CS2010: ALGORITHMS AND DATA STRUCTURES

Lecture 21: Shortest Paths in Weighted Graphs

Vasileios Koutavas

School of Computer Science and Statistics
Trinity College Dublin
4.4 Shortest Paths

- APIs
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from s to t.

An edge-weighted digraph and a shortest path

edge-weighted digraph

4->5 0.35
5->4 0.35
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93

shortest path from 0 to 6

0->2 0.26
2->7 0.34
7->3 0.39
3->6 0.52
Google maps
Shortest path applications

- PERT/CPM.
- Map routing.
- **Seam carving.**
- Texture mapping.
- Robot navigation.
- Typesetting in TeX.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Exploiting **arbitrage** opportunities in currency exchange.
- Optimal truck routing through given traffic congestion pattern.

Shortest path variants

Which vertices?

- **Single source**: from one vertex \(s \) to every other vertex.
- **Single sink**: from every vertex to one vertex \(t \).
- **Source-sink**: from one vertex \(s \) to another \(t \).
- **All pairs**: between all pairs of vertices.

Restrictions on edge weights?

- Nonnegative weights.
- Euclidean weights.
- Arbitrary weights.

Cycles?

- No directed cycles.
- No "negative cycles."

Simplifying assumption. Shortest paths from \(s \) to each vertex \(v \) exist.
4.4 Shortest Paths

- APIs
 - shortest-paths properties
 - Dijkstra's algorithm
 - edge-weighted DAGs
 - negative weights
Weighted directed edge API

```
public class DirectedEdge {
    DirectedEdge(int v, int w, double weight) { /* weighted edge v→w */
        int from() { /* vertex v */
            int to() { /* vertex w */
                double weight() { /* weight of this edge */
                    String toString() { /* string representation */

Idiom for processing an edge e: int v = e.from(), w = e.to();
```
Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

```java
public class DirectedEdge
{
    private final int v, w;
    private final double weight;

    public DirectedEdge(int v, int w, double weight)
    {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }

    public int from()
    {
        return v;
    }

    public int to()
    {
        return w;
    }

    public int weight()
    {
        return weight;
    }
}
```

from() and to() replace either() and other()
Edge-weighted digraph API

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>public class EdgeWeightedDigraph</td>
<td></td>
</tr>
<tr>
<td>EdgeWeightedDigraph(int V)</td>
<td>edge-weighted digraph with V vertices</td>
</tr>
<tr>
<td>EdgeWeightedDigraph(In in)</td>
<td>edge-weighted digraph from input stream</td>
</tr>
<tr>
<td>void addEdge(DirectedEdge e)</td>
<td>add weighted directed edge e</td>
</tr>
<tr>
<td>Iterable<DirectedEdge> adj(int v)</td>
<td>edges pointing from v</td>
</tr>
<tr>
<td>int V()</td>
<td>number of vertices</td>
</tr>
<tr>
<td>int E()</td>
<td>number of edges</td>
</tr>
<tr>
<td>Iterable<DirectedEdge> edges()</td>
<td>all edges</td>
</tr>
<tr>
<td>String toString()</td>
<td>string representation</td>
</tr>
</tbody>
</table>

Conventions. Allow self-loops and parallel edges.
Edge-weighted digraph: adjacency-lists representation

tinyEWD.txt

V

E

adj

0
1
2
3
4
5
6
7

0 2 0.26
1 3 0.29
2 7 0.34
3 6 0.52
4 7 0.37
4 5 0.35
5 4 0.35
5 7 0.37
5 1 0.32
0 4 0.38
0 2 0.26
7 3 0.39
1 3 0.29
2 7 0.34
6 2 0.40
3 6 0.52
6 0 0.58
6 4 0.93

Bag objects

reference to a DirectedEdge object
Edge-weighted digraph: adjacency-lists implementation in Java

