4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.
Road network

Vertex = intersection; edge = one-way street.
The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

Vertex = political blog; edge = link.
Overnight interbank loan graph

Vertex = bank; edge = overnight loan.

The Topology of the Federal Funds Market, Bech and Atalay, 2008
Uber taxi graph

Vertex = taxi pickup; edge = taxi ride.

http://blog.uber.com/2012/01/09/uberdata-san-franciscocomics/
Implication graph

Vertex = variable; edge = logical implication.

if x5 is true, then x0 is true
Combinational circuit

Vertex = logical gate; edge = wire.
Vertex = synset; edge = hypernym relationship.
Digraph applications

<table>
<thead>
<tr>
<th>digraph</th>
<th>vertex</th>
<th>directed edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation</td>
<td>street intersection</td>
<td>one-way street</td>
</tr>
<tr>
<td>web</td>
<td>web page</td>
<td>hyperlink</td>
</tr>
<tr>
<td>food web</td>
<td>species</td>
<td>predator-prey relationship</td>
</tr>
<tr>
<td>WordNet</td>
<td>synset</td>
<td>hypernym</td>
</tr>
<tr>
<td>scheduling</td>
<td>task</td>
<td>precedence constraint</td>
</tr>
<tr>
<td>financial</td>
<td>bank</td>
<td>transaction</td>
</tr>
<tr>
<td>cell phone</td>
<td>person</td>
<td>placed call</td>
</tr>
<tr>
<td>infectious disease</td>
<td>person</td>
<td>infection</td>
</tr>
<tr>
<td>game</td>
<td>board position</td>
<td>legal move</td>
</tr>
<tr>
<td>citation</td>
<td>journal article</td>
<td>citation</td>
</tr>
<tr>
<td>object graph</td>
<td>object</td>
<td>pointer</td>
</tr>
<tr>
<td>inheritance hierarchy</td>
<td>class</td>
<td>inherits from</td>
</tr>
<tr>
<td>control flow</td>
<td>code block</td>
<td>jump</td>
</tr>
</tbody>
</table>
Some digraph problems

<table>
<thead>
<tr>
<th>problem</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>s→t path</td>
<td>Is there a path from s to t?</td>
</tr>
<tr>
<td>shortest s→t path</td>
<td>What is the shortest path from s to t?</td>
</tr>
<tr>
<td>directed cycle</td>
<td>Is there a directed cycle in the graph?</td>
</tr>
<tr>
<td>topological sort</td>
<td>Can the digraph be drawn so that all edges point upwards?</td>
</tr>
<tr>
<td>strong connectivity</td>
<td>Is there a directed path between all pairs of vertices?</td>
</tr>
<tr>
<td>transitive closure</td>
<td>For which vertices v and w is there a directed path from v to w?</td>
</tr>
<tr>
<td>PageRank</td>
<td>What is the importance of a web page?</td>
</tr>
</tbody>
</table>
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
Digraph API

Almost identical to Graph API.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Digraph(int V)</code></td>
<td>create an empty digraph with V vertices</td>
</tr>
<tr>
<td><code>Digraph(In in)</code></td>
<td>create a digraph from input stream</td>
</tr>
<tr>
<td><code>void addEdge(int v, int w)</code></td>
<td>add a directed edge $v \rightarrow w$</td>
</tr>
<tr>
<td><code>Iterable<Integer> adj(int v)</code></td>
<td>vertices pointing from v</td>
</tr>
<tr>
<td><code>int V()</code></td>
<td>number of vertices</td>
</tr>
<tr>
<td><code>int E()</code></td>
<td>number of edges</td>
</tr>
<tr>
<td><code>Digraph reverse()</code></td>
<td>reverse of this digraph</td>
</tr>
<tr>
<td><code>String toString()</code></td>
<td>string representation</td>
</tr>
</tbody>
</table>
Digraph API

```
% java Digraph tinyDG.txt
0->5
0->1
2->0
2->3
3->5
3->2
4->3
4->2
5->4
  
11->4
11->12
12->9
```

```
In in = new In(args[0]);
Digraph G = new Digraph(in);

for (int v = 0; v < G.V(); v++)
    for (int w : G.adj(v))
        StdOut.println(v + "->" + w);

```
Maintain vertex-indexed array of lists.
In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices pointing from v.
- Real-world digraphs tend to be sparse.

