CS2010: ALGORITHMS AND DATA STRUCTURES

Lecture 9: Binary Heap – Heapsort

Vasileios Koutavas

School of Computer Science and Statistics
Trinity College Dublin
2.4 PRIORITY QUEUES

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation
2.4 Priority Queues

- API and elementary implementations
- Binary heaps
- Heapsort
- Event-driven simulation
Last Lecture
Priority queue

Collections. Insert and delete items. Which item to delete?

Stack. Remove the item most recently added.

Queue. Remove the item least recently added.

Randomized queue. Remove a random item.

Priority queue. Remove the largest (or smallest) item.

<table>
<thead>
<tr>
<th>operation</th>
<th>argument</th>
<th>return value</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td>E</td>
<td>Q</td>
</tr>
<tr>
<td>insert</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td>insert</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td>E</td>
<td>P</td>
</tr>
</tbody>
</table>
Priority queue API

Requirement. Generic items are Comparable.

```java
public class MaxPQ<Key extends Comparable<Key>> {
    // create an empty priority queue
    MaxPQ()
    MaxPQ(Key[] a)

    // insert a key into the priority queue
    void insert(Key v)

    // return and remove the largest key
    Key delMax()

    // is the priority queue empty?
    boolean isEmpty()

    // return the largest key
    Key max()

    // number of entries in the priority queue
    int size()
}
```
Challenge. Find the largest M items in a stream of N items.

- Fraud detection: isolate $\$\$ transactions.
- NSA monitoring: flag most suspicious documents.

Constraint. Not enough memory to store N items.

% more tinyBatch.txt
Turing 6/17/1990 644.08
vonNeumann 3/26/2002 4121.85
Dijkstra 8/22/2007 2678.40
vonNeumann 1/11/1999 4409.74
Dijkstra 11/18/1995 837.42
Hoare 5/10/1993 3229.27
vonNeumann 2/12/1994 4732.35
Hoare 8/18/1992 4381.21
Turing 1/11/2002 66.10
Thompson 2/27/2000 4747.08
Turing 2/11/1991 2156.86
Hoare 8/12/2003 1025.70
vonNeumann 10/13/1993 2520.97
Dijkstra 9/10/2000 708.95
Turing 10/12/1993 3532.36
Hoare 2/10/2005 4050.20

% java TopM 5 < tinyBatch.txt
Thompson 2/27/2000 4747.08
vonNeumann 2/12/1994 4732.35
vonNeumann 1/11/1999 4409.74
Hoare 8/18/1992 4381.21
vonNeumann 3/26/2002 4121.85
Priority queue client example

Challenge. Find the largest M items in a stream of N items.
- Fraud detection: isolate $$ transactions.
- NSA monitoring: flag most suspicious documents.

Constraint. Not enough memory to store N items.

```
MinPQ<Transaction> pq = new MinPQ<Transaction>();
while (StdIn.hasNextLine())
{
    String line = StdIn.readLine();
    Transaction item = new Transaction(line);
    pq.insert(item);
    if (pq.size() > M)
        pq.delMin();
}
```

use a min-oriented pq

Transaction data type is Comparable (ordered by $$)

pq contains largest M items

N huge, M large
Challenge. Find the largest M items in a stream of N items.

<table>
<thead>
<tr>
<th>implementation</th>
<th>time</th>
<th>space</th>
</tr>
</thead>
<tbody>
<tr>
<td>sort</td>
<td>$N \log N$</td>
<td>N</td>
</tr>
<tr>
<td>elementary PQ</td>
<td>$M N$</td>
<td>M</td>
</tr>
<tr>
<td>binary heap</td>
<td>$N \log M$</td>
<td>M</td>
</tr>
<tr>
<td>best in theory</td>
<td>N</td>
<td>M</td>
</tr>
</tbody>
</table>

order of growth of finding the largest M in a stream of N items
Priority queue: unordered and ordered array implementation