Same as EdgeWeightedGraph except replace Graph with Digraph.

```java
public class EdgeWeightedDigraph
{
    private final int V;
    private final Bag<DirectedEdge>[] adj;

    public EdgeWeightedDigraph(int V)
    {
        this.V = V;
        adj = (Bag<DirectedEdge>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<DirectedEdge>();
    }

    public void addEdge(DirectedEdge e)
    {
        int v = e.from();
        adj[v].add(e);
    }

    public Iterable<DirectedEdge> adj(int v)
    { return adj[v]; }
}
```

add edge e = v→w to only v's adjacency list
Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

```java
public class SP

    SP(EdgeWeightedDigraph G, int s) // shortest paths from s in graph G
    double distTo(int v) // length of shortest path from s to v
    Iterable<DirectedEdge> pathTo(int v) // shortest path from s to v
    boolean hasPathTo(int v) // is there a path from s to v?

    SP sp = new SP(G, s);
    for (int v = 0; v < G.V(); v++)
    {
        StdOut.printf("%d to %d (%.2f): ", s, v, sp.distTo(v));
        for (DirectedEdge e : sp.pathTo(v))
            StdOut.print(e + " ");
        StdOut.println();
    }
```
Single-source shortest paths API

Goal. Find the shortest path from \(s \) to every other vertex.

```java
public class SP {
    SP(EdgeWeightedDigraph G, int s) {
        shortest paths from \( s \) in graph \( G \)
    }
    double distTo(int v) {
        length of shortest path from \( s \) to \( v \)
    }
    Iterable <DirectedEdge> pathTo(int v) {
        shortest path from \( s \) to \( v \)
    }
    boolean hasPathTo(int v) {
        is there a path from \( s \) to \( v \)?
    }
}
```

```
% java SP tinyEWD.txt 0
0 to 0 (0.00):
0 to 1 (1.05): 0->4 0.38 4->5 0.35 5->1 0.32
0 to 2 (0.26): 0->2 0.26
0 to 3 (0.99): 0->2 0.26 2->7 0.34 7->3 0.39
0 to 4 (0.38): 0->4 0.38
0 to 5 (0.73): 0->4 0.38 4->5 0.35
0 to 6 (1.51): 0->2 0.26 2->7 0.34 7->3 0.39 3->6 0.52
0 to 7 (0.60): 0->2 0.26 2->7 0.34
```
4.4 **SHORTEST PATHS**

- APIs
- *shortest-paths properties*
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:
- $\text{distTo}[v]$ is length of shortest path from s to v.
- $\text{edgeTo}[v]$ is last edge on shortest path from s to v.

<table>
<thead>
<tr>
<th>0</th>
<th>edgeTo[]</th>
<th>distTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>null</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>5->1</td>
<td>0.32</td>
</tr>
<tr>
<td>2</td>
<td>0->2</td>
<td>0.26</td>
</tr>
<tr>
<td>3</td>
<td>7->3</td>
<td>0.37</td>
</tr>
<tr>
<td>4</td>
<td>0->4</td>
<td>0.38</td>
</tr>
<tr>
<td>5</td>
<td>4->5</td>
<td>0.35</td>
</tr>
<tr>
<td>6</td>
<td>3->6</td>
<td>0.52</td>
</tr>
<tr>
<td>7</td>
<td>2->7</td>
<td>0.34</td>
</tr>
</tbody>
</table>
Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:
- $\text{distTo}[v]$ is length of shortest path from s to v.
- $\text{edgeTo}[v]$ is last edge on shortest path from s to v.

```java
public double distTo(int v)
{
    return distTo[v];
}

public Iterable<DirectedEdge> pathTo(int v)
{
    Stack<DirectedEdge> path = new Stack<DirectedEdge>();
    for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
        path.push(e);
    return path;
}
```
Edge relaxation

Relax edge \(e = v \rightarrow w \).

- \(\text{distTo}[v] \) is length of shortest \text{known} path from \(s \) to \(v \).
- \(\text{distTo}[w] \) is length of shortest \text{known} path from \(s \) to \(w \).
- \(\text{edgeTo}[w] \) is last edge on shortest \text{known} path from \(s \) to \(w \).
- If \(e = v \rightarrow w \) gives shorter path to \(w \) through \(v \), update both \(\text{distTo}[w] \) and \(\text{edgeTo}[w] \).
Edge relaxation

Relax edge \(e = v \rightarrow w \).

