CS2010: ALGORITHMS AND DATA STRUCTURES

Lectures 15: Balanced Binary Search Trees

Vasileios Koutavas

School of Computer Science and Statistics
Trinity College Dublin
3.3 Balanced Search Trees

- 2-3 search trees
- red-black BSTs
- B-trees
Symbol table review

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered ops?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>$\frac{1}{2}N$</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>$\lg N$</td>
<td>N</td>
<td>N</td>
<td>$\lg N$</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>$1.39 \lg N$</td>
</tr>
<tr>
<td>goal</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>$\log N$</td>
</tr>
</tbody>
</table>

This lecture. 2-3 trees, left-leaning red-black BSTs, B-trees.
3.3 Balanced Search Trees

- 2-3 search trees
- red-black BSTs
- B-trees
2-3 tree

Allow 1 or 2 keys per node.
- 2-node: one key, two children.
- 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.
Perfect balance. Every path from root to null link has same length.
Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for H

2-3 tree demo
Insertion into a 2-3 tree

Insertion into a 2-node at bottom.
- Add new key to 2-node to create a 3-node.

```
insert G
```

![Insertion into a 2-3 tree diagram]

Insertion into a 2-3 tree

Insertion into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

insert Z

![Diagram of 2-3 tree before and after insertion of Z]
2-3 tree construction demo

insert S
2-3 tree construction demo

2–3 tree
Splitting a 4-node is a **local** transformation: constant number of operations.

Local transformations in a 2-3 tree
Global properties in a 2-3 tree

Invariants. Maintains symmetric order and perfect balance.

Pf. Each transformation maintains symmetric order and perfect balance.
Insert the keys: A, B, C

Q: which of the following trees do we get?
2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
- Worst case:
- Best case:
2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
- Worst case: $\lg N$. [all 2-nodes]
- Best case: $\log_3 N \approx 0.631 \lg N$. [all 3-nodes]
- Between 12 and 20 for a million nodes.
- Between 18 and 30 for a billion nodes.

Bottom line. Guaranteed logarithmic performance for search and insert.
<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered ops?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequential search (unordered list)</td>
<td>(N)</td>
<td>(\frac{1}{2} N)</td>
<td>(N)</td>
<td>equals()</td>
</tr>
<tr>
<td></td>
<td>(N)</td>
<td>(N)</td>
<td>(\frac{1}{2} N)</td>
<td></td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>(\log N)</td>
<td>(\frac{1}{2} N)</td>
<td>(\frac{1}{2} N)</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td></td>
<td>(N)</td>
<td>(N)</td>
<td>(\frac{1}{2} N)</td>
<td></td>
</tr>
<tr>
<td>BST</td>
<td>(N)</td>
<td>(\frac{1}{2} N)</td>
<td>(\frac{1}{2} N)</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>2-3 tree</td>
<td>(c \log N)</td>
<td>(c \log N)</td>
<td>(c \log N)</td>
<td>(\checkmark)</td>
</tr>
</tbody>
</table>

constant \(c \) depend upon implementation
2-3 tree: implementation?

Direct implementation is complicated, because:
- Maintaining multiple node types is cumbersome.
- Need multiple compares to move down tree.
- Need to move back up the tree to split 4-nodes.
- Large number of cases for splitting.

```
public void put(Key key, Value val)
{
    Node x = root;
    while (x.getTheCorrectChild(key) != null)
    {
        x = x.getTheCorrectChildKey();
        if (x.is4Node()) x.split();
    }
    if    (x.is2Node()) x.make3Node(key, val);
    else if (x.is3Node()) x.make4Node(key, val);
}
```

Bottom line. Could do it, but there's a better way.
3.3 Balanced Search Trees

- 2-3 search trees
- red-black BSTs
- B-trees
How to implement 2-3 trees with binary trees?

Challenge. How to represent a 3 node?

Approach 1: regular BST.
- No way to tell a 3-node from a 2-node.
- Cannot map from BST back to 2-3 tree.

Approach 2: regular BST with "glue" nodes.
- Wastes space, wasted link.
- Code probably messy.