<table>
<thead>
<tr>
<th>operation</th>
<th>argument</th>
<th>return value</th>
<th>size</th>
<th>contents (unordered)</th>
<th>contents (ordered)</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>P</td>
<td>1</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>insert</td>
<td>Q</td>
<td>2</td>
<td>P Q</td>
<td>P Q</td>
<td>P Q</td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td>3</td>
<td>P Q E</td>
<td>E P Q</td>
<td>E P Q</td>
</tr>
<tr>
<td>remove max</td>
<td>Q</td>
<td>2</td>
<td>P E</td>
<td>E P</td>
<td>E P</td>
</tr>
<tr>
<td>insert</td>
<td>X</td>
<td>3</td>
<td>P E X</td>
<td>E P X</td>
<td>E P X</td>
</tr>
<tr>
<td>insert</td>
<td>A</td>
<td>4</td>
<td>P E X A</td>
<td>A E P X</td>
<td>A E M P X</td>
</tr>
<tr>
<td>insert</td>
<td>M</td>
<td>5</td>
<td>P E X A M</td>
<td>A E M P X</td>
<td>A E M P X</td>
</tr>
<tr>
<td>remove max</td>
<td>X</td>
<td>4</td>
<td>P E M A</td>
<td>A E M P</td>
<td>A E M P</td>
</tr>
<tr>
<td>insert</td>
<td>P</td>
<td>5</td>
<td>P E M A P</td>
<td>A E M P P</td>
<td>A E M P P</td>
</tr>
<tr>
<td>insert</td>
<td>L</td>
<td>6</td>
<td>P E M A P L</td>
<td>A E L M P P</td>
<td>A E L M P P</td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td>7</td>
<td>P E M A P L E</td>
<td>A E E L M P P</td>
<td>A E E L M P P</td>
</tr>
<tr>
<td>remove max</td>
<td>P</td>
<td>6</td>
<td>E M A P L E</td>
<td>A E E L M P P</td>
<td>A E E L M P P</td>
</tr>
</tbody>
</table>

A sequence of operations on a priority queue
Priority queue: unordered array implementation

```java
public class UnorderedArrayMaxPQ<Key extends Comparable<Key>>{
    private Key[] pq; // pq[i] = ith element on pq
    private int N;    // number of elements on pq

    public UnorderedArrayMaxPQ(int capacity)
    { pq = (Key[]) new Comparable[capacity]; }

    public boolean isEmpty()
    { return N == 0; }

    public void insert(Key x)
    { pq[N++] = x; }

    public Key delMax()
    {
        int max = 0;
        for (int i = 1; i < N; i++)
        {
            if (less(max, i)) max = i;
            exch(max, N-1);
        }
        return pq[--N];
    }
}
```

- no generic array creation
- `less()` and `exch()` similar to sorting methods (but don't pass `pq[]`)
- should null out entry to prevent loitering
Priority queue elementary implementations

Challenge. Implement all operations efficiently.

<table>
<thead>
<tr>
<th>implementation</th>
<th>insert</th>
<th>del max</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>ordered array</td>
<td>N</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>goal</td>
<td>log N</td>
<td>log N</td>
<td>log N</td>
</tr>
</tbody>
</table>

order of growth of running time for priority queue with N items
Today
→ Implementation of binary heaps
→ Practical improvements of binary heaps
→ Heapsort
2.4 PRIORITY QUEUES

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation
Complete binary tree

Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Perfectly balanced, except for bottom level.

Property. Height of complete tree with N nodes is $\lfloor \lg N \rfloor$.

Pf. Height increases only when N is a power of 2.
A complete binary tree in nature

Hyphaene Compressa - Doum Palm

© Shlomit Pinter
Binary heap representations

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered binary tree.
- Keys in nodes.
- Parent's key no smaller than children's keys.

Array representation.
- Indices start at 1.
- Take nodes in level order.
- No explicit links needed!
Binary heap properties

Proposition. Largest key is $a[1]$, which is root of binary tree.

Proposition. Can use array indices to move through tree.
- Parent of node at k is at $k/2$.
- Children of node at k are at $2k$ and $2k+1$.
 - left subtree of k is empty if $2k>N$.
 - right subtree of k is empty if $(2k+1)>N$.
 - k is a leaf node if $2k>N$.

Heap representations
Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

heap ordered
Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

heap ordered

![Binary heap diagram]

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>O</th>
<th>N</th>
<th>P</th>
<th>G</th>
<th>A</th>
<th>E</th>
<th>I</th>
<th>H</th>
</tr>
</thead>
</table>
Promotion in a heap

Scenario. Child's key becomes larger key than its parent's key.

To eliminate the violation:
- Exchange key in child with key in parent.
- Repeat until heap order restored.

```java
private void swim(int k) {
    while (k > 1 && less(k/2, k)) {
        exch(k, k/2);
        k = k/2;
    }
}
```

Peter principle. Node promoted to level of incompetence.
Insertion in a heap

Insert. Add node at end, then swim it up.

Cost. At most $1 + \lg N$ compares.

```java
public void insert(Key x) {
    pq[++N] = x;
    swim(N);
}
```
Demotion in a heap

Scenario. Parent's key becomes *smaller* than one (or both) of its children's.

