approach.
- Suppress details in analysis: analyze “to within a constant factor.”
- Eliminate variability in input model: focus on the worst case.

Upper bound. Performance guarantee of algorithm for any input.
Lower bound. Proof that no algorithm can do better. *(for worst case inputs)*
Optimal algorithm. Lower bound = upper bound *(to within a constant factor)*.
Goals.
- Establish “difficulty” of a problem and develop “optimal” algorithms.
- Ex. 1-SUM = “Is there a 0 in the array?”

Upper bound. A specific algorithm.
- Running time of the optimal algorithm for 1-SUM is $O(N)$.

Lower bound. Proof that no algorithm can do better.
- Ex. Have to examine all N entries (any unexamined one might be 0).
- Running time of the optimal algorithm for 1-SUM is $\Omega(N)$. (for worst case inputs)

Optimal algorithm.
- Lower bound equals upper bound (to within a constant factor).
- Ex. Brute-force algorithm for 1-SUM is optimal: its running time is $\Theta(N)$.

Theory of algorithms: example 1
Goals.

- Establish “difficulty” of a problem and develop “optimal” algorithms.
- Ex. 3-Sum.

Upper bound. A specific algorithm.

- Ex. Brute-force algorithm for 3-Sum.
- Running time of the optimal algorithm for 3-Sum is $O(N^3)$.
Theory of algorithms: example 2

Goals.
- Establish “difficulty” of a problem and develop “optimal” algorithms.
- Ex. 3-SUM.

Upper bound. A specific algorithm.
- Ex. Improved algorithm for 3-SUM.
- Running time of the optimal algorithm for 3-SUM is $O(N^2 \log N)$.

Lower bound. Proof that no algorithm can do better.
- Ex. Have to examine all N entries to solve 3-SUM.
- Running time of the optimal algorithm for solving 3-SUM is $\Omega(N)$.

Open problems.
- Optimal algorithm for 3-SUM?
- Subquadratic algorithm for 3-SUM?
- Quadratic lower bound for 3-SUM?
Algorithm design approach

Start.
- Develop an algorithm.
- Prove a lower bound.

Gap?
- Lower the upper bound (discover a new algorithm).
- Raise the lower bound (more difficult).

Golden Age of Algorithm Design.
- 1970s–.
 - Steadily decreasing upper bounds for many important problems.
 - Many known optimal algorithms.

Caveats.
- Overly pessimistic to focus on worst case?
- Need better than “to within a constant factor” to predict performance.
1.4 Analysis of Algorithms

- introduction
- observations
- mathematical models
- order-of-growth classifications
- theory of algorithms
- memory
Basics

Bit. 0 or 1.

Byte. 8 bits.

Megabyte (MB). 1 million or 2^{20} bytes.

Gigabyte (GB). 1 billion or 2^{30} bytes.

64-bit machine. We assume a 64-bit machine with 8-byte pointers.
- Can address more memory.
- Pointers use more space.

Some JVMs "compress" ordinary object pointers to 4 bytes to avoid this cost.
Typical memory usage for primitive types and arrays

<table>
<thead>
<tr>
<th>Type</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean</td>
<td>1</td>
</tr>
<tr>
<td>byte</td>
<td>1</td>
</tr>
<tr>
<td>char</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>8</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
</tr>
</tbody>
</table>

Primitive types

<table>
<thead>
<tr>
<th>Type</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>char[]</td>
<td>$2N + 24$</td>
</tr>
<tr>
<td>int[]</td>
<td>$4N + 24$</td>
</tr>
<tr>
<td>double[]</td>
<td>$8N + 24$</td>
</tr>
</tbody>
</table>

One-dimensional arrays

<table>
<thead>
<tr>
<th>Type</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>char[][]</td>
<td>$\sim 2MN$</td>
</tr>
<tr>
<td>int[][]</td>
<td>$\sim 4MN$</td>
</tr>
<tr>
<td>double[][]</td>
<td>$\sim 8MN$</td>
</tr>
</tbody>
</table>

Two-dimensional arrays
Typical memory usage for objects in Java

Object overhead. 16 bytes.
Reference. 8 bytes.
Padding. Each object uses a multiple of 8 bytes.

Ex 1. A Date object uses 32 bytes of memory.

```java
public class Date {
    private int day;
    private int month;
    private int year;
    ...
}
```

16 bytes (object overhead)
4 bytes (int)
4 bytes (int)
4 bytes (int)
4 bytes (padding)
32 bytes
Typical memory usage summary

Total memory usage for a data type value:

- Primitive type: 4 bytes for int, 8 bytes for double, ...
- Object reference: 8 bytes.
- Array: 24 bytes + memory for each array entry.
- Object: 16 bytes + memory for each instance variable.
- Padding: round up to multiple of 8 bytes.

Shallow memory usage: Don't count referenced objects.

Deep memory usage: If array entry or instance variable is a reference, count memory (recursively) for referenced object.
Q. How much memory does WeightedQuickUnionUF use as a function of N? Use tilde notation to simplify your answer.

\[
\text{public class WeightedQuickUnionUF} \\
\text{public WeightedQuickUnionUF(int N)} \\
\text{id = new int[N];} \\
\text{sz = new int[N];} \\
\text{for (int i = 0; i < N; i++) id[i] = i;} \\
\text{for (int i = 0; i < N; i++) sz[i] = 1;} \\
\text{...} \\
\]

A. $8N + 88 \sim 8N$ bytes.
Turning the crank: summary

Empirical analysis.
- Execute program to perform experiments.
- Assume power law and formulate a hypothesis for running time.
- Model enables us to **make predictions**.

Mathematical analysis.
- Analyze algorithm to count frequency of operations.
- Use tilde notation to simplify analysis.
- Model enables us to **explain behavior**.

Scientific method.
- Mathematical model is independent of a particular system; applies to machines not yet built.
- Empirical analysis is necessary to validate mathematical models and to make predictions.