Approach 3: regular BST with red "glue" links.
- Widely used in practice.
- Arbitrary restriction: red links lean left.
Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007)

1. Represent 2–3 tree as a BST.
2. Use "internal" left-leaning links as "glue" for 3–nodes.

![Diagram of 2-3 tree and corresponding red-black BST]

- Encoding a 3-node with two 2-nodes connected by a left-leaning red link.
- A 3-node between elements where the key of the middle element is smaller than the left element and larger than the right element.
- Red links "glue" nodes within a 3-node.
- Black links connect 2-nodes and 3-nodes.
- Larger key is root.
An equivalent definition

A BST such that:

- No node has two red links connected to it.
- Every path from root to null link has the same number of black links.
- Red links lean left.

"perfect black balance"
Key property. 1–1 correspondence between 2–3 and LLRB.
Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).

but runs faster
because of better balance

```
public Val get(Key key)
{
    Node x = root;
    while (x != null)
    {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else if (cmp == 0) return x.val;
    }
    return null;
}
```

Remark. Most other ops (e.g., floor, iteration, selection) are also identical.
Red-black BST representation

Each node is pointed to by precisely one link (from its parent) ⇒ can encode color of links in nodes.

```java
private static final boolean RED = true;
private static final boolean BLACK = false;

private class Node
{
    Key key;
    Value val;
    Node left, right;
    boolean color; // color of parent link
}

private boolean isRed(Node x)
{
    if (x == null) return false;
    return x.color == RED;
}
```

null links are black
Basic strategy. Maintain 1-1 correspondence with 2-3 trees.

During internal operations, maintain:
- Symmetric order.
- Perfect black balance.
 [but not necessarily color invariants]

How? Apply elementary red-black BST operations: rotation and color flip.
Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

![Diagram of left rotation](rotate-left-diagram.png)

```java
private Node rotateLeft(Node h) {
    assert isRed(h.right);
    Node x = h.right;
    h.right = x.left;
    x.left = h;
    x.color = h.color;
    h.color = RED;
    return x;
}
```

Invariants. Maintains symmetric order and perfect black balance.
Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

![Diagram of left rotation](image)

```java
private Node rotateLeft(Node h) {
    assert isRed(h.right);
    Node x = h.right;
    h.right = x.left;
    x.left = h;
    x.color = h.color;
    h.color = RED;
    return x;
}
```

Invariants. Maintains symmetric order and perfect black balance.
Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

Invariants. Maintains symmetric order and perfect black balance.
Right rotation. Orient a left-leaning red link to (temporarily) lean right.

```
private Node rotateRight(Node h) {
    assert isRed(h.left);
    Node x = h.left;
    h.left = x.right;
    x.right = h;
    x.color = h.color;
    h.color = RED;
    return x;
}
```

Invariants. Maintains symmetric order and perfect black balance.
Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

```java
private void flipColors(Node h) {
    assert !isRed(h);
    assert isRed(h.left);
    assert isRed(h.right);
    h.color = RED;
    h.left.color = BLACK;
    h.right.color = BLACK;
}
```

Invariants. Maintains symmetric order and perfect black balance.
Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

```java
private void flipColors(Node h) {
    assert !isRed(h);
    assert isRed(h.left);
    assert isRed(h.right);
    h.color = RED;
    h.left.color = BLACK;
    h.right.color = BLACK;
}
```

Invariants. Maintains symmetric order and perfect black balance.
Insertion in a LLRB tree

Warmup 1. Insert into a tree with exactly 1 node.
Case 1. Insert into a 2-node at the bottom.
- Do standard BST insert; color new link red.
- If new red link is a right link, rotate left.

to maintain symmetric order and perfect black balance

to fix color invariants
Warmup 2. Insert into a tree with exactly 2 nodes.

Insertion in a LLRB tree

larger

- search ends at this null link
- attached new node with red link
- colors flipped to black

smaller

- search ends at this null link
- attached new node with red link
- rotated right
- colors flipped to black

between

- search ends at this null link
- attached new node with red link
- rotated left
- rotated right
- colors flipped to black
- colors flipped to black

Insert into a single 3-node (three cases)
Insertion in a LLRB tree

Case 2. Insert into a 3-node at the bottom.
- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.
- Rotate to make lean left (if needed).