To eliminate the violation:
- Exchange key in parent with key in larger child.
- Repeat until heap order restored.

```java
private void sink(int k) {
    while (2*k <= N) {
        int j = 2*k;
        if (j < N && less(j, j+1)) j++;
        if (!less(k, j)) break;
        exch(k, j);
        k = j;
    }
}
```

why not smaller child?

Power struggle. Better subordinate promoted.
Delete the maximum in a heap

Delete max. Exchange root with node at end, then sink it down.

Cost. At most $2 \log N$ compares.

```java
public Key delMax()
{
    Key max = pq[1];
    exch(1, N--);
    sink(1);
    pq[N+1] = null;
    return max;
}
```
Binary heap: Java implementation

```java
class MaxPQ<Key extends Comparable<Key>> {
    private Key[] pq;
    private int N;

    public MaxPQ(int capacity)
    { pq = (Key[]) new Comparable[capacity+1]; }

    public boolean isEmpty()
    { return N == 0; }
    public void insert(Key key)
    public Key delMax()
    { /* see previous code */ }

    private void swim(int k)
    private void sink(int k)
    { /* see previous code */ }

    private boolean less(int i, int j)
    { return pq[i].compareTo(pq[j]) < 0; }
    private void exch(int i, int j)
    { Key t = pq[i]; pq[i] = pq[j]; pq[j] = t; }
}
```

- **fixed capacity (for simplicity)**
- **PQ ops**
- **heap helper functions**
- **array helper functions**
Priority queues implementation cost summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>insert</th>
<th>del max</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>ordered array</td>
<td>N</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>binary heap</td>
<td>log N</td>
<td>log N</td>
<td>1</td>
</tr>
</tbody>
</table>

Order-of-growth of running time for priority queue with N items
Binary heap: practical improvements

Half-exchanges in sink and swim.

- Reduces number of array accesses.
- Worth doing.
Floyd's sink-to-bottom trick.

- Sink key at root all the way to bottom. \(\rightarrow \) 1 compare per node
- Swim key back up. \(\rightarrow \) some extra compares and exchanges
- Fewer compares; more exchanges.
- Worthwhile depending on cost of compare and exchange.

R. W. Floyd
1978 Turing award
Multiway heaps.

- Complete d-way tree.
- Parent's key no smaller than its children's keys.
- Swim takes $\log_d N$ compares; sink takes $d \log_d N$ compares.
- Sweet spot: $d = 4$.

3-way heap

![3-way heap diagram]
Binary heap: practical improvements

Caching. Binary heap is not cache friendly.
Binary heap: practical improvements

Caching. Binary heap is not cache friendly.

- Cache-aligned d-heap.
- Funnel heap.
- B-heap.
- ...

![Diagram of a binary heap with cache-aligned elements and corresponding block layout.](image)

Figure 6 The layout of a d-heap when four elements fit per cache line and the array is padded to cache-align the heap.

![Graph showing the performance analysis of heaps with various fanout values.](image)

4.2 Collective Analysis of Cache-Aligned d-heaps

We first perform collective analysis on d-heaps whose sets of siblings are cache aligned. A d-heap with d elements has depth d. Let e be the size in bytes of each heap element. In this analysis, we restrict fanout to be a positive power of 2 and element size to be a power of 2. We also restrict our heap configurations to those in which all of a parent's children fit in a single cache block (where $e < 32$). This limits the values of d that we are looking at; for a typical cache block size of 32 bytes, fanout is limited to 4 for 8 byte heap elements, and fanout is limited to 8 for 4 byte heap elements. We also restrict our analysis to heap configurations in which the bottom layer of the heap is completely full (where $d = 12$).

Heaps are often used in discrete event simulations as a priority queue to store the events. In order to measure the performance of heaps operating as an event queue, we analyze our heaps in the hold model [25]. In the hold model, it has been noticed previously that increasing a heap's fanout can reduce the instruction count of its operations [27, Ex. 28 Pg. 158][12, Ex. 7-2 Pg. 152].
Priority queues implementation cost summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>insert</th>
<th>del max</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>ordered array</td>
<td>N</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>binary heap</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>1</td>
</tr>
<tr>
<td>d-ary heap</td>
<td>$\log_d N$</td>
<td>$d \log_d N$</td>
<td>1</td>
</tr>
<tr>
<td>Fibonacci</td>
<td>1</td>
<td>$\log N$</td>
<td>1</td>
</tr>
<tr>
<td>Brodal queue</td>
<td>1</td>
<td>$\log N$</td>
<td>1</td>
</tr>
<tr>
<td>impossible</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

order-of-growth of running time for priority queue with N items

- unordered array: $O(N)$
- ordered array: $O(N)$
- binary heap: $O(\log N)$
- d-ary heap: $O(d \log_d N)$
- Fibonacci: $O(\log N)$
- Brodal queue: $O(\log N)$
- impossible: $O(1)$

† Lamortized

why impossible?
Binary heap considerations

Underflow and overflow.
- Underflow: throw exception if deleting from empty PQ.
- Overflow: add no-arg constructor and use resizing array.