<table>
<thead>
<tr>
<th>representation</th>
<th>space</th>
<th>insert edge from v to w</th>
<th>edge from v to w?</th>
<th>iterate over vertices pointing from v?</th>
</tr>
</thead>
<tbody>
<tr>
<td>list of edges</td>
<td>E</td>
<td>1</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>adjacency matrix</td>
<td>V^2</td>
<td>1^\dagger</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>adjacency lists</td>
<td>$E+V$</td>
<td>1</td>
<td>$\text{outdegree}(v)$</td>
<td>$\text{outdegree}(v)$</td>
</tr>
</tbody>
</table>

† disallows parallel edges
Adjacency-lists graph representation (review): Java implementation

```java
public class Graph {
    private final int V;
    private final Bag<Integer>[] adj;

    public Graph(int V) {
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>(());
    }

    public void addEdge(int v, int w) {
        adj[v].add(w);
        adj[w].add(v);
    }

    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```

Adjacency-lists digraph representation: Java implementation

```java
class Digraph {
    private final int V;
    private final Bag<Integer>[] adj;

    public Digraph(int V) {
        this.V = V;
        adj = (Bag<Integer>[][]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>();
    }

    public void addEdge(int v, int w) {
        adj[v].add(w);
    }

    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
Reachability

Problem. Find all vertices reachable from s along a directed path.
Depth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked vertices w pointing from v.
Depth-first search demo

To visit a vertex \(v \):

- Mark vertex \(v \) as visited.
- Recursively visit all unmarked vertices pointing from \(v \).

a directed graph
Depth-first search demo

To visit a vertex \(v \):

- Mark vertex \(v \) as visited.
- Recursively visit all unmarked vertices pointing from \(v \).

Reachable from vertex 0: 0, 1, 2, 3, 4, 5

Reachable from 0: 6, 7, 8, 9, 10, 11, 12

<table>
<thead>
<tr>
<th>(v)</th>
<th>marked[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>–</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>–</td>
</tr>
</tbody>
</table>

Depth-first search (in undirected graphs)

Recall code for undirected graphs.

```java
public class DepthFirstSearch {
    private boolean[] marked;

    public DepthFirstSearch(Graph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    private void dfs(Graph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
    }

    public boolean visited(int v) {
        return marked[v];
    }
}
```

- true if connected to s
- constructor marks vertices connected to s
- recursive DFS does the work
- client can ask whether any vertex is connected to s
Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one.
[substitute Digraph for Graph]

```java
public class DirectedDFS {
    private boolean[] marked;

    public DirectedDFS(Digraph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    private void dfs(Digraph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
    }

    public boolean visited(int v) {
        return marked[v];
    }
}
```

- `marked[]` true if path from s
- `Constructor marks vertices reachable from s`
- `Recursive DFS does the work`
- `Client can ask whether any vertex is reachable from s`
Reachability application: program control-flow analysis

Every program is a digraph.
- Vertex = basic block of instructions (straight-line program).
- Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.
Determine whether exit is unreachable.
Reachability application: mark-sweep garbage collector

Every data structure is a digraph.
- Vertex = object.
- Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).
Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]

- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).
Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.

- Reachability.
- Path finding.
- Topological sort.
- Directed cycle detection.

Basis for solving difficult digraph problems.

- 2-satisfiability.
- Directed Euler path.
- Strongly-connected components.

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN†

Abstract. The value of depth-first search or “backtracking” as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirected graph are presented. The space and time requirements of both algorithms are bounded by \(k_1 V + k_2 E + k_3 \) for some constants \(k_1, k_2, \) and \(k_3 \), where \(V \) is the number of vertices and \(E \) is the number of edges of the graph being examined.
Breadth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:
- remove the least recently added vertex v
- for each unmarked vertex pointing from v:
 add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges) from s to all other vertices in a digraph in time proportional to $E + V$.
Directed breadth-first search demo

Repeat until queue is empty:
- Remove vertex \(v \) from queue.
- Add to queue all unmarked vertices pointing from \(v \) and mark them.
Directed breadth-first search demo

Repeat until queue is empty:
- Remove vertex v from queue.
- Add to queue all unmarked vertices pointing from v and mark them.

```
0
1
2
3
4
5

<table>
<thead>
<tr>
<th>v</th>
<th>edgeTo[]</th>
<th>distTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
```

done
Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source vertices, find shortest path from any vertex in the set to each other vertex.