- \(\text{distTo}[v] \) is length of shortest known path from \(s \) to \(v \).
- \(\text{distTo}[w] \) is length of shortest known path from \(s \) to \(w \).
- \(\text{edgeTo}[w] \) is last edge on shortest known path from \(s \) to \(w \).
- If \(e = v \rightarrow w \) gives shorter path to \(w \) through \(v \), update both \(\text{distTo}[w] \) and \(\text{edgeTo}[w] \).

```java
private void relax(DirectedEdge e)
{
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```
Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph. Then $\text{distTo}[\cdot]$ are the shortest path distances from s iff:

- $\text{distTo}[s] = 0$.
- For each vertex v, $\text{distTo}[v]$ is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, $\text{distTo}[w] \leq \text{distTo}[v] + e.\text{weight}()$.

Pf. \Leftarrow [necessary]

- Suppose that $\text{distTo}[w] > \text{distTo}[v] + e.\text{weight}()$ for some edge $e = v \rightarrow w$.
- Then, e gives a path from s to w (through v) of length less than $\text{distTo}[w]$.
Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph. Then $\text{distTo}[]$ are the shortest path distances from s iff:

- $\text{distTo}[s] = 0$.
- For each vertex v, $\text{distTo}[v]$ is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, $\text{distTo}[w] \leq \text{distTo}[v] + e.\text{weight}()$.

Pf. \Rightarrow [sufficient]

- Suppose that $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k = w$ is a shortest path from s to w.
- Then, $\text{distTo}[v_1] \leq \text{distTo}[v_0] + e_1.\text{weight}()$

 $\quad \text{distTo}[v_2] \leq \text{distTo}[v_1] + e_2.\text{weight}()$

 \ldots

 $\text{distTo}[v_k] \leq \text{distTo}[v_{k-1}] + e_k.\text{weight}()$

- Add inequalities; simplify; and substitute $\text{distTo}[v_0] = \text{distTo}[s] = 0$:

 $\text{distTo}[w] = \text{distTo}[v_k] \leq e_1.\text{weight}() + e_2.\text{weight}() + \ldots + e_k.\text{weight}()$

- Thus, $\text{distTo}[w]$ is the weight of shortest path to w. \blacksquare
Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

- Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.
- Repeat until optimality conditions are satisfied:
 - Relax any edge.

Proposition. Generic algorithm computes SPT (if it exists) from s.

Pf sketch.

- The entry distTo[v] is always the length of a simple path from s to v.
- Each successful relaxation decreases distTo[v] for some v.
- The entry distTo[v] can decrease at most a finite number of times. ■
Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat until optimality conditions are satisfied:
 - Relax any edge.

Efficient implementations. How to choose which edge to relax?

- **Ex 1.** Dijkstra's algorithm (nonnegative weights).
- **Ex 2.** Topological sort algorithm (no directed cycles).
- **Ex 3.** Bellman-Ford algorithm (no negative cycles).

* A version of Dijkstra’s algorithm works with negative weights, but no negative cycles. However this version has an exponential worst-case running time and it is not used in practice.
4.4 Shortest Paths

- APIs
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
“Do only what only you can do.”

“In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind.”

“The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence.”

“It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration.”

“APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums.”
"Object-oriented programming is an exceptionally bad idea which could only have originated in California."

-- Edsger Dijkstra
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from \(s \) (non-tree vertex with the lowest \(\text{dist} \) value).
- Add vertex to tree and relax all edges pointing from that vertex.

an edge-weighted digraph

\[
\begin{array}{c|c}
\text{Edge} & \text{Weight} \\
\hline
0 \to 1 & 5.0 \\
0 \to 4 & 9.0 \\
0 \to 7 & 8.0 \\
1 \to 2 & 12.0 \\
1 \to 3 & 15.0 \\
1 \to 7 & 4.0 \\
2 \to 3 & 3.0 \\
2 \to 6 & 11.0 \\
3 \to 6 & 9.0 \\
4 \to 5 & 4.0 \\
4 \to 6 & 20.0 \\
4 \to 7 & 5.0 \\
5 \to 2 & 1.0 \\
5 \to 6 & 13.0 \\
7 \to 5 & 6.0 \\
7 \to 2 & 7.0 \\
\end{array}
\]
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges pointing from that vertex.

Table

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

shortest-paths tree from vertex $s
Dijkstra's algorithm visualization
Dijkstra's algorithm visualization
Dijkstra's algorithm: correctness proof

Proposition. Dijkstra's algorithm computes a SPT in any edge-weighted digraph with nonnegative weights.

Pf.

- Each edge $e = v \rightarrow w$ is relaxed exactly once (when vertex v is relaxed), leaving $\text{distTo}[w] \leq \text{distTo}[v] + e.\text{weight}()$.
- Inequality holds until algorithm terminates because:
 - $\text{distTo}[w]$ cannot increase \leftarrow distTo[] values are monotone decreasing
 - $\text{distTo}[v]$ will not change \leftarrow we choose lowest distTo[] value at each step (and edge weights are nonnegative)

- Thus, upon termination, shortest-paths optimality conditions hold. ■
Dijkstra's algorithm: Java implementation