Minimum-oriented priority queue.
- Replace `less()` with `greater()`.
- Implement `greater()`.

Other operations.
- Remove an arbitrary item.
- Change the priority of an item.

Immutability of keys.
- Assumption: client does not change keys while they're on the PQ.
- Best practice: use immutable keys.

leads to log N amortized time per op (how to make worst case?)

can implement efficiently with `sink()` and `swim()` [stay tuned for Prim/Dijkstra]
Immutability: implementing in Java

Data type. Set of values and operations on those values.

Immutable data type. Can't change the data type value once created.

```java
public final class Vector {
    private final int N;
    private final double[] data;

    public Vector(double[] data) {
        this.N = data.length;
        this.data = new double[N];
        for (int i = 0; i < N; i++)
            this.data[i] = data[i];
    }

    ...}
```

Immutable. String, Integer, Double, Color, Vector, Transaction, Point2D.
Mutable. StringBuilder, Stack, Counter, Java array.
Immutability: properties

Data type. Set of values and operations on those values.
Immutable data type. Can't change the data type value once created.

Advantages.
- Simplifies debugging.
- Safer in presence of hostile code.
- Simplifies concurrent programming.
- Safe to use as key in priority queue or symbol table.

Disadvantage. Must create new object for each data type value.

“Classes should be immutable unless there's a very good reason to make them mutable.... If a class cannot be made immutable, you should still limit its mutability as much as possible.”

— Joshua Bloch (Java architect)
2.4 Priority Queues

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation
Sorting with a binary heap

Q. What is this sorting algorithm?

```java
public void sort(String[] a) {
    int N = a.length;
    MaxPQ<String> pq = new MaxPQ<String>();
    for (int i = 0; i < N; i++)
        pq.insert(a[i]);
    for (int i = N-1; i >= 0; i--)
        a[i] = pq.delMax();
}
```

Q. What are its properties?
A. $N \log N$, extra array of length N, not stable.

Heapsort intuition. A heap is an array; do sort in place.
Heapsort

Basic plan for in-place sort.

- View input array as a complete binary tree.
- Heap construction: build a max-heap with all N keys.
- Sortdown: repeatedly remove the maximum key.

keys in arbitrary order

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>O</td>
<td>R</td>
<td>T</td>
<td>E</td>
<td>X</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
</tr>
</tbody>
</table>

build max heap (in place)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>R</td>
<td>X</td>
<td>T</td>
<td>P</td>
<td>L</td>
<td>E</td>
<td>M</td>
<td>O</td>
<td>E</td>
<td>A</td>
</tr>
</tbody>
</table>

sorted result (in place)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>2</td>
<td>E</td>
<td>3</td>
<td>E</td>
<td>4</td>
<td>L</td>
<td>5</td>
<td>M</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>O</td>
<td>8</td>
<td>R</td>
<td>9</td>
<td>S</td>
<td>10</td>
<td>T</td>
<td>11</td>
<td>X</td>
<td>P</td>
</tr>
</tbody>
</table>
Heapsort demo

Heap construction. Build max heap using bottom-up method.

we assume array entries are indexed 1 to N

array in arbitrary order

SORT
1 2 3 4 5 6 7 8 9 10 11
Sortdown. Repeatedly delete the largest remaining item.

array in sorted order
Heapsort: heap construction

First pass. Build heap using bottom-up method.

```
for (int k = N/2; k >= 1; k--)
    sink(a, k, N);
```
Heapsort: sortdown