To maintain symmetric order and perfect black balance.

To fix color invariants.

inserting H

```
        C  E
       /   \
      A    S
         |   |
        R   H
     A  C  R
```

```
        C  E
       /   \
      A    S
         |   |
        R   H
     A  C  R
```

```
        C  E
       /   \
      A    S
         |   |
        R   H
     A  C  R
```

```两lefts in a row
so rotate right
```

```both children red
so flip colors
```

```right link red
so rotate left
```
Case 2. Insert into a 3-node at the bottom.
- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.
- Rotate to make lean left (if needed).
- Repeat case 1 or case 2 up the tree (if needed).
Red-black BST construction demo

insert S
Red-black BST construction demo

red–black BST
Insertion in a LLRB tree: Java implementation

Same code for all cases.

- Right child red, left child black: rotate left.
- Left child, left-left grandchild red: rotate right.
- Both children red: flip colors.

```java
private Node put(Node h, Key key, Value val)
{
    if (h == null) return new Node(key, val, RED);
    int cmp = key.compareTo(h.key);
    if (cmp < 0) h.left = put(h.left, key, val);
    else if (cmp > 0) h.right = put(h.right, key, val);
    else if (cmp == 0) h.val = val;

    if (isRed(h.right) && !isRed(h.left))    h = rotateLeft(h);
    if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
    if (isRed(h.left) && isRed(h.right))     flipColors(h);

    return h;
}
```

only a few extra lines of code provides near-perfect balance
Insertion in a LLRB tree: visualization

N = 255
max = 8
avg = 7.0
opt = 7.0

255 insertions in ascending order
Insertion in a LLRB tree: visualization

N = 255
max = 8
avg = 7.0
opt = 7.0

255 insertions in descending order
Insertion in a LLRB tree: visualization

$N = 255$
$\text{max} = 10$
$\text{avg} = 7.3$
$\text{opt} = 7.0$

255 random insertions
Balance in LLRB trees

Proposition. Height of tree is $\leq 2 \lg N$ in the worst case.

Pf.

- Every path from root to null link has same number of black links.
- Never two red links in-a-row.

Property. Height of tree is $\sim 1.0 \lg N$ in typical applications.
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered ops?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequential search</td>
<td>N</td>
<td>$\frac{1}{2}N$</td>
<td>N</td>
<td>equals()</td>
</tr>
<tr>
<td>(unordered list)</td>
<td>N</td>
<td>N</td>
<td>$\frac{1}{2}N$</td>
<td></td>
</tr>
<tr>
<td>binary search</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>$\frac{1}{2}N$</td>
<td>✓</td>
</tr>
<tr>
<td>(ordered array)</td>
<td>N</td>
<td>N</td>
<td>$\frac{1}{2}N$</td>
<td>compareTo()</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>$1.39 \log N$</td>
<td>\sqrt{N}</td>
<td>✓</td>
</tr>
<tr>
<td>2–3 tree</td>
<td>$c \log N$</td>
<td>$c \log N$</td>
<td>$c \log N$</td>
<td>✓</td>
</tr>
<tr>
<td>red–black BST</td>
<td>$2 \log N$</td>
<td>$2 \log N$</td>
<td>$1.0 \log N^*$</td>
<td>✓</td>
</tr>
</tbody>
</table>

exact value of coefficient unknown but extremely close to 1
War story: why red-black?

Xerox PARC innovations. [1970s]

- Alto.
- GUI.
- Ethernet.
- Smalltalk.
- InterPress.
- Laser printing.
- Bitmapped display.
- WYSIWYG text editor.
- ...

A Dichromatic Framework for Balanced Trees

Leo J. Guibas
Xerox Palo Alto Research Center,
Palo Alto, California, and
Carnegie-Mellon University

Robert Sedgewick*
Program in Computer Science
Brown University
Providence, R. I.