```java
public class DijkstraSP {
    private DirectedEdge[] edgeTo;
    private double[] distTo;
    private IndexMinPQ<Double> pq;

    public DijkstraSP(EdgeWeightedDigraph G, int s) {
        edgeTo = new DirectedEdge[G.V()];
        distTo = new double[G.V()];
        pq = new IndexMinPQ<Double>(G.V());

        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;

        pq.insert(s, 0.0);
        while (!pq.isEmpty()) {
            int v = pq.delMin();
            for (DirectedEdge e : G.adj(v))
                relax(e);
        }
    }
}
```

relax vertices in order of distance from s
private void relax(DirectedEdge e) {
 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight()) {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;
 if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
 else pq.insert(w, distTo[w]);
 }
}

update PQ
Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

<table>
<thead>
<tr>
<th>PQ implementation</th>
<th>insert</th>
<th>delete-min</th>
<th>decrease-key</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>V</td>
<td>1</td>
<td>V^2</td>
</tr>
<tr>
<td>binary heap</td>
<td>log V</td>
<td>log V</td>
<td>log V</td>
<td>$E \log V$</td>
</tr>
<tr>
<td>d-way heap</td>
<td>log$_d$ V</td>
<td>$d \log_d V$</td>
<td>log$_d$ V</td>
<td>$E \log_{d/V} V$</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>1 †</td>
<td>log V†</td>
<td>1 †</td>
<td>$E + V \log V$</td>
</tr>
</tbody>
</table>

† amortized

Bottom line.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.
Computing a spanning tree in a graph

Dijkstra's algorithm seems familiar?
- Prim's algorithm is essentially the same algorithm.
- Both are in a family of algorithms that compute a spanning tree.

Main distinction: Rule used to choose next vertex for the tree.
- Prim: Closest vertex to the tree (via an undirected edge).
- Dijkstra: Closest vertex to the source (via a directed path).

Note: DFS and BFS are also in this family of algorithms.
4.4 Shortest Paths

- APIs
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
Acyclic edge-weighted digraphs

Q. Suppose that an edge-weighted digraph has no directed cycles. Is it easier to find shortest paths than in a general digraph?

A. Yes!
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

an edge-weighted DAG

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0→1</td>
<td>5.0</td>
</tr>
<tr>
<td>0→4</td>
<td>9.0</td>
</tr>
<tr>
<td>0→7</td>
<td>8.0</td>
</tr>
<tr>
<td>1→2</td>
<td>12.0</td>
</tr>
<tr>
<td>1→3</td>
<td>15.0</td>
</tr>
<tr>
<td>1→7</td>
<td>4.0</td>
</tr>
<tr>
<td>2→3</td>
<td>3.0</td>
</tr>
<tr>
<td>2→6</td>
<td>11.0</td>
</tr>
<tr>
<td>3→6</td>
<td>9.0</td>
</tr>
<tr>
<td>4→5</td>
<td>4.0</td>
</tr>
<tr>
<td>4→6</td>
<td>20.0</td>
</tr>
<tr>
<td>4→7</td>
<td>5.0</td>
</tr>
<tr>
<td>5→2</td>
<td>1.0</td>
</tr>
<tr>
<td>5→6</td>
<td>13.0</td>
</tr>
<tr>
<td>7→5</td>
<td>6.0</td>
</tr>
<tr>
<td>7→2</td>
<td>7.0</td>
</tr>
</tbody>
</table>
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

shortest-paths tree from vertex s

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
Proposition. Topological sort algorithm computes SPT in any edge-weighted DAG in time proportional to $E + V$.

Pf.

- Each edge $e = v \rightarrow w$ is relaxed exactly once (when vertex v is relaxed), leaving $\text{distTo}[w] \leq \text{distTo}[v] + e.\text{weight}()$.

- Inequality holds until algorithm terminates because:
 - $\text{distTo}[w]$ cannot increase \quad \text{distTo[]} values are monotone decreasing
 - $\text{distTo}[v]$ will not change \quad because of topological order, no edge pointing to v will be relaxed after v is relaxed

- Thus, upon termination, shortest-paths optimality conditions hold. ■
public class AcyclicSP
{
 private DirectedEdge[] edgeTo;
 private double[] distTo;

 public AcyclicSP(EdgeWeightedDigraph G, int s)
 {
 edgeTo = new DirectedEdge[G.V()];
 distTo = new double[G.V()];

 for (int v = 0; v < G.V(); v++)
 distTo[v] = Double.POSITIVE_INFINITY;
 distTo[s] = 0.0;

 Topological topological = new Topological(G);
 for (int v : topological.order())
 for (DirectedEdge e : G.adj(v))
 relax(e);

}
Content-aware resizing

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

[YouTube Video](http://www.youtube.com/watch?v=vIFCV2spKtg)
Content-aware resizing

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

In the wild. Photoshop CS 5, Imagemagick, GIMP, ...
Content-aware resizing

To find vertical seam:

- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.
Content-aware resizing

To find vertical seam:

- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.
To remove vertical seam:

- Delete pixels on seam (one in each row).
Content-aware resizing

To remove vertical seam:

- Delete pixels on seam (one in each row).
Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.

- Negate all weights.
- Find shortest paths.
- Negate weights in result.

equivalent: reverse sense of equality in relax()

<table>
<thead>
<tr>
<th>longest paths input</th>
<th>shortest paths input</th>
</tr>
</thead>
<tbody>
<tr>
<td>5->4 0.35</td>
<td>5->4 -0.35</td>
</tr>
<tr>
<td>4->7 0.37</td>
<td>4->7 -0.37</td>
</tr>
<tr>
<td>5->7 0.28</td>
<td>5->7 -0.28</td>
</tr>
<tr>
<td>5->1 0.32</td>
<td>5->1 -0.32</td>
</tr>
<tr>
<td>4->0 0.38</td>
<td>4->0 -0.38</td>
</tr>
<tr>
<td>0->2 0.26</td>
<td>0->2 -0.26</td>
</tr>
<tr>
<td>3->7 0.39</td>
<td>3->7 -0.39</td>
</tr>
<tr>
<td>1->3 0.29</td>
<td>1->3 -0.29</td>
</tr>
<tr>
<td>7->2 0.34</td>
<td>7->2 -0.34</td>
</tr>
<tr>
<td>6->2 0.40</td>
<td>6->2 -0.40</td>
</tr>
<tr>
<td>3->6 0.52</td>
<td>3->6 -0.52</td>
</tr>
<tr>
<td>6->0 0.58</td>
<td>6->0 -0.58</td>
</tr>
<tr>
<td>6->4 0.93</td>
<td>6->4 -0.93</td>
</tr>
</tbody>
</table>

Key point. Topological sort algorithm works even with negative weights.
Parallel job scheduling. Given a set of jobs with durations and precedence constraints, schedule the jobs (by finding a start time for each) so as to achieve the minimum completion time, while respecting the constraints.

<table>
<thead>
<tr>
<th>job</th>
<th>duration</th>
<th>must complete before</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.0</td>
<td>1 7 9</td>
</tr>
<tr>
<td>1</td>
<td>51.0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>36.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>38.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>21.0</td>
<td>3 8</td>
</tr>
<tr>
<td>7</td>
<td>32.0</td>
<td>3 8</td>
</tr>
<tr>
<td>8</td>
<td>32.0</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>29.0</td>
<td>4 6</td>
</tr>
</tbody>
</table>
Critical path method

CPM. To solve a parallel job-scheduling problem, create edge-weighted DAG:

- Source and sink vertices.
- Two vertices (begin and end) for each job.
- Three edges for each job.
 - begin to end (weighted by duration)
 - source to begin (0 weight)
 - end to sink (0 weight)
- One edge for each precedence constraint (0 weight).