Second pass.
- Remove the maximum, one at a time.
- Leave in array, instead of nulling out.

```java
while (N > 1)
{
    exch(a, 1, N--);
    sink(a, 1, N);
}
```
Heapsort: Java implementation

```java
class Heap {
    public static void sort(Comparable[] a) {
        int N = a.length;
        for (int k = N/2; k >= 1; k--)
            sink(a, k, N);
        while (N > 1) {
            exch(a, 1, N);
            sink(a, 1, --N);
        }
    }

    private static void sink(Comparable[] a, int k, int N) {
        /* as before */
    }

    private static boolean less(Comparable[] a, int i, int j) {
        /* as before */
    }

    private static void exch(Object[] a, int i, int j) {
        /* as before */
    }
}
```

but make static (and pass arguments)

but convert from 1-based indexing to 0-base indexing
Heapsort: trace

<table>
<thead>
<tr>
<th>N</th>
<th>k</th>
<th>a[i]</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>O</td>
<td>R</td>
<td>T</td>
<td>E</td>
<td>X</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td></td>
<td>S</td>
<td>O</td>
<td>R</td>
<td>T</td>
<td>L</td>
<td>X</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td></td>
<td>S</td>
<td>O</td>
<td>R</td>
<td>T</td>
<td>L</td>
<td>X</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td></td>
<td>S</td>
<td>O</td>
<td>X</td>
<td>T</td>
<td>L</td>
<td>R</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td></td>
<td>S</td>
<td>T</td>
<td>X</td>
<td>P</td>
<td>L</td>
<td>R</td>
<td>A</td>
<td>M</td>
<td>O</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td></td>
<td>X</td>
<td>T</td>
<td>S</td>
<td>P</td>
<td>L</td>
<td>R</td>
<td>A</td>
<td>M</td>
<td>O</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

initial values

heap-ordered

<table>
<thead>
<tr>
<th>N</th>
<th>k</th>
<th>a[i]</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td></td>
<td>T</td>
<td>P</td>
<td>S</td>
<td>O</td>
<td>L</td>
<td>R</td>
<td>A</td>
<td>M</td>
<td>E</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td></td>
<td>S</td>
<td>P</td>
<td>R</td>
<td>O</td>
<td>L</td>
<td>E</td>
<td>A</td>
<td>M</td>
<td>E</td>
<td>T</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td></td>
<td>R</td>
<td>P</td>
<td>E</td>
<td>O</td>
<td>L</td>
<td>E</td>
<td>A</td>
<td>M</td>
<td>S</td>
<td>T</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td></td>
<td>P</td>
<td>O</td>
<td>E</td>
<td>M</td>
<td>L</td>
<td>E</td>
<td>A</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td></td>
<td>O</td>
<td>M</td>
<td>E</td>
<td>A</td>
<td>L</td>
<td>E</td>
<td>P</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td></td>
<td>M</td>
<td>L</td>
<td>E</td>
<td>A</td>
<td>E</td>
<td>O</td>
<td>P</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td>L</td>
<td>E</td>
<td>E</td>
<td>A</td>
<td>M</td>
<td>O</td>
<td>P</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td>E</td>
<td>A</td>
<td>E</td>
<td>L</td>
<td>M</td>
<td>O</td>
<td>P</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td>E</td>
<td>A</td>
<td>E</td>
<td>L</td>
<td>M</td>
<td>O</td>
<td>P</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>A</td>
<td>E</td>
<td>E</td>
<td>L</td>
<td>M</td>
<td>O</td>
<td>P</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

sorted result

Heapsort trace (array contents just after each sink)
Heapsort: mathematical analysis

Proposition. Heap construction uses \(\leq 2N \) compares and \(\leq N \) exchanges.

Pf sketch. [assume \(N = 2^{h+1} - 1 \)]

\[
h + 2(h - 1) + 4(h - 2) + 8(h - 3) + \ldots + 2^h(0) \leq 2^{h+1} = N
\]
Heapsort: mathematical analysis

Proposition. Heap construction uses $\leq 2N$ compares and $\leq N$ exchanges.

Proposition. Heapsort uses $\leq 2N \lg N$ compares and exchanges.

algorithm can be improved to $\sim 1N \lg N$

Significance. In-place sorting algorithm with $N \log N$ worst-case.

- Mergesort: no, linear extra space.
- Quicksort: no, quadratic time in worst case.
- Heapsort: yes!

Bottom line. Heapsort is optimal for both time and space, but:

- Inner loop longer than quicksort’s.
- Makes poor use of cache.
- Not stable.

advanced tricks for improving
Introsort

Goal. As fast as quicksort in practice; $N \log N$ worst case, in place.

Introsort.

- Run quicksort.
- Cutoff to heapsort if stack depth exceeds $2 \lg N$.
- Cutoff to insertion sort for $N = 16$.