Ex. $S = \{ 1, 7, 10 \}$.
- Shortest path to 4 is $7 \rightarrow 6 \rightarrow 4$.
- Shortest path to 5 is $7 \rightarrow 6 \rightarrow 0 \rightarrow 5$.
- Shortest path to 12 is $10 \rightarrow 12$.
- ...

Q. How to implement multi-source shortest paths algorithm?
A. Use BFS, but initialize by enqueuing all source vertices.
Breadth-first search in digraphs application: web crawler

Solution. [BFS with implicit digraph]

- Choose root web page as source s.
- Maintain a Queue of websites to explore.
- Maintain a SET of discovered websites.
- Dequeue the next website and enqueue websites to which it links (provided you haven't done so before).

Q. Why not use DFS?
Bare-bones web crawler: Java implementation

```java
Queue<String> queue = new Queue<String>();
SET<String> marked = new SET<String>();

String root = "http://www.princeton.edu";
queue.enqueue(root);
marked.add(root);

while (!queue.isEmpty())
{
    String v = queue.dequeue();
    StdOut.println(v);
    In in = new In(v);
    String input = in.readAll();

    String regexp = "http://(\w+\.)+(\w+)";
    Pattern pattern = Pattern.compile(regexp);
    Matcher matcher = pattern.matcher(input);
    while (matcher.find())
    {
        String w = matcher.group();
        if (!marked.contains(w))
        {
            marked.add(w);
            queue.enqueue(w);
        }
    }
}
```

- queue of websites to crawl
- set of marked websites
- start crawling from root website
- read in raw html from next website in queue
- use regular expression to find all URLs in website of form http://xxx.yyy.zzz
 [crude pattern misses relative URLs]
- if unmarked, mark it and put on the queue
Web crawler output

BFS crawl

http://www.princeton.edu
http://www.w3.org
http://ogp.me
http://giving.princeton.edu
http://www.princetonartmuseum.org
http://www.goprincetontigers.com
http://library.princeton.edu
http://helpdesk.princeton.edu
http://tigernet.princeton.edu
http://alumni.princeton.edu
http://gradschool.princeton.edu
http://vimeo.com
http://princetonusg.com
http://artmuseum.princeton.edu
http://jobs.princeton.edu
http://odoc.princeton.edu
http://blogs.princeton.edu
http://www.facebook.com
http://twitter.com
http://www.youtube.com
http://deimos.apple.com
http://qeprize.org
http://en.wikipedia.org
...

DFS crawl

http://www.princeton.edu
http://deimos.apple.com
http://www.youtube.com
http://www.google.com
http://news.google.com
http://csi.gstatic.com
http://googlenewsblog.blogspot.com
http://labs.google.com
http://groups.google.com
http://img1.blogblog.com
http://feeds.feedburner.com
http://buttons.googlesyndication.com
http://fusion.google.com
http://insidesearch.blogspot.com
http://agooleaday.com
http://static.googleusercontent.com
http://searchresearch1.blogspot.com
http://feedburner.google.com
http://www.dot.ca.gov
http://www.TahoeRoads.com
http://www.LakeTahoeTransit.com
http://www.laketahoe.com
http://ethel.tahoeguide.com
...

37
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
Precence scheduling

Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.
Topological sort

DAG. Directed **acyclic** graph.

Topological sort. Redraw DAG so all edges point upwards.