```
<table>
<thead>
<tr>
<th>job</th>
<th>duration</th>
<th>must complete before</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.0</td>
<td>1 7 9</td>
</tr>
<tr>
<td>1</td>
<td>51.0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>36.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>38.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>21.0</td>
<td>3 8</td>
</tr>
<tr>
<td>7</td>
<td>32.0</td>
<td>3 8</td>
</tr>
<tr>
<td>8</td>
<td>32.0</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>29.0</td>
<td>4 6</td>
</tr>
</tbody>
</table>
```
Critical path method

CPM. Use **longest path** from the source to schedule each job.
4.4 Shortest Paths

- APIs
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
Shortest paths with negative weights: failed attempts

Dijkstra. Doesn’t work with negative edge weights.

Dijkstra selects vertex 3 immediately after 0. But shortest path from 0 to 3 is 0→1→2→3.

Re-weighting. Add a constant to every edge weight doesn’t work.

Adding 8 to each edge weight changes the shortest path from 0→1→2→3 to 0→3.

Conclusion. Need a different algorithm.
Negative cycles

Def. A **negative cycle** is a directed cycle whose sum of edge weights is negative.

![Diagram of a directed graph with edge weights and a negative cycle highlighted]

Proposition. A SPT exists iff no negative cycles.

assuming all vertices reachable from s
Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.
Repeat V times:
 - Relax each edge.

```java
for (int i = 0; i < G.V(); i++)
    for (int v = 0; v < G.V(); v++)
        for (DirectedEdge e : G.adj(v))
            relax(e);
```
Bellman-Ford algorithm demo

Repeat V times: relax all E edges.

an edge-weighted digraph
Bellman-Ford algorithm demo

Repeat V times: relax all E edges.

shortest-paths tree from vertex s
Bellman-Ford algorithm: visualization

4 passes

7

10

13

SPT
Bellman-Ford algorithm: analysis

Bellman–Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.
Repeat V times:
 - Relax each edge.

Proposition. Dynamic programming algorithm computes SPT in any edge-weighted digraph with no negative cycles in time proportional to $E \times V$.

Pf idea. After pass i, found path that is at least as short as any shortest path containing i (or fewer) edges.
Bellman-Ford algorithm: practical improvement

Observation. If \(\text{distTo}[v] \) does not change during pass \(i \), no need to relax any edge pointing from \(v \) in pass \(i+1 \).

FIFO implementation. Maintain queue of vertices whose \(\text{distTo}[] \) changed.

be careful to keep at most one copy of each vertex on queue (why?)

Overall effect.
- The running time is still proportional to \(E \times V \) in worst case.
- But much faster than that in practice.
Single source shortest-paths implementation: cost summary

<table>
<thead>
<tr>
<th>algorithm</th>
<th>restriction</th>
<th>typical case</th>
<th>worst case</th>
<th>extra space</th>
</tr>
</thead>
<tbody>
<tr>
<td>topological sort</td>
<td>no directed cycles</td>
<td>$E + V$</td>
<td>$E + V$</td>
<td>V</td>
</tr>
<tr>
<td>Dijkstra (binary heap)</td>
<td>no negative weights</td>
<td>$E \log V$</td>
<td>$E \log V$</td>
<td>V</td>
</tr>
<tr>
<td>Bellman–Ford</td>
<td>no negative cycles</td>
<td>$E V$</td>
<td>$E V$</td>
<td>V</td>
</tr>
<tr>
<td>Bellman–Ford (queue-based)</td>
<td>no negative cycles</td>
<td>$E + V$</td>
<td>$E V$</td>
<td>V</td>
</tr>
</tbody>
</table>

Remark 1. Directed cycles make the problem harder.

Remark 2. Negative weights make the problem harder.

Remark 3. Negative cycles makes the problem intractable.
Finding a negative cycle

Negative cycle. Add two method to the API for SP.