In the wild. C++ STL, Microsoft .NET Framework.
Sorting algorithms: summary

<table>
<thead>
<tr>
<th></th>
<th>inplace?</th>
<th>stable?</th>
<th>best</th>
<th>average</th>
<th>worst</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection</td>
<td>✔</td>
<td></td>
<td>$\frac{1}{2} N^2$</td>
<td>$\frac{1}{2} N^2$</td>
<td>$\frac{1}{2} N^2$</td>
<td>N exchanges</td>
</tr>
<tr>
<td>insertion</td>
<td>✔ ✔</td>
<td>✔</td>
<td>N</td>
<td>$\frac{1}{4} N^2$</td>
<td>$\frac{1}{2} N^2$</td>
<td>use for small N or partially ordered</td>
</tr>
<tr>
<td>shell</td>
<td>✔</td>
<td></td>
<td>$N \log_3 N$</td>
<td>?</td>
<td>$c N^{3/2}$</td>
<td>tight code; subquadratic</td>
</tr>
<tr>
<td>merge</td>
<td>✔ ✔</td>
<td>✔</td>
<td>$\frac{1}{2} N \lg N$</td>
<td>$N \lg N$</td>
<td>$N \lg N$</td>
<td>$N \log N$ guarantee; stable</td>
</tr>
<tr>
<td>timsort</td>
<td>✔</td>
<td>✔</td>
<td>N</td>
<td>$N \lg N$</td>
<td>$N \lg N$</td>
<td>improves mergesort when preexisting order</td>
</tr>
<tr>
<td>quick</td>
<td>✔</td>
<td>✔</td>
<td>$N \lg N$</td>
<td>$2 N \ln N$</td>
<td>$\frac{1}{2} N^2$</td>
<td>$N \log N$ probabilistic guarantee; fastest in practice</td>
</tr>
<tr>
<td>3-way quick</td>
<td>✔</td>
<td>✔</td>
<td>N</td>
<td>$2 N \ln N$</td>
<td>$\frac{1}{2} N^2$</td>
<td>improves quicksort when duplicate keys</td>
</tr>
<tr>
<td>heap</td>
<td>✔</td>
<td>✔</td>
<td>N</td>
<td>$2 N \lg N$</td>
<td>$2 N \lg N$</td>
<td>$N \log N$ guarantee; in-place</td>
</tr>
<tr>
<td>?</td>
<td>✔ ✔</td>
<td>✔</td>
<td>N</td>
<td>$N \lg N$</td>
<td>$N \lg N$</td>
<td>holy sorting grail</td>
</tr>
</tbody>
</table>
2.4 Priority Queues

- API and elementary implementations
- Binary heaps
- Heapsort
- Event-driven simulation
Molecular dynamics simulation of hard discs

Goal. Simulate the motion of \(N \) moving particles that behave according to the laws of elastic collision.
Molecular dynamics simulation of hard discs

Goal. Simulate the motion of \(N \) moving particles that behave according to the laws of elastic collision.

Hard disc model.
- Moving particles interact via elastic collisions with each other and walls.
- Each particle is a disc with known position, velocity, mass, and radius.
- No other forces.

Significance. Relates macroscopic observables to microscopic dynamics.
- Einstein: explain Brownian motion of pollen grains.
Warmup: bouncing balls

Time-driven simulation. \(N \) bouncing balls in the unit square.

```java
public class BouncingBalls {
    public static void main(String[] args) {
        int N = Integer.parseInt(args[0]);
        Ball[] balls = new Ball[N];
        for (int i = 0; i < N; i++)
            balls[i] = new Ball();
        while (true)
            {
                StdDraw.clear();
                for (int i = 0; i < N; i++)
                    {
                        balls[i].move(0.5);
                        balls[i].draw();
                    }
                StdDraw.show(50);
            }
    }
}
```

% java BouncingBalls 100

main simulation loop
Warmup: bouncing balls

public class Ball
{
 private double rx, ry; // position
 private double vx, vy; // velocity
 private final double radius; // radius
 public Ball(...) // constructor
 { /* initialize position and velocity */
 }

 public void move(double dt)
 {
 if ((rx + vx*dt < radius) || (rx + vx*dt > 1.0 - radius)) { vx = -vx; }
 if ((ry + vy*dt < radius) || (ry + vy*dt > 1.0 - radius)) { vy = -vy; }
 rx = rx + vx*dt;
 ry = ry + vy*dt;
 }

 public void draw()
 { StdDraw.filledCircle(rx, ry, radius); }
}

Missing. Check for balls colliding with each other.
- Physics problems: when? what effect?
- CS problems: which object does the check? too many checks?
Time-driven simulation

- Discretize time in quanta of size dt.
- Update the position of each particle after every dt units of time, and check for overlaps.
- If overlap, roll back the clock to the time of the collision, update the velocities of the colliding particles, and continue the simulation.
Main drawbacks.