Solution. DFS. What else?
Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.

a directed acyclic graph

tinyDAG7.txt

| 7
| 11 |
| 0 5
| 0 2
| 0 1
| 3 6
| 3 5
| 3 4
| 5 2
| 6 4
| 6 0
| 3 2
Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.

postorder
4 1 2 5 0 6 3

topological order
3 6 0 5 2 1 4

done
Depth-first search order

```java
public class DepthFirstOrder {
    private boolean[] marked;
    private Stack<Integer> reversePostorder;

    public DepthFirstOrder(Digraph G) {
        reversePostorder = new Stack<Integer>();
        marked = new boolean[G.V()];
        for (int v = 0; v < G.V(); v++)
            if (!marked[v]) dfs(G, v);
    }

    private void dfs(Digraph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
        reversePostorder.push(v);
    }

    public Iterable<Integer> reversePostorder() {
        return reversePostorder;
    }
}
```

returns all vertices in "reverse DFS postorder"
Topological sort in a DAG: intuition

Why does topological sort algorithm work?

- First vertex in postorder has outdegree 0.
- Second-to-last vertex in postorder can only point to last vertex.
- ...

| postorder | 4 1 2 5 0 6 3 |
| topological order | 3 6 0 5 2 1 4 |
Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge $v \rightarrow w$. When $\text{dfs}(v)$ is called:

- **Case 1:** $\text{dfs}(w)$ has already been called and returned. Thus, w was done before v.

- **Case 2:** $\text{dfs}(w)$ has not yet been called. $\text{dfs}(w)$ will get called directly or indirectly by $\text{dfs}(v)$ and will finish before $\text{dfs}(v)$. Thus, w will be done before v.

- **Case 3:** $\text{dfs}(w)$ has already been called, but has not yet returned. Can’t happen in a DAG: function call stack contains path from w to v, so $v \rightarrow w$ would complete a cycle.
Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle.

Pf.
- If directed cycle, topological order impossible.
- If no directed cycle, DFS-based algorithm finds a topological order.

![Directed cycle](image)

Goal. Given a digraph, find a directed cycle.

Solution. DFS. What else? See textbook.
Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?

![Table Example]

http://xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.
Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

```
public class A extends B {
    ...
}
```

```
public class B extends C {
    ...
}
```

```
public class C extends A {
    ...
}
```

```
% javac A.java
A.java:1: cyclic inheritance involving A
public class A extends B {}
  ^
1 error
```
Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)
Depth-first search orders

Observation. DFS visits each vertex exactly once. The order in which it does so can be important.

Orderings.

- Preorder: order in which dfs() is called.
- Postorder: order in which dfs() returns.
- Reverse postorder: reverse order in which dfs() returns.

```java
private void dfs(Graph G, int v) {
    marked[v] = true;
    preorder.enqueue(v);
    for (int w : G.adj(v))
        if (!marked[w]) dfs(G, w);
    postorder.enqueue(v);
    reversePostorder.push(v);
}
```
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
Strongly-connected components

Def. Vertices v and w are strongly connected if there is both a directed path from v to w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:

- v is strongly connected to v.
- If v is strongly connected to w, then w is strongly connected to v.
- If v is strongly connected to w and w to x, then v is strongly connected to x.

Def. A strong component is a maximal subset of strongly-connected vertices.

A digraph and its strong components

5 strongly-connected components
Connected components vs. strongly-connected components

v and w are **connected** if there is a path between v and w

![3 connected components](image)

v and w are **strongly connected** if there is both a directed path from v to w and a directed path from w to v

![5 strongly-connected components](image)

connected component id (easy to compute with DFS)

| 0 1 2 3 4 5 6 7 8 9 10 11 12 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| id[] | 0 0 0 0 0 0 1 1 1 2 2 2 2 |

strongly-connected component id (how to compute?)

| 0 1 2 3 4 5 6 7 8 9 10 11 12 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| id[] | 1 0 1 1 1 1 3 4 3 2 2 2 2 |

public boolean connected(int v, int w) {
 return id[v] == id[w];
}

constant-time client connectivity query

public boolean stronglyConnected(int v, int w) {
 return id[v] == id[w];
}

constant-time client strong-connectivity query
Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

[Image of a food web graph showing various species and their connections]

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif

Strong component. Subset of species with common energy flow.
Strong component application: software modules

Software module dependency graph.
- Vertex = software module.
- Edge: from module to dependency.