```
boolean hasNegativeCycle()  // is there a negative cycle?
Iterable <DirectedEdge> negativeCycle()  // negative cycle reachable from s
```

digraph
```
4->5  0.35
5->4  -0.66
4->7  0.37
5->7  0.28
7->5  0.28
5->1  0.32
0->4  0.38
0->2  0.26
7->3  0.39
1->3  0.29
2->7  0.34
6->2  0.40
3->6  0.52
6->0  0.58
6->4  0.93
```

negative cycle \((-0.66 + 0.37 + 0.28)\)

shortest path from 0 to 6

5->4->7->5
Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating $\text{distTo}[\cdot]$ and $\text{edgeTo}[\cdot]$ entries of vertices in the cycle.

![Diagram of a graph with negative cycle]

Proposition. If any vertex v is updated in pass v, there exists a negative cycle (and can trace back $\text{edgeTo}[v]$ entries to find it).

In practice. Check for negative cycles more frequently.
Problem. Given table of exchange rates, is there an arbitrage opportunity?

<table>
<thead>
<tr>
<th></th>
<th>USD</th>
<th>EUR</th>
<th>GBP</th>
<th>CHF</th>
<th>CAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>USD</td>
<td>1</td>
<td>0.741</td>
<td>0.657</td>
<td>1.061</td>
<td>1.011</td>
</tr>
<tr>
<td>EUR</td>
<td>1.350</td>
<td>1</td>
<td>0.888</td>
<td>1.433</td>
<td>1.366</td>
</tr>
<tr>
<td>GBP</td>
<td>1.521</td>
<td>1.126</td>
<td>1</td>
<td>1.614</td>
<td>1.538</td>
</tr>
<tr>
<td>CHF</td>
<td>0.943</td>
<td>0.698</td>
<td>0.620</td>
<td>1</td>
<td>0.953</td>
</tr>
<tr>
<td>CAD</td>
<td>0.995</td>
<td>0.732</td>
<td>0.650</td>
<td>1.049</td>
<td>1</td>
</tr>
</tbody>
</table>

Ex. $1,000 \Rightarrow 741$ Euros \Rightarrow 1,012.206 Canadian dollars \Rightarrow $1,007.14497.

1000 \times 0.741 \times 1.366 \times 0.995 = 1007.14497
Negative cycle application: arbitrage detection

Currency exchange graph.
- Vertex = currency.
- Edge = transaction, with weight equal to exchange rate.
- Find a directed cycle whose product of edge weights is $>$ 1.

![Currency exchange graph diagram]

Challenge. Express as a negative cycle detection problem.
Negative cycle application: arbitrage detection

Model as a negative cycle detection problem by taking logs.
- Let weight of edge $v \rightarrow w$ be $-\ln$ (exchange rate from currency v to w).
- Multiplication turns to addition; > 1 turns to < 0.
- Find a directed cycle whose sum of edge weights is < 0 (negative cycle).

$$\ln(.741) \quad -\ln(1.366) \quad -\ln(.995)$$

\[
0.2998 - 0.3119 + 0.0050 = -0.0071
\]

Remark. Fastest algorithm is extraordinarily valuable!
Shortest paths summary

Nonnegative weights.
- Arises in many application.
- Dijkstra's algorithm is nearly linear-time.

Acyclic edge-weighted digraphs.
- Arise in some applications.
- Topological sort algorithm is linear time.
- Edge weights can be negative.

Negative weights and negative cycles.
- Arise in some applications.
- If no negative cycles, can find shortest paths via Bellman-Ford.
- If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.