- \(\sim N^2 / 2 \) overlap checks per time quantum.
- Simulation is too slow if \(dt \) is very small.
- May miss collisions if \(dt \) is too large.
 (if colliding particles fail to overlap when we are looking)
Event-driven simulation

Change state only when something happens.

- Between collisions, particles move in straight-line trajectories.
- Focus only on times when collisions occur.
- Maintain PQ of collision events, prioritized by time.
- Remove the min = get next collision.

Collision prediction. Given position, velocity, and radius of a particle, when will it collide next with a wall or another particle?

Collision resolution. If collision occurs, update colliding particle(s) according to laws of elastic collisions.
Particle-wall collision

Collision prediction and resolution.

- Particle of radius s at position (rx, ry).
- Particle moving in unit box with velocity (vx, vy).
- Will it collide with a vertical wall? If so, when?

Prediction (at time t)

\[dt = \text{time to hit wall} = \frac{\text{distance/velocity}}{v_x} = (1 - s - r_x)/v_x \]

Resolution (at time $t + dt$)

- velocity after collision = $(-v_x, v_y)$
- position after collision = $(1 - s, r_y + v_y dt)$

Predicting and resolving a particle-wall collision
Collision prediction.

- Particle i: radius s_i, position (r_{xi}, r_{yi}), velocity (v_{xi}, v_{yi}).
- Particle j: radius s_j, position (r_{xj}, r_{yj}), velocity (v_{xj}, v_{yj}).
- Will particles i and j collide? If so, when?
Particle-particle collision prediction

Collision prediction.

- Particle i: radius s_i, position (r_{xi}, r_{yi}), velocity (v_{xi}, v_{yi}).
- Particle j: radius s_j, position (r_{xj}, r_{yj}), velocity (v_{xj}, v_{yj}).
- Will particles i and j collide? If so, when?

$$d = (\Delta v \cdot \Delta r)^2 - (\Delta v \cdot \Delta v) \left(\Delta r \cdot \Delta r - \sigma^2 \right) \quad \sigma = \sigma_i + \sigma_j$$

$$\Delta t = \begin{cases} \infty & \text{if } \Delta v \cdot \Delta r \geq 0 \\ \infty & \text{if } d < 0 \\ - \frac{\Delta v \cdot \Delta r + \sqrt{d}}{\Delta v \cdot \Delta v} & \text{otherwise} \end{cases}$$

$$\Delta v = (\Delta v_x, \Delta v_y) = (v_{xi} - v_{xj}, v_{yi} - v_{yj}) \quad \Delta v \cdot \Delta v = (\Delta v_x)^2 + (\Delta v_y)^2$$

$$\Delta r = (\Delta r_x, \Delta r_y) = (r_{xi} - r_{xj}, r_{yi} - r_{yj}) \quad \Delta r \cdot \Delta r = (\Delta r_x)^2 + (\Delta r_y)^2$$

$$\Delta v \cdot \Delta r = (\Delta v_x)(\Delta r_x) + (\Delta v_y)(\Delta r_y)$$

Important note: This is physics, so we won’t be testing you on it!
Particle-particle collision resolution

Collision resolution. When two particles collide, how does velocity change?

\[\begin{align*}
 v_{x_i}' &= v_{x_i} + \frac{J_x}{m_i} \\
 v_{y_i}' &= v_{y_i} + \frac{J_y}{m_i} \\
 v_{x_j}' &= v_{x_j} - \frac{J_x}{m_j} \\
 v_{y_j}' &= v_{y_j} - \frac{J_y}{m_j}
\end{align*} \]

Newton's second law (momentum form)

\[J_x = \frac{J \Delta r_x}{\sigma}, \quad J_y = \frac{J \Delta r_y}{\sigma}, \quad J = \frac{2m_i m_j (\Delta v \cdot \Delta r)}{\sigma (m_i + m_j)} \]

Impulse due to normal force
(conervation of energy, conservation of momentum)