Abstract
In this paper we present a uniform framework for the implementation and study of balanced tree algorithms. We show how to imbibe in this the way down towards a leaf. As we will see, this has a number of significant advantages over the older methods. We shall examine a number of variations on a common theme and exhibit full implementations which are notable for their brevity. One implementation is examined carefully, and some properties about its
War story: red-black BSTs

Telephone company contracted with database provider to build real-time database to store customer information.

Database implementation.

- Red-black BST search and insert; Hibbard deletion.
- Exceeding height limit of 80 triggered error-recovery process.

Extended telephone service outage.

- Main cause = height bounded exceeded!
- Telephone company sues database provider.
- Legal testimony:

 “If implemented properly, the height of a red-black BST with N keys is at most $2 \log N$. ” — expert witness
3.3 Balanced Search Trees

- 2-3 search trees
- red-black BSTs
- B-trees
File system model

Page. Contiguous block of data (e.g., a file or 4,096-byte chunk).

Probe. First access to a page (e.g., from disk to memory).

Property. Time required for a probe is much larger than time to access data within a page.

Cost model. Number of probes.

Goal. Access data using minimum number of probes.
B-trees (Bayer-McCreight, 1972)

B-tree. Generalize 2-3 trees by allowing up to $M - 1$ key-link pairs per node.
- At least 2 key-link pairs at root.
- At least $M/2$ key-link pairs in other nodes.
- External nodes contain client keys.
- Internal nodes contain copies of keys to guide search.

Anatomy of a B-tree set (M = 6)
Searching in a B-tree

- Start at root.
- Find interval for search key and take corresponding link.
- Search terminates in external node.

Searching in a B-tree set (M = 6)
Insertion in a B-tree

- Search for new key.
- Insert at bottom.
- Split nodes with M key-link pairs on the way up the tree.

Inserting a new key into a B-tree set
Balance in B-tree

Proposition. A search or an insertion in a B-tree of order M with N keys requires between $\log_{M-1} N$ and $\log_{M/2} N$ probes.

Pf. All internal nodes (besides root) have between $M/2$ and $M - 1$ links.

In practice. Number of probes is at most 4. $\quad M = 1024; \; N = 62 \text{ billion}$

Optimization. Always keep root page in memory.
Building a large B tree

- Each line shows the result of inserting one key in some page.
- White: unoccupied portion of page.
- Black: occupied portion of page.
- Full page, about to split.
- Full page splits into two half-full pages then a new key is added to one of them.
Balanced trees in the wild

Red-black trees are widely used as system symbol tables.

- **Java**: `java.util.TreeMap, java.util.TreeSet`.
- **C++ STL**: `map, multimap, multiset`.
- **Linux kernel**: completely fair scheduler, `linux/rbtree.h`.
- **Emacs**: conservative stack scanning.

B-tree variants. B+ tree, B*tree, B# tree, ...

B-trees (and variants) are widely used for file systems and databases.

- Windows: NTFS.
- Mac: HFS, HFS+.
- Linux: ReiserFS, XFS, Ext3FS, JFS.
- Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.
Red-black BSTs in the wild

Common sense. Sixth sense. Together they're the FBI's newest team.
FADE IN:

INT. FBI HQ - NIGHT

Antonio is at THE COMPUTER as Jess explains herself to Nicole and Pollock. The CONFERENCE TABLE is covered with OPEN REFERENCE BOOKS, TOURIST GUIDES, MAPS and REAMS OF PRINTOUTS.

JESS
It was the red door again.

POLLOCK
I thought the red door was the storage container.

JESS
But it wasn't red anymore. It was black.

ANTONIO
So red turning to black means... what?

POLLOCK
Budget deficits? Red ink, black ink?

NICOLE
Yes. I'm sure that's what it is. But maybe we should come up with a couple other options, just in case.

Antonio refers to his COMPUTER SCREEN, which is filled with mathematical equations.

ANTONIO
It could be an algorithm from a binary search tree. A red-black tree tracks every simple path from a node to a descendant leaf with the same number of black nodes.

JESS
Does that help you with girls?