Strong component. Subset of mutually interacting modules.
Approach 1. Package strong components together.
Approach 2. Use to improve design!
Strong components algorithms: brief history

1960s: Core OR problem.
- Widely studied; some practical algorithms.
- Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).
- Classic algorithm.
- Level of difficulty: Algs4++.
- Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).
- Forgot notes for lecture; developed algorithm in order to teach it!
- Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.
- Gabow: fixed old OR algorithm.
- Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.
Kosaraju-Sharir algorithm: intuition

Reverse graph. Strong components in G are same as in G^R.

Kernel DAG. Contract each strong component into a single vertex.

Idea.
- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.
Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G^R.

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R.

![digraph G](image)
Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G^R.

1 0 2 4 5 3 11 9 12 10 6 7 8

reverse digraph G^R
Kosaraju-Sharir algorithm demo

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R.

1 0 2 4 5 3 11 9 12 10 6 7 8

<table>
<thead>
<tr>
<th>v</th>
<th>id[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
</tr>
</tbody>
</table>

done
Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.

- **Phase 1**: run DFS on G^R to compute reverse postorder.
- **Phase 2**: run DFS on G, considering vertices in order given by first DFS.

DFS in reverse digraph G^R

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>check unmarked vertices in the order</td>
<td>reverse postorder for use in second dfs()</td>
<td></td>
</tr>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>1 0 2 4 5 3 11 9 12 10 6 7 8</td>
<td></td>
</tr>
</tbody>
</table>
Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.
- Phase 1: run DFS on G^R to compute reverse postorder.
- Phase 2: run DFS on G, considering vertices in order given by first DFS.

DFS in original digraph G

check unmarked vertices in the order
1 0 2 4 5 3 11 9 12 10 6 7 8

DFS in reversed digraph G^R

dfs(0)
dfs(1) done

dfs(11)
dfs(12) done

dfs(10) done

dfs(6)
dfs(7) done

check 9
check 12
check 10

dfs(8)
dfs(9)
dfs(12) done

dfs(11) done

dfs(6)
dfs(7) done

check 8
check 9
check 6
check 0
check 6 done

Kosaraju-Sharir algorithm

Proposition. Kosaraju-Sharir algorithm computes the strong components of a digraph in time proportional to $E + V$.

Pf.

- Running time: bottleneck is running DFS twice (and computing G^R).
- Correctness: tricky, see textbook (2nd printing).
- Implementation: easy!
public class CC
{
 private boolean marked[];
 private int[] id;
 private int count;

 public CC(Graph G)
 {
 marked = new boolean[G.V()];
 id = new int[G.V()];

 for (int v = 0; v < G.V(); v++)
 {
 if (!marked[v])
 {
 dfs(G, v);
 count++;
 }
 }
 }

 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 id[v] = count;
 for (int w : G.adj(v))
 {
 if (!marked[w])
 {
 dfs(G, w);
 }
 }
 }

 public boolean connected(int v, int w)
 {
 return id[v] == id[w];
 }
}
Strong components in a digraph (with two DFSs)

```java
public class KosarajuSharirSCC {
    private boolean marked[];
    private int[] id;
    private int count;

    public KosarajuSharirSCC(Digraph G) {
        marked = new boolean[G.V()];
        id = new int[G.V()];
        DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
        for (int v : dfs.reversePostorder()) {
            if (!marked[v]) {
                dfs(G, v);
                count++;
            }
        }
    }

    private void dfs(Digraph G, int v) {
        marked[v] = true;
        id[v] = count;
        for (int w : G.adj(v))
            if (!marked[w])
                dfs(G, w);
    }

    public boolean stronglyConnected(int v, int w) {
        return id[v] == id[w];
    }
}
```
<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Description</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>single-source reachability</td>
<td>in a digraph</td>
<td>DFS</td>
</tr>
<tr>
<td>topological sort</td>
<td>in a DAG</td>
<td>DFS</td>
</tr>
<tr>
<td>strong components</td>
<td>in a digraph</td>
<td>Kosaraju-Sharir DFS (twice)</td>
</tr>
</tbody>
</table>