Important note: This is physics, so we won’t be testing you on it!
public class Particle
{
 private double rx, ry; // position
 private double vx, vy; // velocity
 private final double radius; // radius
 private final double mass; // mass
 private int count; // number of collisions

 public Particle(...) { }

 public void move(double dt) { }
 public void draw() { }

 public double timeToHit(Particle that) { }
 public double timeToHitVerticalWall() { }
 public double timeToHitHorizontalWall() { }

 public void bounceOff(Particle that) { }
 public void bounceOffVerticalWall() { }
 public void bounceOffHorizontalWall() { }
}
public double timeToHit(Particle that)
{
 if (this == that) return INFINITY;
 double dx = that.rx - this.rx, dy = that.ry - this.ry;
 double dvx = that.vx - this.vx, dvy = that.vy - this.vy;
 double dvdr = dx*dvx + dy*dvy;
 if (dvdr > 0) return INFINITY;
 double dvdv = dvx*dvx + dvy*dvy;
 double drdr = dx*dx + dy*dy;
 double sigma = this.radius + that.radius;
 double d = (dvdr*dvdr) - dvdv * (drdr - sigma*sigma);
 if (d < 0) return INFINITY;
 return -(dvdr + Math.sqrt(d)) / dvdv;
}

public void bounceOff(Particle that)
{
 double dx = that.rx - this.rx, dy = that.ry - this.ry;
 double dvx = that.vx - this.vx, dvy = that.vy - this.vy;
 double dvdr = dx*dvx + dy*dvy;
 double dist = this.radius + that.radius;
 double J = 2 * this.mass * that.mass * dvdr / ((this.mass + that.mass) * dist);
 double Jx = J * dx / dist;
 double Jy = J * dy / dist;
 this.vx += Jx / this.mass;
 this.vy += Jy / this.mass;
 that.vx -= Jx / that.mass;
 that.vy -= Jy / that.mass;
 this.count++;
 that.count++;
 Important note: This is physics, so we won’t be testing you on it!
}
Collision system: event-driven simulation main loop

Initialization.
- Fill PQ with all potential particle-wall collisions.
- Fill PQ with all potential particle-particle collisions.

Main loop.
- Delete the impending event from PQ (min priority = \(t \)).
- If the event has been invalidated, ignore it.
- Advance all particles to time \(t \), on a straight-line trajectory.
- Update the velocities of the colliding particle(s).
- Predict future particle-wall and particle-particle collisions involving the colliding particle(s) and insert events onto PQ.
Event data type

Conventions.

- Neither particle null ⇒ particle-particle collision.
- One particle null ⇒ particle-wall collision.
- Both particles null ⇒ redraw event.

```java
class Event implements Comparable<Event> {
    private double time; // time of event
    private Particle a, b; // particles involved in event
    private int countA, countB; // collision counts for a and b

    public Event(double t, Particle a, Particle b) { }

    public int compareTo(Event that) {
        return this.time - that.time;
    }

    public boolean isValid() {
        // check for valid event
    }
}
```

create event
ordered by time
invalid if intervening collision
Collision system implementation: skeleton

```java
public class CollisionSystem {
    private MinPQ<Event> pq; // the priority queue
    private double t = 0.0; // simulation clock time
    private Particle[] particles; // the array of particles

    public CollisionSystem(Particle[] particles) { }

    private void predict(Particle a) {
        if (a == null) return;
        for (int i = 0; i < N; i++)
            { double dt = a.timeToHit(particles[i]);
              pq.insert(new Event(t + dt, a, particles[i]));
            }
        pq.insert(new Event(t + a.timeToHitVerticalWall(), a, null));
        pq.insert(new Event(t + a.timeToHitHorizontalWall(), null, a));
    }

    private void redraw() { }

    public void simulate() { /* see next slide */ } }
```
Collision system implementation: main event-driven simulation loop

```java
public void simulate()
{
    pq = new MinPQ<Event>();
    for(int i = 0; i < N; i++) predict(particles[i]);
    pq.insert(new Event(0, null, null));

    while(!pq.isEmpty())
    {
        Event event = pq.delMin();
        if(!event.isValid()) continue;
        Particle a = event.a;
        Particle b = event.b;

        for(int i = 0; i < N; i++)
            particles[i].move(event.time - t);
        t = event.time;

        if (a != null && b != null) a.bounceOff(b);
        else if (a != null && b == null) a.bounceOffVerticalWall();
        else if (a == null && b != null) b.bounceOffHorizontalWall();
        else if (a == null && b == null) redraw();

        predict(a);
        predict(b);
    }
}
```

- initialize PQ with collision events and redraw event
- get next event
- update positions and time
- process event
- predict new events based on changes
Particle collision simulation example 1

% java CollisionSystem 100
Particle collision simulation example 2

% java CollisionSystem < billiards.txt
Particle collision simulation example 3

% java CollisionSystem < brownian.txt
Particle collision simulation example 4

% java CollisionSystem < diffusion.txt